
Chi-square, t-, and F-Distributions
(and Their Interrelationship)

1 Some Genesis

Z1, Z2, . . . , Zκ iid N(0,1) ⇒ X2 ≡ Z2
1 + Z2

2 + . . .+ Z2
κ ∼ χ2

κ.

Specifically, if κ = 1, Z2 ∼ χ2
1. The density function of chi-square distribution

will not be pursued here. We only note that: Chi-square is a class of distribu-
tion indexed by its degree of freedom, like the t-distribution. In fact, chi-square
has a relation with t. We will show this later.

2 Mean and Variance

If X2 ∼ χ2
κ, we show that:

E{X2} = κ,

VAR{X2} = 2κ.

For the above example, Z2
j ∼ χ2

1, if EZ2
j = 1,VARZ2

j = 2,∀j = 1, 2 . . . , κ, then

E{X2} = E{Z2
1 + . . .+ Z2

κ}
= EZ2

1 + . . .+ EZ2
κ

= 1 + 1 + . . .+ 1 = κ.

Similarly, VAR{X2} = 2κ. So it suffices to show

E{Z2} = 1,VAR{Z2} = 2.

Since Z is distributed as N(0,1), E{Z2} is calculated as

∫ ∞
−∞

z2 · 1√
2π

ez
2/−2dz,

which can easily be shown to be 1. Furthermore, VAR{Z2} can be calculated
through the formula: VAR{Z2} = E{Z4} − (E{Z2})2.
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3 Illustration: As an example for Law of Large Num-

ber(LLN) and Central Limit Theorem(CLT)

If X2 ∼ χ2
κ, X

2 can be written as X2 = Z2
1 + . . . + Z2

κ, for some Z1, . . . , Zκ iid
N(0,1). Then when κ→∞,

X2 − EX2√
VAR(X2)

=
X2 − κ√

2κ
∼ N(0, 1) (CLT);

moreover,

limκ→∞
X2

κ
≡ χ2

κ

κ
→ 1 (LLN).

4 Application: To Make Inference on σ2

If X1, . . . , Xn iid N(µ, σ2), then Zj ≡ (Xj − µ)/σ ∼ N(0, 1), j = 1, . . . , n. We
know, from a previous context, that

∑n
1 Z

2
j ∼ χ2

n, or equivalently,

n∑
j=1
{Xj − µ

σ
}2 =

∑n
1(Xj − µ)2

σ2 ∼ χ2
n,

if µ is known, or otherwise (if µ is unknown) µ needs to be estimated (by X,
say,) such that (still needs to be proved):

∑n
1(Xj −X)2

σ2 ∼ χ2
n−1. (1)

Usually µ is not known, so we use formula (1) to make inference on σ2. Denotes
χ2
ν,p as the p-th percentile from the right for the χ2

ν-distribution, the two-
sided confidence interval (CI) of σ2 can be constructed as follows:

Pr{χ2
n−1,1−α/2 <

∑n
1(Xj −X)2

σ2 < χ2
n−1,α/2} = 100(1− α)%

⇐⇒ Pr{ 1

χ2
n−1,1−α/2

>
σ2∑n

1(Xj −X)2 >
1

χ2
n−1,α/2

} = 100(1− α)%

⇐⇒ Pr{
∑n

1(Xj −X)2

χ2
n−1,α/2

< σ2 <

∑n
1(Xj −X)2

χ2
n−1,1−α/2

} = 100(1− α)%. (2)
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That is, the 100(1− α)% CI for σ2 is

(

∑n
1(Xj −X)2

χ2
n−1,α/2

,

∑n
1(Xj −X)2

χ2
n−1,1−α/2

)

[QUESTION: How to use this formula with actual data?]

5 The Interrelationship Between t-, χ2-, and F - Statistics

5.1 t versus χ2

If X1, . . . , Xn iid N(µ, σ2), then

X − µ
σ/
√
n
∼ N(0, 1).

When σ is unknown,

X − µ
σ̂/
√
n
∼ tn−1, where σ̂ =

√√√√∑(Xi −X)2

n− 1
. (3)

Note that

X − µ
σ̂/
√
n

=
X − µ
σ/
√
n
· 1
σ̂
σ

= Z · 1
σ̂
σ

=
Z√∑

(Xi−X)2

(n−1)σ2

=
Z√
χ2
n−1

n−1

. (4)

Combining (3) and (4) gives

tn−1 =
Z√
χ2
n−1

n−1

,

or, in general,

tκ =
Z√
χ2
κ

κ

.
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5.2 F versus χ2

From some notes about ANOVA, we have learned that

Fa,b ≡
χ2
a/a

χ2
b/b

(Sir R. A. Fisher). (5)

The original concern of Fisher is to construct a statistic which has a sampling
distribution, in some extent, free from the degrees of freedom a and b under
the null hypothesis. With this concern, he presented his F-statistic in a way
that: Since χ2

a has expectation a, so the numerator χ2
a/a has expectation 1;

similarly, the denominator also has expectation 1. As Fisher said, the value
of F-statistic will fluctuate near 1 under the null hypothesis H0 : µ1 =
. . . = µκ (if κ = a+ 1).
From (5), we are able to express the χ2-distribution in terms of F :

Fa,∞ =
χ2
a/a

limb→∞(χ2
b/b)

=
χ2
a/a

1
,

from Section 3 (LLN). So χ2-table can be treated as a part of F -tables.

5.3 t versus F

tν =
Z√
χ2
ν/ν

=

√
χ2

1/1√
χ2
ν/ν

=
√
F1,ν.

Or, in other words, t2ν = F1,ν, a formulae useful in assessing partial effect in
linear regression model.
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