Chi-square, t-, and F-Distributions (and Their Interrelationship)

1 Some Genesis

$Z_{1}, Z_{2}, \ldots, Z_{\kappa}$ iid $\mathrm{N}(0,1) \Rightarrow X^{2} \equiv Z_{1}^{2}+Z_{2}^{2}+\ldots+Z_{\kappa}^{2} \sim \chi_{\kappa}^{2}$.
Specifically, if $\kappa=1, Z^{2} \sim \chi_{1}^{2}$. The density function of chi-square distribution will not be pursued here. We only note that: Chi-square is a class of distribution indexed by its degree of freedom, like the t-distribution. In fact, chi-square has a relation with t. We will show this later.

2 Mean and Variance

If $X^{2} \sim \chi_{\kappa}^{2}$, we show that:

$$
\begin{aligned}
\mathcal{E}\left\{X^{2}\right\} & =\kappa, \\
\mathcal{V} \mathcal{A}\left\{X^{2}\right\} & =2 \kappa .
\end{aligned}
$$

For the above example, $Z_{j}^{2} \sim \chi_{1}^{2}$, if $\mathcal{E} Z_{j}^{2}=1, \mathcal{V} \mathcal{A R} Z_{j}^{2}=2, \forall j=1,2 \ldots, \kappa$, then

$$
\begin{aligned}
\mathcal{E}\left\{X^{2}\right\} & =\mathcal{E}\left\{Z_{1}^{2}+\ldots+Z_{\kappa}^{2}\right\} \\
& =\mathcal{E} Z_{1}^{2}+\ldots+\mathcal{E} Z_{\kappa}^{2} \\
& =1+1+\ldots+1=\kappa .
\end{aligned}
$$

Similarly, $\mathcal{V} \mathcal{A} \mathcal{R}\left\{X^{2}\right\}=2 \kappa$. So it suffices to show

$$
\mathcal{E}\left\{Z^{2}\right\}=1, \mathcal{V} \mathcal{A R}\left\{Z^{2}\right\}=2 .
$$

Since Z is distributed as $\mathrm{N}(0,1), \mathcal{E}\left\{Z^{2}\right\}$ is calculated as

$$
\int_{-\infty}^{\infty} z^{2} \cdot \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{z^{2} /-2} d z,
$$

which can easily be shown to be 1 . Furthermore, $\mathcal{V} \mathcal{A} \mathcal{R}\left\{Z^{2}\right\}$ can be calculated through the formula: $\mathcal{V} \mathcal{A R}\left\{Z^{2}\right\}=\mathcal{E}\left\{Z^{4}\right\}-\left(\mathcal{E}\left\{Z^{2}\right\}\right)^{2}$.

3 Illustration: As an example for Law of Large Number(LLN) and Central Limit Theorem(CLT)

If $X^{2} \sim \chi_{\kappa}^{2}, X^{2}$ can be written as $X^{2}=Z_{1}^{2}+\ldots+Z_{\kappa}^{2}$, for some $Z_{1}, \ldots, Z_{\kappa}$ iid $\mathrm{N}(0,1)$. Then when $\kappa \rightarrow \infty$,

$$
\frac{X^{2}-\mathcal{E} X^{2}}{\sqrt{\mathcal{V} \mathcal{A R}\left(X^{2}\right)}}=\frac{X^{2}-\kappa}{\sqrt{2 \kappa}} \sim N(0,1)(\mathrm{CLT}) ;
$$

moreover,

$$
\lim _{\kappa \rightarrow \infty} \frac{X^{2}}{\kappa} \equiv \frac{\chi_{\kappa}^{2}}{\kappa} \rightarrow 1 \text { (LLN) }
$$

4 Application: To Make Inference on σ^{2}

If X_{1}, \ldots, X_{n} iid $N\left(\mu, \sigma^{2}\right)$, then $Z_{j} \equiv\left(X_{j}-\mu\right) / \sigma \sim N(0,1), j=1, \ldots, n$. We know, from a previous context, that $\sum_{1}^{n} Z_{j}^{2} \sim \chi_{n}^{2}$, or equivalently,

$$
\sum_{j=1}^{n}\left\{\frac{X_{j}-\mu}{\sigma}\right\}^{2}=\frac{\sum_{1}^{n}\left(X_{j}-\mu\right)^{2}}{\sigma^{2}} \sim \chi_{n}^{2},
$$

if μ is known, or otherwise (if μ is unknown) μ needs to be estimated (by \bar{X}, say,) such that (still needs to be proved):

$$
\begin{equation*}
\frac{\sum_{1}^{n}\left(X_{j}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2} \tag{1}
\end{equation*}
$$

Usually μ is not known, so we use formula (1) to make inference on σ^{2}. Denotes $\chi_{\nu, p}^{2}$ as the p-th percentile from the right for the χ_{ν}^{2}-distribution, the twosided confidence interval (CI) of σ^{2} can be constructed as follows:

$$
\begin{array}{ll}
& \operatorname{Pr}\left\{\chi_{n-1,1-\alpha / 2}^{2}<\frac{\sum_{1}^{n}\left(X_{j}-\bar{X}\right)^{2}}{\sigma^{2}}<\chi_{n-1, \alpha / 2}^{2}\right\}=100(1-\alpha) \% \\
\Longleftrightarrow & \operatorname{Pr}\left\{\frac{1}{\chi_{n-1,1-\alpha / 2}^{2}}>\frac{\sigma^{2}}{\sum_{1}^{n}\left(X_{j}-\bar{X}\right)^{2}}>\frac{1}{\chi_{n-1, \alpha / 2}^{2}}\right\}=100(1-\alpha) \% \\
\Longleftrightarrow & \operatorname{Pr}\left\{\frac{\sum_{1}^{n}\left(X_{j}-\bar{X}\right)^{2}}{\chi_{n-1, \alpha / 2}^{2}}<\sigma^{2}<\frac{\sum_{1}^{n}\left(X_{j}-\bar{X}\right)^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}\right\}=100(1-\alpha) \% . \tag{2}
\end{array}
$$

That is, the $100(1-\alpha) \%$ CI for σ^{2} is

$$
\left(\frac{\sum_{1}^{n}\left(X_{j}-\bar{X}\right)^{2}}{\chi_{n-1, \alpha / 2}^{2}}, \frac{\sum_{1}^{n}\left(X_{j}-\bar{X}\right)^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}\right)
$$

[QUESTION: How to use this formula with actual data?]

5 The Interrelationship Between $t-, \chi^{2}-$, and F - Statistics

5.1 t versus χ^{2}

If X_{1}, \ldots, X_{n} iid $N\left(\mu, \sigma^{2}\right)$, then

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)
$$

When σ is unknown,

$$
\begin{equation*}
\frac{\bar{X}-\mu}{\hat{\sigma} / \sqrt{n}} \sim t_{n-1}, \text { where } \hat{\sigma}=\sqrt{\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n-1}} \tag{3}
\end{equation*}
$$

Note that

$$
\begin{align*}
\frac{\bar{X}-\mu}{\hat{\sigma} / \sqrt{n}} & =\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \cdot \frac{1}{\frac{\hat{\sigma}}{\sigma}} \\
& =Z \cdot \frac{1}{\frac{\hat{\sigma}}{\sigma}} \\
& =\frac{Z}{\sqrt{\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{(n-1) \sigma^{2}}}} \\
& =\frac{Z}{\sqrt{\frac{\chi_{n-1}^{2}}{n-1}}} \tag{4}
\end{align*}
$$

Combining (3) and (4) gives

$$
t_{n-1}=\frac{Z}{\sqrt{\frac{\chi_{n-1}^{2}}{n-1}}}
$$

or, in general,

$$
t_{\kappa}=\frac{Z}{\sqrt{\frac{\chi_{\kappa}^{2}}{\kappa}}}
$$

$5.2 \quad F$ versus χ^{2}

From some notes about ANOVA, we have learned that

$$
\begin{equation*}
F_{a, b} \equiv \frac{\chi_{a}^{2} / a}{\chi_{b}^{2} / b} \text { (Sir R. A. Fisher). } \tag{5}
\end{equation*}
$$

The original concern of Fisher is to construct a statistic which has a sampling distribution, in some extent, free from the degrees of freedom a and b under the null hypothesis. With this concern, he presented his F-statistic in a way that: Since χ_{a}^{2} has expectation a, so the numerator χ_{a}^{2} / a has expectation 1 ; similarly, the denominator also has expectation 1. As Fisher said, the value of F-statistic will fluctuate near 1 under the null hypothesis $H_{0}: \mu_{1}=$ $\ldots=\mu_{\kappa}($ if $\kappa=a+1)$.
From (5), we are able to express the χ^{2}-distribution in terms of F :

$$
F_{a, \infty}=\frac{\chi_{a}^{2} / a}{\lim _{b \rightarrow \infty}\left(\chi_{b}^{2} / b\right)}=\frac{\chi_{a}^{2} / a}{1},
$$

from Section 3 (LLN). So χ^{2}-table can be treated as a part of F-tables.

$5.3 \quad t$ versus F

$$
\begin{aligned}
t_{\nu} & =\frac{Z}{\sqrt{\chi_{\nu}^{2} / \nu}} \\
& =\frac{\sqrt{\chi_{1}^{2} / 1}}{\sqrt{\chi_{\nu}^{2} / \nu}} \\
& =\sqrt{F_{1, \nu}} .
\end{aligned}
$$

Or, in other words, $t_{\nu}^{2}=F_{1, \nu}$, a formulae useful in assessing partial effect in linear regression model.

