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ABSTRACT
Tennis is a popular sport, and professional tennis matches are probably the most
watched games globally. Many studies consider statistical or machine learning mod-
els to predict the results of professional tennis matches. In this study, we propose a
statistical approach for predicting the match outcomes of Grand Slam tournaments,
in addition to applying exploratory data analysis (EDA) to explore variables related
to match results. The proposed approach introduces new variables via the Glicko
rating model, a Bayesian method commonly used in professional chess. We use EDA
tools to determine important variables and apply classification models (e.g., logistic
regression, support vector machine, neural network and light gradient boosting ma-
chine) to evaluate the classification results through cross-validation. The empirical
study is based on men’s and women’s single matches of Grand Slam tournaments
(2000–2019). Our analysis results show that professional tennis ranking is the most
important variable and that the accuracy of the proposed Glicko model is slightly
higher than that of other models.
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1. Introduction

Data analytics has become very popular due to the rapid development of big data. Or-
ganizations and individuals create more opportunities by making use of the available
information. For example, industries utilize big data to attain more customers and
higher profits, while governments exploit big data to obtain more efficient resource
allocations and better operations. Ever since IBM proposed that there are four char-
acteristics of big data, namely, the 4 Vs (volume, velocity, variety, and veracity), many
researchers have suggested expanding the characteristics of big data. Value, variability,
and viability are some examples of new Vs. Nonetheless, the key to applying big data
is to uncover the patterns hidden in the data, regardless of how many Vs are involved.

Ideally, we would apply data-driven techniques to discover the value of data and let
the data tell the story. However, in practice, it is difficult to rely solely on automated
data analytics, i.e., performing data analysis with little human intervention, since the
process of selecting important variables depends on the study objective and domain
knowledge. For example, suppose we are interested in professional tennis matches.
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If we want to predict the winners of matches, the related variables may include the
players’ tournament history and personal information ( Gorgi, Koopman, & Lit, 2019;
Somboonphokkaphan, Phimoltares, & Lursinsap, 2009). On the other hand, if our
focus is on the upset probability of matches, then we may want to consider other
variables, such as the match records against common opponents and the format of
matches ( Knottenbelt, Spanias, & Madurska, 2012; Kovalchik & Ingram, 2018).

In reality, it is not possible to record all the available information, and it is also
unlikely that it is all available digitally. Even though we can collect as many materials
as possible, another question arises: should we include all variables in the study? In
other words, the consideration is whether more data are better or if we can distinguish
signals from noise. Answering this question is not easy, and it somewhat influences how
we deal with the problem. In the case of predicting the outcomes of tennis matches,
most studies plug all available variables into models (especially machine learning mod-
els) without exploring the characteristics of input variables (for example, Candila &
Palazzo, 2020; Hostačný, 2018; Wilkens, 2020), although this in some way conflicts
with how we conduct statistical analysis.

Selecting appropriate models is also a critical issue in predicting match results, in
addition to recognizing important variables. The models for predicting tennis matches
can be separated into three categories: regression-based, point-based, and paired com-
parison (Kovalchik, 2016). We can use macro- and microlevel forecasts (Turner, 2005)
as an analogue to describe the difference between regression- and point-based models.
It is not necessarily that microlevel models can provide more accurate predictions,
which would depend on the study goal and data attributes. In tennis match predic-
tion, regression-based models are the most popular, while point-based models tend to
have less accurate predictions (Ingram, 2019).

In order to predict the tennis match results, researchers have considered various pre-
dictors into their classification algorithms. Some of the relevant variables are player’s
physical and mental characteristics, such as age, height, handedness, and career wins
(Del Corral & Prieto-Rodŕıguez, 2010; Panjan, Šarabon & Filipčič, 2010). The re-
sults of the games are also considered as predictors, like winning percentages on the
first, second, and return serve, total point win, and different type of court (Somboon-
phokkaphan et al. , 2009). In addition, tournament factors and some indicators from
the matches are also used. Furthermore, the most common predictor for the models is
player’s rank (Kovalchik, 2016).

In this study, we aim to evaluate the prediction accuracy of regression-based models,
given the same variables, and explore whether introducing new variables can improve
model prediction. We generate new variables via a Bayesian approach, namely, the
Glicko model, which was originally used in professional chess. In addition, we will
apply tools of exploratory data analysis (EDA) to identify important variables. These
variables will be plugged into statistical models and machine learning models to check
which models produce more accurate results. The model comparison is based on the
single matches of Grand Slam tournaments (2000–2019), and error calculation is via
cross-validation. In the rest of this paper, we first introduce the data and models used
in the next section, followed by the key findings of EDA in Section 3. We show the
results of the model comparison in Section 4 and provide our suggestions in Section 5.
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Figure 1. Wimbledon Championship Bracket https://www.interbasket.net/wp-content/uploads/

Wimbledon-bracket-1-of-2-print-768x590.jpg

2. Data and Methodology

We study the single matches of Grand Slam tournaments, namely, the Australian
Open, the French Open, Wimbledon, and the US Open, which are the world’s four
most important annual tennis events. For each Grand Slam tournament, there are
7 rounds of single-elimination games (1st round, 2nd round, 3rd round, 4th round,
quarter-final, semi-final, and final), with a total of 127 matches (and 128 players).
Figure 1 shows the bracket of single matches in Wimbledon. Grand Slam tournaments
seed the players according to their rankings and currently adopt the 32-seed format.
We consider 20 years of Grand Slam single matches (2000–2019) for men and women in
this study and use the data collected (49 variables) from GitHub, which are organized
by Jeff Sackmann at https://github.com/JeffSackmann.

Judging from how Grand Slam tournaments seed the bracket, it seems that the
ranking is believed to be a reliable index for measuring players’ strength. We will
adapt this notion and introduce a rating index for predicting the results of tennis
matches. The current ranking method used by the Association of Tennis Professionals
(ATP) and the Women’s Tennis Association (WTA) is to determine the seeding of
players and qualification for entry in a tournament. Players’ ranking points are decided
by the stage of tournament they reached and the reputation of the tournament they
participated in for the last 52 weeks. In other words, the ranking points will not be
considered if players did not play for the last 52 weeks. The ranking points of tennis
tournaments can be found on the official websites of the ATP and WTA.
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Elo ratings (1978) is a famous rating system for professional tennis and was initially
used in rating chess players. This chess rating system has been used successfully for
paired comparison in sports; it measures players’ strength based on their past per-
formance in the sequence of matches, and ratings are updated after each competitive
result. Many studies proved the efficiency and accuracy of Elo ratings in predicting
the winner of tennis matches (Kovalchik, 2016), and it is further extended for in-play
tennis betting (Kovalchik & Reid, 2019). Vaughan Williams, Liu, Dixon, & Gerrard
(2021) used Elo-based ratings to predict ratings and proved that it works better than
the official rating system. Additionally, the Elo rating system uses the normality as-
sumption.

Another rating system is the Glicko model (Glickman, 1999), developed by Mark
Glickman to improve the Elo rating system. Three significant adjustments are involved
in the Glicko formula, including an additional parameter presented as a standard
deviation - rating deviation (RD), a time factor, and opponents’ ratings and deviations.
RD represents variability/uncertainty in the rating. The deviation will increase at the
beginning of the updating period and decrease at the end. Uncertainty should decrease
and ratings become more stable as more games are played or the ratings converge to
the player’s actual rating. The time factor in the Glicko system allows an increase in
RD when a player has not played any rated game for a certain period, representing
a higher uncertainty of the rating accuracy than a player playing regularly. The third
factor takes opponents’ ratings and RDs into consideration.

The Glicko rating system is a paired comparison model for a player and his/her
opponents in a rating period. A player’s rating, θ, is assumed to be a random variable
that follows a normal distribution with the players’ average strength (r) and the de-
gree of uncertainty in the players’ strength (RD) known, θ|r,RD2 ∼ N(r,RD2). The
distribution represents the expected performance of a player. This paired comparison
model allows r and RD to vary over time. The system adapts the Bayesian approach,
modelling the game outcomes by the Bradley-Terry model (Bradley & Terry, 1952).
The first step in the Glicko algorithm is to determine RD. Before entering a new rating
period, the rating deviation will increase by a constant over time, c2t.

RD = min(
√
RD2

old + c2t, RD0)

where RD0 is the initial rating variance of a new player, RDold is the current player’s
original RD, c is a constant that represents how quickly the RD increases over time,
and t is the number of rating periods since the last competition.

The Glicko rating system is an approximate estimation of a player’s true strength
via a Bayesian approach. It can accumulate previous information and continuously
update the parameters with new match results. The Bayesian estimation is generally
straightforward in the case of a conjugate prior, i.e., prior and posterior distributions
belonging to the same distribution. However, this is not the case for the Glicko model
since the match results are binary. Because of the rapid development of computer
technology, Bayesian estimation has become more convenient, and simulation-based
MCMC (Markov chain Monte Carlo) methods can be used to obtain Bayesian esti-
mates. In this study, the Glicko ratings were calculated using the “PlayerRatings”
package (Stephenson & Sonas, 2020) in R, with an initial mean strength (r) of 1500,
a deviation (RD) of 350, and a constant (c) of 10, after various experiments.
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Figure 2. Winning Probability of Higher-ranked Player vs. Rank Difference (Male Single)

3. Exploratory Data Analysis

We will apply EDA tools to explore the tennis match data in this section. The goal
of EDA is to detect important attributes of tennis matches and to identify useful
variables for constructing predictive models. The chosen variables will be plugged
into classification models, such as statistical and machine learning models, in the
next section. The variables considered include players’ demographic information (e.g.,
residence, age, the year their career started, and the hand used) and the ranking data
(rank and points) from 2000 to 2019. We aim to discover the relationships between
player characteristics and match outcomes, which can provide explanatory power in
relation to model effectiveness. Interestingly, we found that the Pareto principle (“80-
20” rule) exists for the case where players’ advancement to later rounds is closely
associated with their rankings. Pareto principle means that 80% of effects (winning
results) come from 20% of causes (higher-ranked players). This can be adequately
described by the power law.

We should first depict the relationship between the ranking and Grand Slam match
result for male singles, since the ranking is believed to be a crucial factor and lower-
ranked players defeating higher-ranked players are often called “upsets” (or shocks).
Figure 2 shows the line chart of the ranking difference between higher- and lower-
ranked players and the winning probability of higher-ranked players. Additionally, we
apply the locally weighted regression (LOESS) method to smooth the winning prob-
ability. It appears that the winning probability increases with the ranking difference
and levels off (to approximately 0.8) when the ranking difference reaches 80. Note that
the results in Figure 2 imply that the predicted accuracy is very different for lower-
and top-ranked players, similar to that in Kovalchik (2016). Additionally, the win-
ning probability has higher fluctuations for larger ranking differences due to smaller
exposures (or data points), which are shown in Figure 3.
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Figure 3. Histogram of Ranking Differences (ATP Male)

The increasing trend of winning probability in Figure 2 implies two possible further
developments. First, the ranking is a fine indicator and can serve as a threshold for
evaluating the prediction models of tennis matches, although the prediction accuracy
is at 80% if relying solely on the ranking. We may want to include more variables to
increase the prediction accuracy. The other consideration is that the probability of
advancing to further rounds should also be related to the ranking. In other words, the
players’ ranking is a critical factor for deciding whether they can reach later rounds.
For example, we would expect that the probability of advancing to the semi-final is
higher for the top 10 players than for the non-top 10 players. We will use the cumulative
probability to demonstrate this phenomenon.
FXs

(x) is the cumulative density function of Xs, FXs
(x) = P (Xs ≤ x), and P0 is

the chosen percentile. Let the inverse distribution function be defined as

F−1
Xs

(P0) = inf(x|FXs
(x) ≥ P0) = xs

where xs is the lowest rank reaching round s, s = 1, 2, . . . , 7, and 7+, with 5, 6, 7,
and 7+ indicating quarter-final, semi-final, final, and championship, respectively. In
this study, we select P0 = 0.8, and the calculated results are shown in Table 1. For
example, of the players who won the tournament, 80% were top 5 players. Similarly,
80% of finalists were top 9 players. The power law distribution can be used to describe
the relationship between the lowest rank xs and round s; i.e., the logarithm of xs is a
linear function of s (Figure 4).

The power law has been applied in many areas, such as physics, biology, and social
science. For example, the Gutenberg-Richter law is a well-known power law, which is
log10N = α − βM , where N is the number of earthquakes larger than magnitude M
and α and β are parameters (Meng, Wong, & Zhou, 2019). This power law function fits
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Table 1. 80-percentile Rank for each Round (Male Single, 2000-

2019)
Match 80-percentile xs log(xs) number of Samples

Champion 5 1.6094 80
Final 9 2.1972 160

Semi-Final 15 2.7081 320
Quarter-Final 25 3.2189 640

4th Round 41 3.7136 1280
3rd Round 64 4.1589 2560
2nd Round 98 4.5850 5120

Figure 4. Logarithm of Rank vs. Rounds (80%)

well in our case, with an R2 larger than 0.9 if applying least square linear regression
to derive the estimates of α and β. The power law indicates that the top players
dominate the winners (finalists and semi-finalists) of Gram Slam tournaments, and
the ranking would be an important variable if our goal were to predict the champion
of a tournament. Note that we also tried other P0 values, but the fitting results were
not as good as that of P0 = 0.8. This coincides with the concept behind the “80-20
Rule” (or Pareto principle).

We also explore other players’ variables (e.g., age, height, and professional years)
and tournament information (e.g., hard, clay, and grass courts). Some of the variables
have a strong connection with the winning probability, but the relationships between
these variables and winning probability are not as strong. For example, in Figure 5, the
age structures of players advancing to the final, semi-final, and quarter-final are very
similar, with the peak at an age of 25 years for all 3 cases. Additionally, the winning
probability of players is related to the type of courts. In any case, we will consider all
available variables for statistical and machine learning models to predict the winning
probability of Grand Slam matches in the next section.

In Figure 6, the bigger the Glicko rating differences between two players, the higher
the winning probability of higher ranking players. The higher the winning probability
of higher ranking players approaches 100% when the rating difference approaches 800.
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Figure 5. Age Structure of Players Advancing to Different Rounds (Male Single)

It confirms the proposed variable “Glicko rating” is essential.
After multiple experiments with cross-validation, the subset of the variables that

produce the highest accuracy rate is recorded as our final model. For example, first,
we applied all the variables in the ATP dataset to the logistic regression, and we found
that these variables: “ATP points”, “ATP ranking”, “age”, and “professional years”
are highly significant at a significance level of 0.01. The variables and hyperparameters
we used in the models are summarized in S1 Table.

4. Model Comparison

We compare the performance of prediction models, including statistical and machine
learning models, to the proposed model in this section. The empirical data considered
are the single men’s and women’s matches of Grand Slam tournaments (2000–2019).
These data are separated into training data and testing data, and the model perfor-
mance is based on the prediction results of the testing data. We should use the ranking
as a baseline model that predicts the winner as the player with the highest ranking.
The statistical and machine learning methods considered are logistic regression, sup-
port vector machine (SVM), neural network, and LightGBM (light gradient boosting
machine), which are often used to predict the winners of tennis matches. Basically, we
apply all available variables to all models and use the training data to construct mod-
els. For prediction performance, we chose accuracy and area under the curve (AUC)
as the evaluation criteria.

For time sequence data, such as the 2000–2019 tennis matches considered in this
study, there are two possible settings for applying cross-validation: moving window and
non-moving window. The moving window technique is commonly used for time series
data, and we choose the format of 4-year training data and 2-year testing data. For
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Figure 6. Winning Probability of Higher-rated Player vs. Rating Difference

Figure 7. Possible Combinations of Moving Windows

example, the first moving window is the 2000–2005 data, i.e., 2000–2003 as the training
set and 2004–2005 as the testing set, and other moving windows follow the same rule.
There are 15 possible combinations of moving windows, as illustrated in Figure 7. For
the non-moving window, if applying the same 4/2 year setting of training/testing sets,
we randomly select 4 years (out of 20 years) of data for the training set and 2 years
out of the remaining 16 years as the testing set. Although we think that the prediction
results of the moving window approach are more appropriate for evaluation, we will
provide those of the non-moving window approach as a reference.

The proposed Glicko model considers the estimates of parameters in the Glicko
model, in addition to other variables, in logistic regression. Note that the extra vari-
ables introduced by the Glicko model can be further expanded. For example, we found
that the parameter estimates of the Glicko model are very different for the matches on
clay courts compared to those on grass/hard courts. Thus, we can add court-related
Glicko variables to the proposed model. The prediction results of men’s single matches
(moving window) are shown in Table 2 (averages of 15 possible combinations). The
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differences in prediction accuracy between models are not very obvious, and even the
baseline model (using the players’ rankings as the criterion) can reach 72.4% accuracy.
Nevertheless, the proposed models have slightly better performance with respect to
AUC and accuracy. It seems that more sophisticated models (e.g., SVMs and neural
networks) do not necessarily produce more accurate predictions (Gu & Saaty, 2019;
Wilkens, 2020).

Table 2. Model Comparison for ATP
Single Matches (Moving Window)

Model AUC Accuracy
Baseline −− 0.724
Logistic 0.691 0.727

SVM −− 0.719
Neural Network 0.657 0.724

LightGBM 0.688 0.723
Glicko 0.715 0.734

Glicko (Courts) 0.731 0.738

For the women’s matches, the results are very similar (Table 3), but the overall
performances of men’s single matches are slightly better than those of women’s single
matches. The Glicko model also has better performance in prediction, but adding the
court-related variables does not cause any obvious improvements. Interestingly, the
differences between the baseline model and statistical or machine learning models are
very small. It seems that the ATP/WTA ranking contains plenty of information for
predicting the winners of single matches in Grand Slam tournaments, and it is com-
petitive against more complex models including all available variables. Additionally,
similar to the results in previous studies, the prediction performances of all quantita-
tive models are very similar.

The prediction performances for the non-moving window case are approximately the
same, and we show the results for the ATP and WTA in Table 4. The proposed Glicko
models still have a small edge over all other models, but the advantage is smaller in
the non-moving window case. This result is fairly reasonable since the Glicko model
follows a Bayesian approach and the parameters should be updated according to its
time sequence. On the other hand, the baseline model produces approximately the
same prediction performances as the statistical and machine learning models. This
indicates that the ranking covers almost all essential information for predicting the
match results, since players selected to play in Grand Slam tournaments are quite
homogeneous (in terms of playing strength). A line of evidence of homogeneity in the
strength of players is the winning probability of higher-ranked players being at most
80%, as shown in Figure 2, and it is not easy to find over-whelming matches, even for
the cases of top-seeded players vs. lower-ranked players.

Table 3. Model Comparison of WTA
Single Matches (Moving Window)

Model AUC Accuracy
Baseline – 0.701
Logistic 0.656 0.699

SVM – 0.700
Neural Network 0.648 0.701

LightGBM 0.667 0.700
Glicko 0.695 0.712

Glicko (Courts) 0.691 0.709
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Table 4. Model Accuracy of Single Matches (Non-Moving

Window)
ATP WTA

Model AUC Accuracy AUC Accuracy
Baseline – 0.717 – 0.704
Logistic 0.685 0.718 0.661 0.704

SVM – 0.721 – 0.709
Neural Network 0.700 0.720 0.690 0.707

LightGBM 0.705 0.717 0.694 0.707
Glicko 0.704 0.723 0.696 0.713

Glicko (Courts) 0.728 0.732 0.697 0.714

5. Conclusion and Discussion

Predictive analytics has recently become very popular, and many people are looking
to construct models to explain observed phenomena in the form of “Observations =
Model + Error”, which is often expressed as y = f(x1, x2, . . . , xk) + ε. There are two
keys to constructing the models: selecting appropriate variables x1, x2, . . . , and xk and
choosing the proper functional form f(). Some studies focus on variable definition (or
data structurization), while others emphasize enhancing model performance, depend-
ing on the study goal and the data availability. In this study, our goal is to find models
with the highest accuracy in predicting winners of tennis matches, with the help of
EDA to uncover important variables. Our conjecture is that once all relevant data are
included, the role of model construction will be limited. This is analogous to “complete
information” in economics, and the advantage of any players (or models) is very slim
if all players have the same information.

Our study confirms this conjecture, and the results show that the models have a
smaller impact on the prediction when the variable ranking is included. Many past
studies had similar findings, and the prediction accuracies of all models were approxi-
mately the same (e.g. Cornman, Spellman, & Wright, 2017; Wilkens, 2020). It seems
that the ranking carries almost all information and adding more variables does not
significantly increase the prediction accuracy. Thus, it is not surprising that the im-
provement by the proposed Glicko models is not large, with a prediction accuracy
approximately 1% higher than that of the other models (approximately 70%). Nev-
ertheless, the proposed approach provides the possibility of defining new variables
without separating the models, for example, by different court surfaces. Of course,
empirical results are often data dependent, and our findings do not necessarily apply
to other ATP/WTA tournaments, since we think that the players’ strength in Grand
Slam matches is fairly homogeneous.

The ranking variable provides competitive accuracy in predicting the winners of
single matches. If we can treat the ranking as a sufficient statistic for prediction, then
we may want to know, for example, whether sufficient statistics exist and how we define
sufficient statistics. According to the seeding rules of Grand Slam matches, it seems
that the public thinks that the ranking is a sufficient statistic and that the points
earned in tournaments for the past 52 weeks are how the ranking should be decided.
The Glicko model suggests an alternative index for measuring players’ strength. It
would be interesting to explore whether we can improve the ATP/WTA ranking by
applying a Bayesian approach.

Combining experts’ opinions and quantitative analysis is another way to construct
prediction models. Relying solely on historical data and machine learning models over-
looks the value of domain knowledge, ignoring the merit of human wisdom. However,
only a few studies have mentioned the possibility of combining the prediction results of
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human judgements and data analysis (Gu & Saaty, 2019). On the other hand, experts’
opinions are similar to unstructured data, and it is difficult to format our thoughts
into numerical values, i.e., perform structurization. This structurization process is cru-
cial and would require personal intelligence and awareness of the problem. Perhaps we
can adapt the idea used in the Delphi method, a popular method for structuring the
opinions of a group of experts. Once human judgements are quantified, the remaining
question might be how to properly weight human opinions and data analysis.
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Ingram, M. (2019). A point-based Bayesian hierarchical model to predict the outcome of tennis
matches. Journal of Quantitative Analysis in Sports. 15(4), 313-325.

Knottenbelt, W., Spanias, D. & Madurska, A. (2012). A common-opponent stochastic model
for predicting the outcome of professional tennis matches. Computers & Mathematics with
Applications. 64, 3820-3827, Theory and Practice of Stochastic Modeling.

Kovalchik, S. (2016). Searching for the GOAT of tennis win prediction. Journal of Quantitative
Analysis in Sports. 12, 127-138.

Kovalchik, S. & Ingram, M. (2018). Estimating the duration of professional tennis matches for
varying formats. Journal of Quantitative Analysis in Sports. 14, 13-23.

Kovalchik, S. & Reid, M. (2019). A calibration method with dynamic updates for within-match
forecasting of wins in tennis. International Journal of Forecasting. 35, 756-766.

Meng, F., Wong, L. & Zhou, H. (2019). Power law relations in earthquakes from microscopic
to macroscopic scales. Scientific Reports. 9, 10705.

Panjan, A., Šarabon, N. & Filipčič, A. Prediction of the successfulness of tennis players with
machine learning methods. Kinesiology. 42, 98-106 (2010).

Somboonphokkaphan, A., Phimoltares, S. & Lursinsap, C. (2009). Tennis winner prediction
based on time-series history with neural modeling. Proceedings of The International Multi-
Conference of Engineers and Computer Scientists. 1 pp. 18-20.

Stephenson, A. & Sonas., J. (2020). PlayerRatings: Dynamic Updating Methods for Player
Ratings Estimation. R package version 1.1-0.

Turner, J. (2005). A new approach for theoretically integrating micro and macro analysis. The
SAGE Handbook of Sociology. pp. 405-422.

Vaughan Williams, L., Liu, C., Dixon, L. & Gerrard, H. (2021). How well do Elo-based ratings
predict professional tennis matches?. Journal of Quantitative Analysis in Sports. 17, 91-105.

12



Wilkens, S. (2020). Sports prediction and betting models in the machine learning age: The
case of tennis. Journal of Sports Analytics. 1-19.

13


	Introduction
	Data and Methodology
	Exploratory Data Analysis
	Model Comparison
	Conclusion and Discussion

