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4.1 Random Experiment and Sample Space

A Random experiment is a process that generates experimental outcomes, and possesses 
the following properties (*see notes):

1. The experimental outcomes are well-defined and may also be listed prior to 
conducting the experiment.

2. On any single repetition (trial) of the experiment, one and only one of the possible 
experimental outcomes will occur.

3. The experimental outcome that occurs on any trial is determined solely by chance.

An experimental outcome is also called a sample point. The sample space, S, for an 
experiment is the set of all experimental outcomes.

Example: consider the random experiment of tossing a coin.

• The experimental outcomes (sample points) are Head and Tail.

• The sample space is: 𝑆 = Head, Tail



An Experiment and Its Sample Space

Experiment

Toss a coin

Inspection a part

Conduct a sales call

Roll a die

Play a football game

Experiment Outcomes

Head, tail

Defective, non-defective

Purchase, no purchase

1, 2, 3, 4, 5, 6

Win, lose, tie
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4.1 Counting Rule for Multiple-Step Experiments

A multiple-step experiment can be described as a sequence of k steps with 𝑛1 possible 
outcomes on the first step, 𝑛2 possible outcomes on the second step, and so on. 

The total number of experimental outcomes is given by (𝒏𝟏)(𝒏𝟐) . . . (𝒏𝒌).

As an example, consider the random experiment of tossing two coins, one at a time.

The first tossed coin has 𝑛1 = 2 outcomes, and the
second tossed coin has also 𝑛2 = 2 outcomes.

From the counting rule, we have: 

𝑛1 𝑛2 = 2 2 = 4 experimental outcomes

The sample space is :

𝑆 = (H, H),(H, T), (T, H), (T, T)

The tree diagram for the two-coin toss shown to the
right is a graphical representation that helps visualizing
a multiple-step experiment.
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4.1 The KP&L Project: a Multiple-Step Experiment

The KP&L capacity expansion project consists of two 
sequential stages: design and construction.

Management expects the design stage to last 2, 3, or 
4 months, the construction stage 6, 7, or 8 months, 
with an overall completion goal of 10 months.

Application of the counting rule for multiple-step 
experiments reveals a total of (3)(3) = 9  
experimental outcomes.

The tree diagram to the right shows how the 9 
outcomes (sample points) occur and the project 
completion time for each outcome.

We need to assign probabilities to each of the 9 
outcomes before we can compute the probability that 
the project is completed on time.



Bradley has invested in two stocks, Markley Oil 

and Collins Mining.  Bradley has determined that the

possible outcomes of these investments three months

from now are as follows.

Investment Gain or Loss

in 3 Months (in $000)

Markley Oil Collins Mining

10
5
0

-20

8
-2

Example:  Bradley Investments

An Experiment and Its Sample Space



Tree Diagram

Gain 5

Gain 8

Gain 8

Gain 10

Gain 8

Gain 8

Lose 20

Lose 2

Lose 2

Lose 2

Lose 2

Even

Markley Oil
(Stage 1)

Collins Mining
(Stage 2)

Experimental
Outcomes

(10, 8)   Gain   $18,000

(10, -2)  Gain     $8,000

(5, 8) Gain   $13,000

(5, -2)   Gain     $3,000

(0, 8)    Gain     $8,000

(0, -2)   Lose     $2,000

(-20, 8) Lose   $12,000

(-20, -2) Lose   $22,000

Example:  Bradley Investments
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4.1 Counting Rule for Combinations

The counting rule for combinations dictates that the number of combinations of n objects 
taken x at a time is

𝑪𝒙
𝒏 =

𝒏

𝒙
=

𝒏!

𝒙! (𝒏 − 𝒙!)

Example: consider a quality control in which an inspector randomly selects two of five parts to 
test for defects. In a group of five parts, how many combinations of two parts may be selected?

The counting rule for combinations shows

𝐶2
5 =

5

2
=

5!

2! (5 − 2!)
=

(5)(4)(3)(2)(1)

(2)(1)(3)(2)(1)
=

120

12
= 10 outcomes

If we label the five parts A, B, C, D, and E, the sample space of the combinations can be 
represented as

𝑆 = (A, B),(A, C), (A, D), (A, E),(B, C), (B, D), (B, E), (C, D), (C, E), (D, E)



© 2024 Cengage Group. All Rights Reserved.

4.1 Counting Rule for Permutations

When the order of selection matters, we can use the counting rule for permutations.

The number of permutations of n objects taken x at a time is

𝑷𝒙
𝒏 =

𝒏!

(𝒏 − 𝒙!)

Example: consider again the inspector’s quality control process. In a group of five parts, how 
many permutations of two parts may be selected?

The counting rule for permutations shows

𝑃2
5 =

5!

(5 − 2!)
=

5!

3!
=

(5)(4)(3)(2)(1)

(3)(2)(1)
=

120

6
= 20 outcomes

The counting rule for permutations is closely related to the one for combinations because every 
selection of 𝑥 objects can be ordered in 𝑥! different ways.
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4.1 Assigning Probabilities

The basic requirements for assigning probabilities are

1. The probability assigned to each experimental outcome must be between 0 and 1, 
inclusively.

𝟎 ≤ 𝑷(𝑬𝒊) ≤ 𝟏

where 𝐸𝑖 is the 𝑖th experimental outcome and 𝑃(𝐸𝑖) its probability.

2. The sum of the probabilities for all experimental outcomes must equal 1.

𝑷 𝑬𝟏 + 𝑷 𝑬𝟐 +⋯𝑷 𝑬𝒏 = 𝟏

where 𝑛 is the number of experimental outcomes.

There are three methods of assigning probabilities:

• The classical method, is based on the assumption of equally likely outcomes.

• The empirical method, based on relative frequencies from experimental or historical data.

• The subjective method, based on experience or intuition when no data are available.
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4.1 Assigning Probabilities for the KP&L Project

Using experience and judgment, KP&L management concluded that not all the outcomes were 
equally likely. Thus, the classical method could not be used.

A study on the completion times of 40 similar projects undertaken over the past three years 
revealed the frequency distribution shown.

Using the empirical method, we 
can assign the probabilities to 
each of the nine outcomes.

For example, sample point (2, 6) 
on the top row, with an expected 
completion time of 8 months, has 
probability:

𝑃 2, 6 = ⁄6 40 = 0.15

Completion Time (months) 

Number of 
Past Projects 

Project 
Completion 

Time (months)
Stage 1 
Design

Stage 2 
Design

Sample 
Point 

Probability of 
Sample Point

2 6 (2, 6) 6 8 P(2, 6) = 6/40 = 0.15
2 7 (2, 7) 6 9 P(2, 7) = 6/40 = 0.15
2 8 (2, 8) 2 10 P(2, 8) = 2/40 = 0.05
3 6 (3, 6) 4 9 P(3, 6) = 4/40 = 0.10
3 7 (3, 7) 8 10 P(3, 7) = 8/40 = 0.20
3 8 (3, 8) 2 11 P(3, 8) = 2/40 = 0.05
4 6 (4, 6) 2 10 P(4, 6) = 2/40 = 0.05
4 7 (4, 7) 4 11 P(4, 7) = 4/40 = 0.10
4 8 (4, 8) 6 12 P(4, 8) = 6/40 = 0.15

40
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4.2 Events

An event is a collection of sample points.

If we can identify all the sample points of an experiment and assign a probability to each, we 
can compute the probability of an event.

In the KP&L example, management was interested in the probability that the project is 
completed in 10 months or less.

From the table in the previous slide, we see that there are six sample points that provide a 
project completion time of 10 months or less.

Let C denote the event that the project is completed in 10 months or less. Thus, we have:

𝐶 = (2, 6),(2, 7), (2, 8), (3, 6),(3, 7), (4, 6)

Other events of interest may be:

L, the event that the project will complete in less than 10 months: 𝐿 = (2, 6),(2, 7), (3, 6)

M, the event that the project will complete in more than 10 months: 𝑀 = (3, 8),(4, 7), (4, 8)
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4.2 Probability of an Event

The probability of an event is equal to the sum of the probabilities of the sample points in the 
event.

We can calculate the probability that the KP&L project is completed in 10 months or less by 
adding the probabilities of the six sample points belonging to event C.

𝑃(𝐶) = 𝑃(2, 6) + 𝑃(2, 7) + 𝑃(2, 8) + 𝑃(3, 6) + 𝑃(3, 7) + 𝑃(4, 6)

If we refer to the sample point probabilities listed in the previous table, we have

𝑃 𝐶 = 0.15 + 0.15 + 0.05 + 0.10 + 0.20 + 0.05 = 0.7

Similarly, the probability that the KP&L project is completed in less than 10 months is

𝑃 𝐿 = 𝑃 2, 6 + 𝑃 2, 7 + 𝑃 3, 6 = 0.15 + 0.15 + 0.10 = 0.4

And the probability that the KP&L project is completed in more than 10 months is

𝑃 𝑀 = 𝑃 3, 8 + 𝑃 4, 7 + 𝑃 4, 8 = 0.05 + 0.10 + 0.15 = 0.3
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4.3 Some Basic Relationships of Probability

In an experiment with a large number of sample points, the identification of all the sample 
points, as well as the determination of their associated probabilities, can become an extremely 
cumbersome task. 

In this section, we present some basic probability relationships that can be used to compute 
the probability of an event without knowledge of all the sample point probabilities.

These basic relationships of probability are:

• The complement of an event

• The union of two events

• The intersection of two events

• The addition law

• The multiplication law
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4.3 Complement of an Event

The complement of event 𝑨 is defined as the event consisting of all sample points that are 
not in 𝐴. 

The complement of 𝐴 is denoted by 𝐴𝐶. 

In any probability application, either event 𝐴 or its complement 𝐴𝐶 must occur, as shown in the 
Venn diagram to the right.

Therefore, we have

𝑃 𝐴 + 𝑃 𝐴𝐶 = 1

Solving for 𝑃(𝐴), we obtain the
formula for the probability of
the complement of an event

𝑷 𝑨 = 𝟏 − 𝑷 𝑨𝑪
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4.3 Union of Two Events

The union of events 𝑨 and 𝑩 is the event containing all sample points that are in 𝐴 and 𝐵 or 
both. 

The union of events 𝐴 and 𝐵 is denoted by 𝐴 ∪ 𝐵.

Note that the two circles in the Venn diagram overlap, indicating that some sample points are 
contained in both 𝐴 and 𝐵.
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4.3 Intersection of Two Events

The intersection of events 𝑨 and 𝑩 is the event containing all sample points belonging to 
both 𝐴 and 𝐵.

The intersection of events 𝐴 and 𝐵 is denoted by 𝐴 ∩ 𝐵.

Note that the area in the Venn diagram where the two circles overlap is the intersection. 

The intersection contains all the sample points that are in both 𝐴 and 𝐵.
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4.3 Addition Law

The addition law provides a way to compute the probability of the union of two events:

𝑷 𝑨 ∪ 𝑩 = 𝑷 𝑨 + 𝑷 𝑩 − 𝑷(𝑨 ∩ 𝑩)

To understand the addition law intuitively, consider the following:

• The sample points in the intersection 𝐴 ∩ 𝐵 are in both 𝐴 and 𝐵.

• When we compute 𝑃 𝐴 + 𝑃 𝐵 , we are in effect counting each of the sample points in 
𝐴 ∩ 𝐵 twice.

• We correct for this overcounting by subtracting 𝑃(𝐴 ∩ 𝐵).

In the next slide, we consider an example as an application of the addition law.
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4.3 An Application of the Addition Law

Consider a group of 50 software engineers who work in online banking. 

At the end of an evaluation period, a bank manager found that

• 5 engineers completed work late (event L)

• 6 engineers produced code that contains errors (event E)

• 2 engineers completed work late and produced code that contains errors (event 𝐿 ∩ 𝐸)

Thus, we have:

𝑃 𝐿 = ⁄5 50 = 0.10

𝑃 𝐸 = ⁄6 50 = 0.12

𝑃 𝐿 ∩ 𝐸 = ⁄2 50 = 0.04

The probability that an engineer completed work late or produced code that contains errors 
(event 𝐿 ∪ 𝐸) can be calculated using the addition law as

P 𝐿 ∪ 𝐸 = 𝑃 𝐿 + 𝑃 𝐸 − 𝑃 𝐿 ∩ 𝐸 = 0.10 + 0.12 − 0.04 = 0.18
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4.3 Mutually Exclusive Events

Two events are said to be mutually exclusive when they have no sample points in common.

In other words, events 𝐴 and 𝐵 are mutually exclusive if, when one event occurs, the other 
cannot occur. 

Thus, the intersection of 𝐴 and 𝐵 does not contain any points, and 𝑃 𝐴 ∩ 𝐵 = 0.

When two events are mutually exclusive, the addition law simplifies to

𝑷 𝑨 ∪ 𝑩 = 𝑷 𝑨 + 𝑷 𝑩
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4.4 Conditional Probability

We use the notation 𝑃 𝐴 | 𝐵 to denote the conditional probability of event 𝐴, given that 
event 𝐵 has occurred.

We calculate the probability of event 𝐴 given 𝐵 as

𝑷 𝑨 𝑩) =
𝑷(𝑨 ∩ 𝑩)

𝑷(𝑩)

We calculate the probability of event B
given A as

𝑃 𝐵 𝐴) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴)

Note that

𝑃 𝐵 𝐴) ≠ 𝑃 𝐴 𝐵)
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4.4 Application: A Discrimination Case on the 
Promotion of Police Officers

The police force of a major metropolitan area in the eastern U.S. consists of 1200 officers, 
960 self-identified males, and 240 self-identified females.

The specific breakdown of the promotions of 288 male and 36 female police officers over the 
past two years is summarized in the crosstabulation shown below.

After reviewing the promotion record, a committee of female officers raised a discrimination 
case on the basis of the low promotion of female officers when compared to male officers.

The police administration argued that the 
lower number of promotions for female 
officers was due to the relatively lower 
number of female officers in the police 
force.

Male Female Total

Promoted 288 36 324

Not Promoted 672 204 876

Total 960 240 1,200
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4.4 Joint Probability Table

Dividing the data values in the crosstabulation by the total of 1,200 officers enables us to 
summarize the available information on promotions with a joint probability table.

In the body of the table, we have the joint probabilities, which are the intersection 
probabilities of the events of whether a police officer was promoted (𝐴) or not (𝐴𝑐) with 
whether the police officer is male (𝑀) or female (𝐹).

The joint probability that an officer was promoted (𝐴) and is a male (𝑀)

𝑃 𝐴 ∩ 𝑀 = ⁄288 1200 = 0.24

On the margins of the table, we have the 
marginal probabilities, providing the 
probabilities of each separate event.

The probability that an officer is male (𝑀)

𝑃 𝑀 = ⁄960 1200 = 0.80

Male (M) Female (F) Total

Promoted (A) 0.24 0.03 0.27

Not Promoted (Ac) 0.56 0.17 0.73

Total 0.80 0.20 1.00
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4.4 Conditional Probability Analysis

We note that the marginal probabilities are found by summing the joint probabilities in the 
corresponding row or column of the joint probability table. For example

𝑃 𝐴 = 𝑃 𝐴 ∩𝑀 + 𝑃 𝐴 ∩ 𝐹 = 0.24 + 0.03 = 0.27

The conditional probability that an officer was promoted (A) given that the officer is male (M)

𝑃 𝐴 𝑀) =
𝑃(𝐴 ∩𝑀)

𝑃(𝑀)
=

288/1200

960/1200
=

288

960
= 0.30

Note that this could have also been calculated directly from the corresponding values in the 
crosstabulation using the conditional distribution (column) for M as 𝑃 𝐴 𝑀) = ⁄288 960 = 0.30.

The conditional probability that an officer was promoted (A) given that the officer is female (F)

𝑃 𝐴 𝐹) =
𝑃(𝐴 ∩ 𝐹)

𝑃(𝐹)
=

36/1200

240/1200
=

36

240
= 0.15

Thus, because 𝑃 𝐴 𝑀) > 𝑃 𝐴 𝐹), the analysis supports the female officers’ argument.
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4.4 Independent Events

Two events A and B are independent if

𝑃 𝐴 𝐵) = 𝑃 𝐴 or    𝑃 𝐵 𝐴) = 𝑃 𝐵

Otherwise, the events are dependent if

𝑃 𝐴 𝐵) ≠ 𝑃 𝐴 or    𝑃 𝐵 𝐴) ≠ 𝑃 𝐵

In the analysis of the promotion of police officers, we found

𝑃 𝐴 = 0.27, 𝑃 𝐴 𝑀) = 0.30, and 𝑃 𝐴 𝐹) = 0.15

Because 𝑃 𝐴 𝑀) ≠ 𝑃 𝐴 , that is, the probability of whether an officer is promoted (𝐴) is 
altered or affected by knowing whether the officer is male (𝑀), we conclude that the events 𝐴
and 𝑀 are dependent.

Similarly, because 𝑃 𝐴 𝐹) ≠ 𝑃 𝐴 , we would say that events 𝐴 and 𝐹 are also dependent 
(*see notes.)
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4.4 Multiplication Law

The multiplication law is based on the definition of conditional probability, and it provides a 
way to compute the probability of the intersection of two events

𝑷 𝑨 ∩ 𝑩 = 𝑷 𝑨 𝑩)𝑷 𝑩

or

𝑃 𝐵 ∩ 𝐴 = 𝑃 𝐵 𝐴)𝑃(𝐴)

In the case of independent events, 𝑃 𝐴 𝐵) = 𝑃 𝐴 or 𝑃 𝐵 𝐴) = 𝑃 𝐵 , and the multiplication 
law for independent events becomes

𝑃 𝐴 ∩ 𝐵 = 𝑃(𝐴)𝑃 𝐵

or

𝑃 𝐵 ∩ 𝐴 = 𝑃 𝐵 𝑃(𝐴)

Therefore, two events A and B are dependent when 𝑃 𝐴 ∩ 𝐵 ≠ 𝑃(𝐴)𝑃 𝐵 .
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4.5 Bayes’ Theorem

The Bayes’ theorem (two-event case) states that

𝑃 𝐴𝑖 𝐵) =
𝑃(𝐴𝑖)𝑃 𝐵 𝐴𝑖)

𝑃(𝐴1)𝑃 𝐵 𝐴1) + 𝑃(𝐴2)𝑃 𝐵 𝐴2)
with 𝑖 = 1,2

Where:

𝑃(𝐴1) and 𝑃(𝐴2) are the initial or prior probabilities, available at the beginning.

𝑃 𝐵 𝐴1) and 𝑃 𝐵 𝐴2) are conditional probabilities calculated from a sample, special 
report, or product test.

Bayes’ theorem provides a mean to calculate the revised or posterior probabilities 
𝑃 𝐴1 𝐵) and 𝑃 𝐴2 𝐵).
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4.5 An Application of Bayes’ Theorem

Consider a manufacturing firm that purchases 65% of its parts from supplier 1 and 35% from 
supplier 2.

If we let A1 denote that event that a part is from supplier 1, and 𝐴2 the event that the part is 
from supplier 2, we can write the prior probabilities as

𝑃 𝐴1 = 0.65 𝑃 𝐴2 = 0.35

Historical data for the quality ratings of the two suppliers are shown in the table below.

Thus, we can write the conditional probabilities 
of receiving a good (𝐺) or bad (𝐵) part from
either supplier as:

𝑃 𝐺 𝐴1) = 0.98 𝑃 𝐵 𝐴1) = 0.02

𝑃 𝐺 𝐴2) = 0.95 𝑃 𝐵 𝐴2) = 0.05

Percentage 
Good Parts

Percentage 
Bad Parts

Supplier 1 98 2

Supplier 2 95 5
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4.5 Posterior Probabilities

Using Bayes’ theorem and the prior and conditional probabilities, we can compute the posterior 
probabilities that either supplier ships a bad part

𝑃 𝐴1 𝐵) =
𝑃(𝐴1)𝑃 𝐵 𝐴1)

𝑃(𝐴1)𝑃 𝐵 𝐴1) + 𝑃(𝐴2)𝑃 𝐵 𝐴2)
=

0.65 0.02

0.65 0.02 + 0.35(0.05)
=

0.130

0.130 + 0.175
= 0.426

𝑃 𝐴2 𝐵) =
𝑃(𝐴2)𝑃 𝐵 𝐴2)

𝑃(𝐴1)𝑃 𝐵 𝐴1) + 𝑃(𝐴2)𝑃 𝐵 𝐴2)
=

0.35 0.05

0.65 0.02 + 0.35(0.05)
=

0.175

0.130 + 0.175
= 0.574

Note that, for supplier 1, we began with an initial probability of 𝑃 𝐴1 = 0.65. However, given the 
information that the part was bad, the revised probability drops to 𝑃 𝐴1 𝐵) = 0.426.

Conversely, for supplier 2, we began with an initial probability of 𝑃 𝐴2 = 0.35 and when we 
include the information that the part was bad, the revised probability grows to 𝑃 𝐴2 𝐵) = 0.574.

In conclusion, despite the fact more parts come from supplier 1 than supplier 2, there is more 
than a 50-50 chance that a bad part comes from supplier 2 (*see notes.)
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4.5 Bayes’ Theorem with a Probability Tree

Bayes’ theorem can be visualized with a
probability tree. From left to right:

Step 1 includes the two branches for the
prior probabilities of the two suppliers.

Step 2 branches out the four conditional
probabilities of receiving a good (𝐺) or bad
(𝐵) part from either supplier 1 (𝐴1) or 2 (𝐴2).

The resulting four outcomes represent the
possible intersections of supplier (A1) or (A2)
with either a good (𝐺) or bad (𝐵) part.

Because 𝑃 𝐵 = 𝑃(𝐴1 ∩ 𝐵) + 𝑃(𝐴2 ∩ 𝐵), the
posterior probabilities in Bayes’ theorem can be calculated from the joint probabilities as

𝑃 𝐴𝑖 𝐵) =
𝑃(𝐴𝑖 ∩ 𝐵)

𝑃(𝐵)
=

𝑃(𝐴𝑖 ∩ 𝐵)

𝑃(𝐴1 ∩ 𝐵) + 𝑃(𝐴2 ∩ 𝐵)
=

𝑃(𝐴𝑖)𝑃 𝐵 𝐴𝑖)

𝑃(𝐴1)𝑃 𝐵 𝐴1) + 𝑃(𝐴2)𝑃 𝐵 𝐴2)
with 𝑖 = 1,2
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4.5 Tabular Approach to Bayes’ Theorem

A tabular approach is helpful in conducting Bayes’ theorem calculations (see table below.)

Step 1: Create three columns: (1) with the two events 𝐴1 and 𝐴2 for which posterior 
probabilities are desired, (2) with the prior probabilities 𝑃 𝐴1 and 𝑃 𝐴2 , and (3) with 
the conditional probabilities from the available data for event 𝐵.

Step 2: In column (4), for each of the two rows compute the joint probabilities 𝑃(𝐴𝑖 ∩ 𝐵) by 
multiplying the values in columns (1) and (2).

Step 3: Sum the joint probabilities in column (4) to obtain 𝑃 𝐵 .

Step 4: In column (5), compute the posterior probabilities using the values from column (4):

𝑃 𝐴1 𝐵) =
𝑃(𝐴1 ∩ 𝐵)

𝑃(𝐵)

𝑃 𝐴2 𝐵) =
𝑃(𝐴2 ∩ 𝐵)

𝑃(𝐵)

(1) (2) (3) (4) (5)

Events
Prior 

Probabilities
Conditional 
Probabilities

Joint 
Probabilities

Posterior
Probabilities

Ai P(Ai) P(B|Ai) P(Ai ∩ B) P(Ai|B)

A1 0.65 0.02 0.0130 0.0130 / 0.0305 = 0.4262
A2 0.35 0.05 0.0175 0.0175 / 0.0305 = 0.5738

1.00 0.0305 1.0000
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Summary

• In this chapter, we introduced basic probability concepts and illustrated how probability 
analysis can be used to provide helpful information for decision-making. 

• We described how probability can be interpreted as a numerical measure of the likelihood 
that an event will occur. 

• In addition, we saw that the probability of an event can be computed by either:

• Summing the probabilities of the experimental outcomes (sample points) that comprise 
the event.

• Using the relationships established by different laws of probability, such as:

• addition law

• conditional probability

• multiplication law

• For cases in which additional information is available, we showed how Bayes’ theorem can 
be used to obtain revised or posterior probabilities.



A patient takes a lab test and the result comes back 
positive. The test returns a correct positive result in 99% 
of the cases in which the disease is actually present, and 
a correct negative result in 98% of the cases in which the 
disease is not present. Furthermore, .001 of all people 
have this cancer.

直覺與理性判斷：醫學檢驗

= .047P(cancer | +) =
)(

)()|(





P

cancerPcancerP

P(- | ~cancer) =.02

.999P(~ cancer) =.001P(cancer) =

.01P(- | cancer) =.99
P(+ | ~cancer) = .98
P(+ | cancer) =



計算細節：

假設某地區有一百萬人：

 999,000人健康，1,000人罹患癌症

檢查出陽性反應者：

(1) 健康者中有

(2) 癌症患者中有

因此，陽性反應者中罹患癌症的比例：

980,19%2000,999 

990%99000,1 

%72.4
970,20

990

990980,19

990
)|( 


cancerP

偽陽性



Suppose a second test for the same patient returns 

a positive result as well. What are the posterior 

probabilities for cancer?

P(- | ~cancer) =.02

.999P(~cancer) =.001P(cancer) =

.01P(- | cancer) =.99

P(+ | ~cancer) = .98

P(+ | cancer) =

= .710P(cancer | +1+2) = )(

)()|(

21

21





P

cancerPcancerP
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