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Probability as a Numerical Measure
of the Likelihood of Occurrence

Increasing Likelihood of Occurrence
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4.1 Random Experiment and Sample Space

A Random experiment is a process that generates experimental outcomes, and possesses
the following properties (*see notes):

1. The experimental outcomes are well-defined and may also be listed prior to
conducting the experiment.

2. On any single repetition (frial) of the experiment, one and only one of the possible
experimental outcomes will occur.

3. The experimental outcome that occurs on any trial is determined solely by chance.
An experimental outcome is also called a sample point. The sample space, S, for an
experiment is the set of all experimental outcomes.
Example: consider the random experiment of tossing a coin.

 The experimental outcomes (sample points) are Head and Tail.

« The sample space is: S = {Head, Tail}
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An Experiment and Its Sample Space

/ /

Experiment Experiment Outcomes
Toss a coin Head, tail

Inspection a part Defective, non-defective
Conduct a sales call  Purchase, no purchase
Roll a die 1,2,3,4,5,6

Play a football game Win, lose, tie
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4.1 Counting Rule for Multiple-Step Experiments

A multiple-step experiment can be described as a sequence of k steps with n; possible
outcomes on the first step, n, possible outcomes on the second step, and so on.

The total number of experimental outcomes is given by (nq)(ny) ... (ng).
As an example, consider the random experiment of tossing two coins, one at a time.

The first tossed coin has n,; = 2 outcomes, and the
second tossed coin has also n, = 2 outcomes.

From the counting rule, we have:

(ny)(n,) = (2)(2) = 4 experimental outcomes
The sample space is :

S ={(H, H),(H, T), (T, H), (T, T)}

The tree diagram for the two-coin toss shown to the
right is a graphical representation that helps visualizing
a multiple-step experiment.
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4.1 The KP&L Project: a Multiple-Step Experiment

The KP&L capacity expansion project consists of two
sequential stages: design and construction.

Management expects the design stage to last 2, 3, or
4 months, the construction stage 6, 7, or 8 months,
with an overall completion goal of 10 months.

Application of the counting rule for multiple-step
experiments reveals a total of (3)(3) =9
experimental outcomes.

The tree diagram to the right shows how the 9
outcomes (sample points) occur and the project
completion time for each outcome.

We need to assign probabilities to each of the 9
outcomes before we can compute the probability that
the project is completed on time.
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An Experiment and Its Sa mple Space

Bradley has mvested In t WO S tocks, Markley Oil

~“and Collins Mining. Bradley has determined that the

possible outcomes of these investments three months
from now are as follows.

Investment Gain or Loss

in 3 Months (in $000)
~|  Markley Oil Collins Mining
10 8
5 -2
0
-20



Tree Diagram

Example: Bradley Investments

/ /

Markley Oil Collins Mining Experimental
(Stage 1) (Stage 2) Outcomes
|

. I
| Gain8 4 (10,8) Gain $18,000
—! (10,-2) Gain $8,000
} Lose 2 I ( )
' Gain 8 — (5,8 Gain $13,000
I
Lose 2 — (5,-2) Gain $3,000
Gaind | (0,8) Gain $8,000
I
} | " } (0,-2) Lose $2,000
Gain 8 | (-20,8) Lose $12,000
I

| Lose 2 1 (-20,-2) Lose $22,000

Lose 20
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4.1 Counting Rule for Combinations

The counting rule for combinations dictates that the number of combinations of n objects
taken x at a time is

n n!
Cx = (x) T x! (n—x!)

Example: consider a quality control in which an inspector randomly selects two of five parts to
test for defects. In a group of five parts, how many combinations of two parts may be selected?

The counting rule for combinations shows

s_(S\___ 5 _G@®WE®@OW _ 120

2= \2) T 26 -20 T @OE@® 12
If we label the five parts A, B, C, D, and E, the sample space of the combinations can be
represented as

S ={(A, B),(A C), (A D), (A E),(B,C), (B, D), (B, E), (C,D), (C E), (D, E)}

= 10 outcomes
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4.1 Counting Rule for Permutations

When the order of selection matters, we can use the counting rule for permutations.

The number of permutations of n objects taken x at a time is
n!

P} =
¥ (n—x)

Example: consider again the inspector’s quality control process. In a group of five parts, how

many permutations of two parts may be selected?

The counting rule for permutations shows

51 51 (5)(H)B)(2)(1) 120

Pz = (5—2D) 3! 3)(2)(1) 6

= 20 outcomes

The counting rule for permutations is closely related to the one for combinations because every
selection of x objects can be ordered in x! different ways.
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4.1 Assigning Probabilities

The basic requirements for assigning probabilities are

1. The probability assigned to each experimental outcome must be between 0 and 1,
Inclusively.

0<PE)<1
where E, is the ith experimental outcome and P(E)) its probability.
2. The sum of the probabilities for all experimental outcomes must equal 1.
P(E,)+ P(E;)+-—-P(E,) =1
where n is the number of experimental outcomes.
There are three methods of assigning probabilities:
« The classical method, is based on the assumption of equally likely outcomes.
 The empirical method, based on relative frequencies from experimental or historical data.
* The subjective method, based on experience or intuition when no data are available.
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4.1 Assigning Probabilities for the KP&L Project

Using experience and judgment, KP&L management concluded that not all the outcomes were
equally likely. Thus, the classical method could not be used.

A study on the completion times of 40 similar projects undertaken over the past three years
revealed the frequency distribution shown.

Using the empirical method, we Completion Time (months) Project
can assign the probabilities to Stage 1 Stage 2 Sample Number of Completion Probability of
h of th . t Design Design Point Past Projects Time (months) Sample Point
each of the nine outcomes. , c 2, 6) . . P(2, 6) = 6/40 = 0.15
For example, sample point (2, 6) 2 / 22' ZS; 625 1’3 gg, Q = Zig = gcl)g
. 2 8 p , = = 0.
on the tc_)p row, with an expected . . (3.6) p - P(3. 6) = 4/40 = 0.10
completion time of 8 months, has 3 7 (3,7) 8 10 P(3,7) = 8/40=0.20
probability: 3 8 (3, 8) 2 11 P(3, 8) = 2/40 = 0.05
4 6 (4, 6) 2 10 P(4, 6) = 2/40 = 0.05
P(2,6) = 6/40 = 0.15 4 7 4, 7) 4 11 P(4, 7) = 4/40 = 0.10
4 8 (4, 8) 6 12 P(4, 8) = 6/40 = 0.15
40
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4.2 Events

An event is a collection of sample points.

If we can identify all the sample points of an experiment and assign a probability to each, we
can compute the probability of an event.

In the KP&L example, management was interested in the probability that the project is
completed in 10 months or less.

From the table in the previous slide, we see that there are six sample points that provide a
project completion time of 10 months or less.

Let C denote the event that the project is completed in 10 months or less. Thus, we have:
C=1(2,6),(27),(28),3,6).,3,7),(46)}
Other events of interest may be:
L, the event that the project will complete in less than 10 months: L ={(2, 6),(2,7),(3,6)}
M, the event that the project will complete in more than 10 months: M = {(3, 8),(4, 7), (4, 8)}
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4.2 Probability of an Event

The probability of an event is equal to the sum of the probabilities of the sample points in the
event.

We can calculate the probability that the KP&L project is completed in 10 months or less by
adding the probabilities of the six sample points belonging to event C.
P(C)=P(2,6)+P(2,7)+ P(2,8)+ P(3,6) + P(3,7) + P(4,6)
If we refer to the sample point probabilities listed in the previous table, we have
P(C) =0.15+ 0.15 + 0.05 + 0.10 + 0.20 + 0.05 = 0.7

Similarly, the probability that the KP&L project is completed in less than 10 months is
P(L) =P(2,6) +P(2,7) + P(3,6) =0.15+0.15+ 0.10 = 0.4

And the probability that the KP&L project is completed in more than 10 months is
P(M) = P(3,8) + P(4,7) + P(4,8) = 0.05+ 0.10+ 0.15=0.3
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4.3 Some Basic Relationships of Probability

In an experiment with a large number of sample points, the identification of all the sample
points, as well as the determination of their associated probabilities, can become an extremely
cumbersome task.

In this section, we present some basic probability relationships that can be used to compute
the probability of an event without knowledge of all the sample point probabilities.

These basic relationships of probability are:
 The complement of an event
« The union of two events
* The intersection of two events
* The addition law

 The multiplication law
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4.3 Complement of an Event

The complement of event A is defined as the event consisting of all sample points that are
not in A.

The complement of A is denoted by A°¢.

In any probability application, either event A or its complement A¢ must occur, as shown in the
Venn diagram to the right.
Therefore, we have
P(A) +P(4%) =1
Solving for P(A), we obtain the

formula for the probability of
the complement of an event

P(A) =1-P(A%)
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4.3 Union of Two Events

The union of events 4 and B is the event containing all sample points that are in A and B or
both.

The union of events A and B is denoted by 4 U B.

Note that the two circles in the Venn diagram overlap, indicating that some sample points are
contained in both A and B.
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4.3 Intersection of Two Events

The intersection of events A and B is the event containing all sample points belonging to
both A and B.

The intersection of events A and B is denoted by A N B.

Note that the area in the Venn diagram where the two circles overlap is the intersection.
The intersection contains all the sample points that are in both A and B.
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4.3 Addition Law

The addition law provides a way to compute the probability of the union of two events:
P(AUB) =P(A) + P(B)—P(ANB)

To understand the addition law intuitively, consider the following:
 The sample points in the intersection A N B are in both A and B.

 When we compute P(A) + P(B), we are in effect counting each of the sample points in
A N B twice.

« We correct for this overcounting by subtracting P(A N B).
In the next slide, we consider an example as an application of the addition law.
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4.3 An Application of the Addition Law

Consider a group of 50 software engineers who work in online banking.
At the end of an evaluation period, a bank manager found that
« 5 engineers completed work late (event L)
* 6 engineers produced code that contains errors (event E)
« 2 engineers completed work late and produced code that contains errors (event L N E)
Thus, we have:
P(L) =5/50 =0.10
P(E) =6/50 =0.12
P(LNE)=2/50=0.04
The probability that an engineer completed work late or produced code that contains errors
(event L U E) can be calculated using the addition law as
P(LUE)=P(L)+P(E)—P(LNE)=0.104+0.12—0.04 = 0.18
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4.3 Mutually Exclusive Events

Two events are said to be mutually exclusive when they have no sample points in common.

In other words, events A and B are mutually exclusive if, when one event occurs, the other
cannot occur.

Thus, the intersection of A and B does not contain any points, and P(An B) = 0.
When two events are mutually exclusive, the addition law simplifies to
P(AuB)=P(A) + P(B)
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4.4 Conditional Probability

We use the notation P(4 | B) to denote the conditional probability of event 4, given that
event B has occurred.

We calculate the probability of event A given B as
P(ANB)
P(B)

P(A|B) =

We calculate the probability of event B
given A as

P(ANB)

P(B|A) = )

Note that
P(B|A) #P(A|B)
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4.4 Application: A Discrimination Case on the

Promotion of Police Officers

The police force of a major metropolitan area in the eastern U.S. consists of 1200 officers,
960 self-identified males, and 240 self-identified females.

The specific breakdown of the promotions of 288 male and 36 female police officers over the
past two years is summarized in the crosstabulation shown below.

After reviewing the promotion record, a committee of female officers raised a discrimination
case on the basis of the low promotion of female officers when compared to male officers.

The police administration argued that the

lower number of promotions for female Promoted
officers was due to the relatively lower

number of female officers in the police
force.
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Male Female Total

288 36 324

Not Promoted 672 204 876
Total 960 240 1,200



4.4 Joint Probability Table

Dividing the data values in the crosstabulation by the total of 1,200 officers enables us to
summarize the available information on promotions with a joint probability table.

In the body of the table, we have the joint probabilities, which are the intersection
probabilities of the events of whether a police officer was promoted (A) or not (A¢) with
whether the police officer is male (M) or female (F).

The joint probability that an officer was promoted (4) and is a male (M)
P(ANM) =288/1200 = 0.24

On the margins of the table, we have the Male (M) Female (F) | Total
marginal probabilities, providing the Promoted (A) 0.24 0.03 0.27
probabilities of each separate event. Not Promoted (A°) 0.56 0.17 0.73
The probability that an officer is male (M) Total 0.80 0.20 1.00

P(M) =960/1200 = 0.80
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4.4 Conditional Probability Analysis

We note that the marginal probabilities are found by summing the joint probabilities in the
corresponding row or column of the joint probability table. For example

P(A)=PANM)+P(ANF)=0.24+0.03 =0.27
The conditional probability that an officer was promoted (A) given that the officer is male (M)
P(AnM) 288/1200 288 0.30
P(M)  960/1200 960

Note that this could have also been calculated directly from the corresponding values in the
crosstabulation using the conditional distribution (column) for M as P(A | M) = 288/960 = 0.30.

The conditional probability that an officer was promoted (A) given that the officer is female (F)
P(AnF) 36/1200 36
P(F)  240/1200 240

Thus, because P(A | M) > P(A | F), the analysis supports the female officers’ argument.

P(A| M) =

= 0.15

P(A|F) =
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Simpson’s Paradox in University
admission

U C Berkeley admitted 44% of males and 35%
of females who applied in 1973, Data from

the six largest departments.

Department Male acceptance rate Female acceptance rate
A 52% 82%
23 639 639%
L 27 % 349
(D =239 359%
E 289 249
= 5% T9%
Male Female
Applicants %% Applicants Yo
A 825 62%6 108 82%
B 560 63%6 25 63%
C 325 279 593 349%
(] A17F 239 3275 25%
E 191 289 293 24%
= 373 6% =241 7%
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4.4 Independent Events

Two events A and B are independent if
P(A|B)=P(A) or P(B|A)=P(B)

Otherwise, the events are dependent if
P(A|B) # P(A) or P(B|A) =+ P(B)

In the analysis of the promotion of police officers, we found
P(4) = 0.27, P(A| M) = 0.30, and P(4 | F) = 0.15

Because P(A | M) # P(A), that is, the probability of whether an officer is promoted (4) is
altered or affected by knowing whether the officer is male (M), we conclude that the events A
and M are dependent.

Similarly, because P(A | F) # P(A), we would say that events A and F are also dependent
(*see notes.)
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4.4 Multiplication Law

The multiplication law is based on the definition of conditional probability, and it provides a
way to compute the probability of the intersection of two events

P(AnB) =P(A| B)P(B)
or
P(BNA) = P(B| A)P(A)
In the case of independent events, P(A | B) = P(A) or P(B | A) = P(B), and the multiplication
law for independent events becomes
P(AN B) = P(A)P(B)
or
P(Bn A) = P(B)P(A)

Therefore, two events A and B are dependent when P(A N B) + P(A)P(B).
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4.5 Bayes’ Theorem

The Bayes’ theorem (two-event case) states that
P(A)P(B | 4;)

P(4; | B) = P(A)P(B | Ay) + P(4;,)P(B | Ay)

withi = 1,2
Where:

P(A,) and P(A,) are the initial or prior probabilities, available at the beginning.

P(B|A;) and P(B | A,) are conditional probabilities calculated from a sample, special
report, or product test.

Bayes’ theorem provides a mean to calculate the revised or posterior probabilities
P(A, | B) and P(4, | B).

CENGAGE
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4.5 An Application of Bayes’ Theorem

Consider a manufacturing firm that purchases 65% of its parts from supplier 1 and 35% from
supplier 2.

If we let A, denote that event that a part is from supplier 1, and A, the event that the part is
from supplier 2, we can write the prior probabilities as

P(A;) = 0.65 P(A,) = 0.35
Historical data for the quality ratings of the two suppliers are shown in the table below.

T][\us, we can ertz the cor;dlgonal prg[t;abllltles Percentage A
of receiving a goo (G) or bad (B) part from Good Parts Bad Parts
either supplier as:

P(G|A,) =098 P(B|A;) =0.02
P(G|A,) =095 P(B|A,) =0.05

Supplier 1 98 2
Supplier 2 95 5

o+ CENGAGE
e © 2024 Cengage Group. All Rights Reserved.



4.5 Posterior Probabilities

Using Bayes’ theorem and the prior and conditional probabilities, we can compute the posterior
probabilities that either supplier ships a bad part

P(A)P(B | Ay 0.65(0.02) 0.130

P(ADP(B | A) + P(A,)P(B|A,) _ 0.65(0.02) + 035(0.05) 0130 + 0175 0426

P(A, | B) =

P(4,)P(B| A4,) B 0.35(0.05) 0175
P(A)P(B|A;) + P(4,)P(B|A,) 0.65(0.02) + 0.35(0.05) 0.130 + 0.175

P(A, | B) = = 0.574

Note that, for supplier 1, we began with an initial probability of P(4,) = 0.65. However, given the
information that the part was bad, the revised probability drops to P(4; | B) = 0.426.

Conversely, for supplier 2, we began with an initial probability of P(4,) = 0.35 and when we
include the information that the part was bad, the revised probability grows to P(4, | B) = 0.574.

In conclusion, despite the fact more parts come from supplier 1 than supplier 2, there is more
than a 50-50 chance that a bad part comes from supplier 2 (*see notes.)
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4.5 Bayes’ Theorem with a Probability Tree

Bayes’ theorem can be visualized with a
probability tree. From left to right:

Step 1 includes the two branches for the
prior probabilities of the two suppliers.

Step 2 branches out the four conditional
probabilities of receiving a good (G) or bad
(B) part from either supplier 1 (4;) or 2 (4,).

The resulting four outcomes represent the
possible intersections of supplier (A,) or (A,)
with either a good (G) or bad (B) part.

Because P(B) = P(A; N B) + P(4, n B), the
posterior probabilities in Bayes’ theorem can be calculated from the joint probabilities as
P(A;nB) P(A; N B) P(A)P(B| A))

P(B)  P(A,NB)+P(4,nB)  P(A)P(B1 Ay + P(AP(B Ay "' = 17

P(A; | B) =
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4.5 Tabular Approach to Bayes’ Theorem

A tabular approach is helpful in conducting Bayes’ theorem calculations (see table below.)

Step 1: Create three columns: (1) with the two events A, and A, for which posterior
probabilities are desired, (2) with the prior probabilities P(4,) and P(4,), and (3) with
the conditional probabilities from the available data for event B.

Step 2: In column (4), for each of the two rows compute the joint probabilities P(A; N B) by
multiplying the values in columns (1) and (2).

Step 3: Sum the joint probabilities in column (4) to obtain P(B).
Step 4: In column (5), compute the posterior probabilities using the values from column (4):

P(A; N B) (1) (?) (3) (‘.‘) (5).
P(A1 | B) = Prior Conditional Joint Posterior
p (B) Events Probabilities Probabilities Probabilities Probabilities
P(A, N B) A, P(A) P(B|A) P(A, N B) P(A.|B)
P(A; | B) = (B A, 0.65 0.02 0.0130  0.0130/0.0305 = 0.4262
( ) A, 0.35 0.05 0.0175 0.0175 / 0.0305 =0.5738
1.00 0.0305 1.0000
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Summary

In this chapter, we introduced basic probability concepts and illustrated how probability
analysis can be used to provide helpful information for decision-making.

We described how probability can be interpreted as a numerical measure of the likelihood

that an event will occur.
* |n addition, we saw that the probability of an event can be computed by either:

- Summing the probabilities of the experimental outcomes (sample points) that comprise
the event.
+ Using the relationships established by different laws of probability, such as:
 addition law
 conditional probability

* multiplication law
For cases in which additional information is available, we showed how Bayes’ theorem can

be used to obtain revised or posterior probabillities.
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- A patient takes a lab test and the result comes back
positive. The test returns a correct positive result in 99%
of the cases 1n which the disease 1s actually present, and
a correct negative result in 98% of the cases in which the

disease 1s not present. Furthermore, .001 of all people
have this cancer.

P(cancer) = .001 P(~ cancer)=  .999 -
P(+ | cancer) = .99 P(— | cancer) = .01 f,;}
P(+ | ~cancer) = .02 P(— | ~cancer) = .98 (/?(V/?/\\
P(cancer | +) = P(+ | cancer) P(cancer) _ oa (\/\ =7

P(+)



44

2L F 2 .
? -E-'- ,Sm E:'—, °

OBXEFFF-F 8%
= 999,000 * &2 > 1,000 % fe & o
> a B B /
() sk %* 5 999,000x2% =19,980
(2) B &% ¢ F 1,000x99% =990

Flot o BEE E 7 e BB b

990 990

19,980+990 20,970

E3E g xA

P(cancer |+) = =4.72%
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Suppose a second test for the same patient returns
a positive result as well. What are the posterior
probabilities for cancer?

P(cancer) = 001 P(~cancer) = 099
P(+ | cancer)= .99 P(—| cancer)= .01

P(+ | ~cancer) = .02 P(— | ~cancer) = 98

P(+, +, | cancer ) P(cancer )

=.710
P(+, +,)

P(cancer | ++,) =
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