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Sharpening Buffon’s Needle'

1. Indroduction

The famous needle experiment of Buffon and its
variations, which provide empirical estimates of the
value of 7, continue to yield amusing and educational
applications of statistical theory. The reader will find
thorough discussion of the historical development of
this problem as well as recent contributions in [6, 7, 9,
10, 11, 13, 14, 16, 177]. After reviewing Buffon’s original
experiment in Section 2 of this article, we go on in
Sections 3 and 4 to present two variations of the experi-
ment in which statistical theory is utilized to “sharpen”
Buffon’s needle by obtaining estimators for = with
dramatically reduced sampling variance. Our concern
has been to (i) design the experiments to increase the
efficiency of the estimators (i.e., reduce their variances)
and (ii) apply the concepts of sufficiency and com-
pleteness, efficiency, and ancillarity, in the guise of the
Rao-Blackwell-L.ehmann-Scheffe theorems [4, 127, the
Cramer-Rao lower bound [157], and the principle of
conditionality [1, 2, 3, 5], to obtain alternate estima-
tors which utilize the available statistical information
as fully as possible.

2. Buffon’s Experiment—The Single Grid

In Buffon’s original formulation of the problem a
needle of length [ is thrown at random onto a plane
grid of parallel lines separated by a common distance d
(see Figure 2.1).

d{
df{ 1

df

Figure 2.1

If I < d, the probability p that the needle crosses a line
is readily found to be (cf. [6, 177])

= — = 290 2.1
p=_—=2 (2.1)
where r = I/d and § = 1/7. From now on, however, we
forget that 6 = 1/7 and treat 6 as an unknown param-
eter to be estimated. The condition 0 < p < 1 imposes
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the constraint 0 < 6 < 1/2r in this experiment, while
tighter constraints arise in Sections 3 and 4.

If n independent throws of the needle result in N
crossings, then N ~ Binomial (n, p) and

(2.2)

is an unbiased estimator of 6. Since N is a complete,
sufficient statistic for 6, the Rao-Blackwell-Lehmann-
Scheffe theorems [4, Chapter 3; 12, p. 3217 imply that
61 is the uniformly minimum variance unbiased es-
timator (UMVUE) of 9. Furthermore, 8; is the maxi-
mum likelihood estimator (MLE) of 6 and therefore
has 1009, asymptotic efficiency in this experiment (cf.
Section 4 and [15, Chapter 57]). The variance of  is

o p(l—mp) 6 (1 ) 02<1 )
== 7 - _{=— =—\-—1
Var (6:) 4rn, n \2r b n\p

(2.3)

so the efficiency of 4;, as measured by the reciprocal of
its variance, is maximized by taking p as close to 1 as
possible regardless of the value of 6, i.e., by choosing
neecdle length I = d (this choice of needle length will
be seen to be optimal in our subsequent examples as
well). In this case p = 260, nVar(6,) = 62[ (1/20) — 1],
and an application of the §-method [15, p. 385] shows
that Buffon’s estimator m; = 1/6; is an asymptotically
unbiased 1009, efficient estimator of 1/ with asymp-
totic variance

9

) 2 5.63
AVar(#) = = (Var ;) = —Z—(’—Q’ - 1) === (24)

when 8 = 1/x. Here, as in the rest of the paper, the
asymptotic variance has been numerically evaluated at
the true value 3.1416 of .

3. Laplace’s Experiment—The Double Grid

In a recent paper Schuster [ 16] considered a variation
of the Buffon experiment, originally studied by Laplace,

B
A A

}d
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B d
Figure 3.1
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wherein a second grid (B) of parallel lines, also sepa-
rated by the common distance d, is constructed at right
angles to the first grid (4) (see Figure 3.1).

The needle is thrown n times, resulting in N4 crossings
of the A-lines and N crossings of the B-lines. Then
both

. N
04 = —2 and 0p = — 3.1)
rn

are unbiased estimators of 8 and have the same dis-
tribution as ;. Schuster proposed the combined es-
timator

:éA+éB:NA+NB (3.2)

2 4rn

b

and posed the interesting question of whether the
efficiency of 6, (based on n throws of the needle onto
the double grid) is twice that of §; (based on n throws
onto the single grid). This would indeed be the case if
the event that the needle crosses an A-linc were in-
dependent of the event that it crosses a B-line for then
64 and 6 would be independent. A little reflection,
however, shows that these events, and therefore 84 and
b5, are negatively correlated, so in fact the efficiency
of the combined estimator #, will be greater than twice
the efficiency of ;. This idea of combining antithetic
(i.e., negatively correlated) wariates to obtain an es-
timator with reduced variance is well-known to statis-
ticians; see for example [8, 9.

The variance of f, is readily calculated, since the
necessary crossing probabilities were obtained long ago
by Laplace. Denote by pa the probability of crossing
an A-line, by pap the probability of simultaneously
crossing an A-line and a B-line, by p.z the probability
of crossing an A-line but not crossing a B-line, and
similarly define pgs, pzs, p75. Then from [17, p. 255-6]
we have that

pas = 1 — 476 + 1%, (3.3)

while p4 = pp = 206 from (2.1), so
Pap = Pa + pp+ pi5 — 1 = 4. (3.4)
Introduce the indicator random variables

1 if an A-line is crossed on the 7th throw
1A =
0 if not,

and similarly define I;5, so that

n

NA=ZIiA, NBZZIiB;
i=1

=1

) 1 &
b= g 2 IA+ L),
The n pairs (I14, %), ..., (I,4, I,5) are independent
but 7,4 and.I,® are dependent, so
Var (6s)
1
~ 16

[Var (I14) + Var(1®) + 2 cov (14, I5)]

1

[pa(1 — pa) + ps(1l — pp)

- 16r2n
+ 2(pas — papn)]
011 1

=Zl=+=—9]. .
. [471 -+ 3 ] (3.5)

It is again apparent that the estimator 8, has greatest
efficiency when r = 1, i.e., when [ = d, for all values
of 8. When | = d we find p33 = 1 — 36, which imposes
the tighter constraint 0 < 6 < % (and shows, inciden-
tally, that = > 3). Also, nVar (6.) = 62[ (3/80) — 1] so

, 2 /3 1.76
AVar (#) = %(-8’1 - 1) === (3.6)

when 6 = 1/, where #, = 1/6,. Comparing (2.4) and
(3.6) it is seen that by introducing the second set of
grid lines we have obtained an estimator . which is
5.63/1.76 = 3.20 times as efficient as 71 when 6 = 1/x.
One throw of the needle onto the double grid contains
at least 3.20 times the statistical information about the
value of 7 as one throw onto the single grid.

We have stressed the phrase “at least” in the pre-
ceding sentence to raise an important question not
considered by Schuster. Does the estimator 6, itself
fully utilize all the information about 8 provided by the
double grid experiment? The answer is No, for we shall
sce that a complete and sufficient statistic exists for this
experiment, but , is not a function of this statistic.

The full information obtained from n throws of the
needle onto the double grid is summarized .by the
statistic N = (Nap, Nas, Nas, N15), where N 45 is the
number of times the needle simultaneously crosses an
A-line and a B-line, ete. Clearly N has the multinomial
distribution with cell probabilities (pas, pas, Pas, P75)-
The values of pap and pyzz are given by (3.3) and
(3.4), while

PAB = PAF = Pa — Pap = (2 — 1)0. (3.8)
Thus the probability distribution of N is given by
Py(N = n) = c(n) (pas)"4#(paz) "4® (pas) "4 (pz5) "2

= ¢(n)h(n)fras+"aB+"in[1 — me]"aB

(3.9)
where
n!
“O) = ) L) L) L)
h(n) = r™a8[p(2 — ) J*aB+"az,
m = 4r — 2 (3.10)

Since nzz = n — (nap + nas + nas), (3.9) and the
Factorization Criterion for sufficiency [4, p. 1157 imply
that N4 + N4z + N7 is a sufficient statistic for 6.
If we define N; to be the number of times in n throws
that the needle crosses exactly 7 lines (j = 0, 1, 2), so
that N, = Nﬁ, N1 = Nus + NZB, Ny, = NAB, and
>~ N; = n, then the sufficient statistic can be expressed
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as N1 + Ns, the number of times in n throws that the
needle crosses at least one line.

By (3.3), N:+ N;~ Binomial(n, p*) where
p* = mh, so N1 + N, is a complete, as well as sufficient,
statistic for 6. By the Rao-Blackwell-Lehmann-Scheffe
theorems,

5 Vit N

03 (3.11)
mn

is the UMVUE and, being the MLE of 6, has 1009,
asymptotic efficiency in the double grid experiment.
Its variance is

A 6 /1
Var(6;) = ~ (— - 0) (3.12)

n\m
which, by (3.10), is minimized by the needle length
[ = d, regardless of the value of 4. In this case m = 3,
p* = 30, nVar(f) = 2[(1/30) — 1], and

2 0.466
AVar () = W—(E - 1) ==

3 (3.13)

when 6 = 1/, where #; = 1/8;. Comparing (3.6) and
(3.13) we see that the fully efficient estimator s is
1.76/.466 = 3.77 times as efficient as Schuster’s
estimator #; when 6 = 1/r, reflecting the fact that e
is based on

Ni+ Np=Nup+ NuB+ Nap + Nip
= N1+ 2N,,

which is not a function of the sufficient statistic
N1+ N,. A moral here is that the method of antithetic
variates, advocated in [8] and [9] for a wide variety
of problems, should not be applied before a careful
search for a sufficient statistic. Furthermore, comparing
(2.4) and (3.13) our analysis shows that one throw of
the needle onto the double grid contains not 3.20 but
exactly 5.63/.466 = 12.08 times the statistical informa-
tion about the value of = as one throw onto the single
grid, reflecting the fact that the maximum achievable
value p* = 3/r = .955 obtained here is much closer
to 1 than the maximum achievable value p = 2/7r =
.637 obtained in Section 2.

4. Uspensky’s Experiment—The Triple Grid

Enticed by the hefty 12-fold increase in efficiency
provided by the second set of grid lines, we now intro-
duce a third set. To maintain symmetry consider three
sets of grid lines, labelled C, D, E, lying at 60° angles to
each other and having common grid width d, so that
the plane is covered by equilateral triangles of altitude
d (see Figure 4.1). A needle of length I < d is thrown
at random onto this triple grid n times. This sctup
appears in problem 8 of Uspensky [17, p. 258] and
accordingly we refer to it as the “Uspensky experiment.”

The full data is summarized by the statistic

N= (N¢pg, Noog, Ncor, Nopr, Noos, Nepz, Ncor, Noos)

o~

E D
Figure 4.1

where N¢pg is the number of times the needle simul-
taneously crosses a C-line, a D-line, and an E-line, etc.
The eight crossing prohabilities pcpe, Pep, - - - , PopE
are computed as follows. From [17, p. 258, problem 87,

— 1 3_”9<4 ‘/_3_’>
Pepe = 175 =7 2 )

where » = 1/d. Also pc = pp = pr = 2r0 as in Section
1, while an argument similar to that of Schuster [16,
p. 287 shows that

1 V30
= = — 2 i .
Pcp PcE PpE =T (12 + 2 >

Then by symmetry and the method of inclusion-
exclusion,

pepr = 1 — 3pe + 3pep — popr = 1r2(3v30 — 1),

_ ot VY
PcpE = Pcp PcpE = 3 i’
V3r? 5r2
PcbE = Pc — Pep — Pee + Pepr = | 2r — e 6 — 1z

A partial reduction of the full data N can be achieved
via sufficiency. By writing out the multinomial proba-
bility distribution of N, noting that pepz = pepr =
popr and pcbE = pobrz = pepE by symmetry, and
applying the Factorization Criterion, we find that

Nl = (No, N1, Nz, N3)

is a sufficient statistic for 6, where N; is the number of
times the needle crosses exactly 7 lines, i.e., No = N¢pg,
N1 = N¢os + Neps + Nepe, ete. The statistic N’
has the multinomial distribution with cell probabilities
given by

7-2

() = popE =1 +g5
5r?

p1(8) = 3pcpE = — vy + ab,

De (0) = 3])01)5 =7 — b0,
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7
ps(0) = pepp = — T + b, (4.1)
where
3r Var 3v3r?
= —\4—-— b = 4.2
o=(«-%), L)
The requirement that each p,(6) >0, 7 =10,...,3,

imposes the restriction
max{5r2/4a, 1/3v3} < 6 < min{ (1 + 72/2)/a, 4/3v3}

(4.3)
on the range of the parameter 6.

No further reduction by sufficiency is possible, for
the Lehmann-Scheffe criterion [12, Theorem 6.17] can
be applied to show that N’ is a minimal sufficient
statistic. However, (N: + N3) — (3nr?)/4 is a non-
trivial unbiased estimator of zero, so N’ is not complete
and the Rao-Blackwell apparatus cannot be used to
generate a UMVUE of 6, unlike the single-grid or
double-grid cases.

In fact no UMVUE exists. The Cramer-Rao lower
bound [15, eqn, (5a.2.15)7] for the variance of an
unbiased estimator of 6 based on N’ is 1/nI (9), where
I1(8) is the Fisher information number

I(6) = Z [% log 291(0>] p:(6)

a2[1 n 1]—{—1)2[1 i 1]
Do (0) Pl(e) VPZ(“’){ ps(6) ]

I

(4.4)

For a fixed value of 6, in the range (4.3), consider the
linear function

S(6) = ZN

=0

[10g i (6) Joo-

A straightforward computation shows that for all 6,
Es[S(60) ] = n(6 — 60)1 (60),
while for § = 6,
Vars,[[S(80) ] = nl (6p).
Hence for each 6, the linear estimator
o + S (8o) /nI (6o) (4.5)

is an unbiased estimator of # and its variance achieves
the Cramer-Rao lower bound of 1 / nl (6)) when 6 = 6.
Since the MVUE at 6, is essentially unique [15, p.
318 (b)] and the estimator (4.5) depends non-trivially
upon 6, this shows that a UMVUE cannot exist.

Even though no UMVUE for 8 exists, we will be
able to find asymptotically efficient estimators of .
In this multinomial problem the standard regularity
assumptions are satisfied (see [15], Chapter 5) so
the ratio

1 / nl (6)

AEf () = W@ S (4.6)

measures the asymptotic efficiency of a consistent
asymptotically normal (CAN) estimator # based on n
trials. In view of (4.6), we first design the experiment
(i.e., choose a needle length/grid width ratio » = 1/d)
to maximize the information number I(8) given by
(4.4) so that our asymptotically efficient estimators
will have the smallest possible asymptotic variance.
Differentiation shows that the lower bound in (4.3)
increases with » while the upper bound decreases with
7, 0 < r <1, s0 8§ must in fact satisfy the restriction

0.26590 = 1.25/a < 6 < 1.5/a = 0.31908 (4.7)

obtained by setting » = 1 in- (4.3). (Incidentally, the
upper bound in (4.7) implies the interesting and ac-
curate lower bound 4 — v3/2 = 3.1340 for =.) We
claim that for each 6 satisfying (4.7), I () is maximized
when 7 = 1. This follows in a straightforward manner
by differentiating each of the quantities

a? a? e [ 1 i 1 ]
po(0) " pr(6) " Lp2(8)  ps(6)
with respect to . Therefore we set r = 1 (i.e., | = d)

for the remainder of this section, in which case the cell
probabilities for the distribution of N’ take the form

po(6) =3 —ab,  pi(6) = —§+af
pp(6) =1 =09, ps(6) = =%+ b6 (48)

where now

oa=6——, b=

33 33
4 4

) (4.9)

and 6 is constrained by (4.7).

We shall obtain asymptotically efficient estimators
through the methods of maximum likelihood, scoring,
minimum modified chi-square, and the principle of
conditionality. The standard regularity conditions
being satisfied, the maximum likelihood estimator By is
a CAN estimator with 1009, asymptotic efficiency for
all possible values of §. The MLE B, is that value of 6
maximizing the likelihood function []%_, [p:(6) J¥:.
By differentiation it is easily seen that the log likelihood
function is concave in 8, so 6, is the unique root of the
likelihood equation

O_ZN

This amounts to a cubic equation which can be solved
numerically for f;. Since AEff(;) = 1, we find from
(4.6), (4.4), (4.8), and (4.9) that for &, = 1/6s,

log p:(0).

AVar(#) = 7 AVar(6y) = (4.10)

7|.4
nl(1/m)’
when 6 = 1/7. The numerical value of AVar () is
given, along with comparisons with (3.13) and (2.4),
at the end of this section (sce (4.32)).

Asymptotically efficient estimators are not unique,
and a computationally simpler estimator with 1009,
efficiency can be obtained from (4.5) by the method
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of scoring (see [157], Chapter 5 and [187], Theorem
5.5.4). Let {6,’} be any consistent sequence of es-
timators such that

nt4(6,” — 6) — 0 in probability. (4.11)
Then the estimator
b5 = 0,/ + S6,)/nI(8,) (4.12)

obtained from (4.5) is also CAN with 1009, asymptotic
efficiency. A convenient choice for 6, is either §* given
by (4.19) or , given by (4.28), each of which con-
verges to 6 at the rate n=1/2

Another estimator with 1009, asymptotic efficiency
is easily obtained via the minimum modified chi-square
method [15, p. 3527. This estimator 8, is defined to be
that value of # which minimizés the expression

[N: — np; (0>]
Z N,

Differentiation with respeet to 6 shows that
(o + )+ ( i)

ool )
Noe N Ny N

It is of interest to apply the principle of conditionality
to obtain alternate estimators with 1009, asymptotic
cefficiency. From (4.8) notice that

po(0) + pi(0) =1, p2(0) + p:2(8) = ¢

for all values of 6, which implies that the (binomial)
distributions of Ny + N;and Ny 4+ N; = n— (No+ Ny)
do not depend on the unknown parameter 6. A statistic
whose marginal distribution is completely known but
which is not independent of the minimal sufficient
statistic is called an ancillary statistic [1, 2, 3, 5, 15], a
notion introduced by Fisher. Cox [3] writes: “An
ancillary statistic by itself gives no information about
the parameter of interest, but specifies the precision
with which inference is possible in the sample under
analysis. It is fairly compelling that the probability
distribution used in inference should be conditional on
the observed value of the ancillary statistic.” This
“fairly compelling” dictum is often referred to as the
prineiple of conditionality. A quantitative justification
for the application of this principle in estimation
problems stems from the fact [see [3, eqn. (15)7] and
(4.18)] that the (unconditional) Fisher information
nl (8) is the expectation of the conditional information
given the value of the ancillary statistic. Hence one
expects that an optimal conditional estimator should be
nearly optimal unconditionally, at least for large
samples. This is indeed the case in the multinomial
estimation problem under consideration, as we shall
now show.

Given the value of the ancillary statistic Ny + Ny,
the conditional distribution of the minimal sufficient

(4.13)

statistic  (No, N1, N2y N3) is described as follows:
(Ng, N1) and (Ng, N3) are (conditionally) independent,

Ny~ Binomial (Ny + N1, 4ps(8)) (4.14)
Ny~ Binomial (Ny + N3, 4p2(8)/3).  (4.15)

The (conditional) information numbers based on
(4.14) and (4.15) separately arc computed to be

1 n 1
po(0)  p1(6) ]
(4.16)

I*(0| No+ N1) = 4(No + Nl)(ﬁ[

= 4(No+ N1)I*(6),
1 1
I | No+ N1) =% (N2 + Ny)b? | ——
(0| No+ N1) =5 (N2 + Ny) [p2(9)+p3(9)~

(4.17)

= 3 (Ne + N3)I**(0),

respectively. By the additivity of information numbers
based on independent experiments [5, p. 329(i) ], the
(conditional) information number based on (4.14) and
(4.15) together is

I(0|No+ Ni) =4(No+ N)I*(9)
+ 5 (No + Ny) *%(0).
Sinee Ny + Ni ~ Binomial (n, 1), notice that
Eod (9| No+ N1) = n(I*(0) + I**(8)) = nl(0),
(4.18)

the unconditional information number given by (4.4).
The estimators

1 Ny » 3 (4 N, )
= (6 - 20 Yand e = (5 -
4(1( N0+IV1)aln 4:b(3 Nz—l’—‘Ng

(4.19)

D>
*

arc  (conditionally) independent, unbiased, mini-
mum variance cstimators of § based on (4.14)
and (4.15), respectively, with (conditional) vari-
ances 1/1%(8 | Ny -+ N1) and 1/I**(§ | Ny + N1) (we
ignore the exceptional cases Ny + Ny = 0, No + N1 = n,
which oceur with negligible pr()bablhty when n is
large). Among all convex combinations ef* + (1 —a) ¥,
0 <a <1, the minimum (gonditional) variance
1/1(6 | Ny + Ni) is attained when

a8, No + Ny
I*(6 | No+ Nv)/[I*(8 | No + Ny)
+ I**(6 | No + N1) .

Since Ny + N1 =n/4 + 0,(n'?), wc approximate
a(8, No + N1) by

a(0) = (6, n/4) = I*(0) /[I*(6)

Il

[47

Il

+ I*(9) ],

and in turn we estimate @(9) by @(6,’), where 8, is any
consistent sequence of estimators for 6 satisfying

(4.20)

6," — 6 in probability, (4.21)

which is a slightly weaker requirement than (4.11)
needed for the method of scoring. Tither §* in (4.19) or

161



fo in (4.28) is a convenient choice for 8,’. Thus we are
led by the principle of conditionality to the estimator

b = a(0.)6* + (1 — a(6,)) o+ (4.22)
To evaluate the asymptotic efficiency of 8, first
apply the multivariate -method [15, p. 388 (iii) ] and

the asymptotic normality of the multinomial statistic
(No, N1, Noy N3) [15, p. 383(ii) ] to obtain that

I*0) 0
V[ (0% 6) — (0,001 >N 0,< >
0 I**(0)
(4.23)

in distribution. Then by (4.18), (4.20), and (4.23),
V/n[{&@0)8* 4+ (1 — a(9))8**} — 6] — N[0, 1/1(6)]
(4.24)

in distribution. Since @(#) is continuous in 6§, (4.21)
implies that &(6,”) — &(6) in probability, so that

Vb — {a(0)6* + (1 — a(6))6}]
= Vn(* - ) @@6.) —a@®) -0 (4.25)
in probability. We conclude from (4.24) and (4.25) that
Vn(lr — 9) = N[0,1/1(9)] (4.26)

in distribution, so §; is indeed a 1009, asymptotically
efficient CAN estimator.

For the sake of some interesting comparisons, we
introduce three other estimators fs, s, 8. Numerical
computations show that the minimum value of &(f)
over the range (4.7) is approximately .957, attained
near 6 = .292, and a(f) — 1 as 6 approaches the
extremes in (4.7). Thus #; assigns much more weight
to 6* than #** which suggests consideration of the
relatively simple estimator fs = #* defined in (4.19).
From (4.23),

V1 (fs — 6) — N[O, 1/I*(6)]in distribution. (4.27)

Next we base 6o, the triple-grid analog of 8, on the
statistic N; + Ny, + N3 which counts the numher of
times the needle crosses at least one line. Since N1 +
Ny + N3 ~ Binomial (n, $(0)) where $(6) = p1(8) +
p2(8) + p3() = af — %, the simple estimator

é9=é(N——«‘+Z2+N3+%> (4.28)
is unbiased and
V(s — 0)
— N[0, 5(6) (1 — $(8))/a*] in distribution. (4.29)

Finally consider the Schuster-type estimator 6y,
analogous to ;, based on the antithetic variates N,
Np, Ng, where N¢ is the number of times the needle
crosses a C grid line, ete. Since N¢, Np, Ng arc cach
Binomial (n, 26), the estimator

s Nc+ Np+ Ng  Ni+ 2N; + 3N,

10 =

6n 6n

(4.30)

is unbiased ; proceeding as in (3.5) we find that

’\/ﬁ(ém - 0)
1 0 V3
1 0 LA WY FIETIPRTa
— N l:O, = + 5 (1 -+ 2) — 6 ] in distribution.
(4.31)

As promised earlier, here are the numerical values of
the asymptotic variances of the estimators #; = 1/6;,
i =4,...,10, evaluated at § = 1/7 according ta the
relation AVar(#;) = =*AVar(é;). From (4.10),
(4.27), (4.29), (4.31), and the facts that 6y, s, s, &
are each 1009, asymptotically efficient we compute
that

nAVar (#;)
/I (1/7) = 0.01577 7=4,5,6,7
w/I*(1/7) = 0.01580 =8
mp (/7)) (1 — p(1/7))/a®> = 0.01597 =9
/72 + 7 (1 +v3/2) — #* = 1.12638 ¢=10.
(4.32)

The asymptotic efficiencies of #s, 79, and #i are thus
99.89%, 98.7%,, and 1.49, respectively. It is both
surprising that the antithetic-variate estimator 1o
should fare so poorly, and pleasing that the computa-
tionally simple estimators 75 and 7y should be so nearly
efficient. The high efficiency of #3 is due to the fact that
#s and 77 are virtually identical when 6 = 1/7 since
a(l/m) = .998, while that of 7y reflects the fact that
Pp(1/7) = .9964 is extremely close to 1. Lastly, com-
paring (2.4), (3.13), and (4.32), one sees that the
triple grid experiment is .466/.01577 = 29.5 times as
efficient as the double grid experiment and a remarkable
5.63/.01577 = 357 times as efficient as the single grid
experiment for the estimation of .

With the aid of a computer we simulated n» = 10,000
throws of a needle of length [ = d onto the triple grid.
This provides as much information about the value of
7 as 3,570,000 throws onto Buffon’s original single grid.
The observed data were Ny = 32, N1 = 2429, N, =
5864, and N3 = 1675. The estimators 4, s, 75, 71, s, 7o
each turned out to be either 3.1407 or 3.1408 with
standard error 0.0013; %y, = 3.1279 with standard
error 0.011 finished a weak seventh. These values are all
consistent with the true value = = 3.14186.

Although the problem of estimating = is solely of
pedagogical interest, the methods of estimation dis-
cussed in this section are quite gencrally applicable.
For example, multinomial distributions whose cell
probabilities are simple functions of a parameter 6
commonly arise in genetical experiments (e.g. [15, p.
3687; also [1, 3, 57]). Maximum likelihood, the method
of scoring, minimum modified chi-square, and con-
ditioning on an ancillary statistic are tools which every
statistician can apply profitably.
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