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Abstract
Although other risk factors can be used, depending on feasibility, marketing, and 
data availability, age and gender are the two most common risk factors considered 
in life insurance products. Previous studies have shown that the newly insured, who 
passed certain health examinations, tend to have lower mortality rates than those 
already insured. Insurance companies often use select and ultimate tables to handle 
mortality discrepancies between the insured in different policy years (i.e., the selec-
tion effect). However, the selection effect is easily confused with mortality improve-
ment, and its estimate is likely to be influenced by the annual reduction in mortal-
ity rates. In this study, we propose modifying the Lee-Carter model, including the 
selection effect and mortality improvement. We first use a simulation to evaluate 
the parameter estimation of the proposed approach and then apply it to experienced 
data from Taiwan’s largest insurance company, Cathay Life Insurance Company 
Ltd. The results of our simulation and empirical studies support the newly proposed 
approach, which provides stable and accurate estimates of the selection effect and 
mortality improvement. We also find that the size of the selection effect concerning 
policy year was larger than the difference in mortality rates between smokers and 
non-smokers; this is particularly noticeable for older age groups.
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1 Introduction

Since the 1990s, a significant reduction in mortality has become a common concern 
worldwide. Mortality improvement would incur longevity risk, which refers to liv-
ing longer, and pensions paid longer than expected. The longevity risk can result in 
financial insolvency for insurance companies. Therefore, mortality (in general), its 
trends, and factors affecting it have become the focus of various studies. Mortality 
models are often used to study mortality rates using a wide selection of variables. A 
few variables, such as weight, age, and sex,1 were considered risk factors and used 
in the mortality models. However, it is challenging to collect data on these variables. 
Therefore, data availability, quality, and empirical analysis results restrict the use 
of these variables. Newly insured people are believed to have lower mortality rates 
than those already insured, and the mortality rates within a certain period, called the 
selection period, are often assumed to be an increasing or decreasing function of the 
policy year. This phenomenon is known as the selection effect.

The selection effect is a phenomenon of mortality that varies with time since 
joining a group is observed in various situations with different names, not restricted 
to life insurance. For example, the healthy worker effect indicates that workers usu-
ally have lower overall death rates, owing to employment selection [6, 8]. After 
marriage, the selection effect implies that married adults generally live longer than 
unmarried adults do [19, 20]. The adverse effects of retirement on health and lon-
gevity result from adverse selection.

Insurance companies use selected life tables to differentiate the mortality risk of 
the insured based on the policy year. The selection effect is well-known and often 
appears as a standard topic in actuarial mathematics textbooks [1, 5]. However, sur-
prisingly, few studies have focused on modeling the selection effect. For example, 
Carriere [4] proposed a parametric model based on a linear combination of survival 
functions, whereas Renshaw and Haberman [13] used a mixture of generalized lin-
ear and nonlinear models. Richards [16] proposed a Hermite-spline approach to 
model the selection effect of mortality rates at post-retirement age. These studies 
focused mainly on the methodology for constructing the selected mortality tables, 
such as the connection between the mortality rates in different policy years. Addi-
tionally, the graduation methods used to construct select mortality tables are not 
common in practice [11]. A possible reason for the limited application of graduation 
methods may be that the graduation of mortality rates in two (i.e., age and policy 
year) or higher dimensions is more complicated than traditional one-dimensional 
graduation concerning age.

The unavailability of relevant data is another reason only a few methods for mod-
eling the selection effect are found. A longer observation period is often required 
to evaluate whether the newly insured have lower mortality rates (recommended 
at least ten years or longer). It is challenging to accumulate sufficient exposure to 
insurance products with similar mortality profiles. This is probably a key reason for 

1 In 2011, the European Court of Justice ruled that using gender to calculate premiums and benefits was 
inconsistent with the European Charter.
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Taiwan’s lack of life tables. Another reason is the existence of a thorough and rigor-
ous underwriting process. Notably, few select mortality tables are available glob-
ally, except in the U.S. and the U.K.; for example, since 1990–95 Basic Select and 
Ultimate Mortality Tables for Individual Life Insurance, the Society of Actuaries in 
the U.S. published three studies on select periods: 2001, 2008, and 2014 Valuation 
Basic Tables (VBT) [7]. In the U.K., select mortality tables are produced by a Con-
tinuous Mortality Investigation (CMI) [12]. The length of the selection period was 
different between insurers and insurance products, as reported in the 2014 Select 
Period Mortality Survey, which ranged from ten years to more than 30  years for 
term products. The size of the selection effect also varies significantly and is often 
too large to be ignored.

A longer observation period could further complicate the estimation of the selec-
tion effect. The mortality rates in later policy years can be affected by mortality 
reduction, and the selection effect may likely be underestimated2 if the mortality 
rates of all ages decrease with time. To avoid underestimation: the selection effect 
and mortality improvement need to be considered. Most previous studies on selec-
tion effects have not incorporated mortality improvement.3 It is still not considered 
for pricing products in many countries (including Taiwan) and not even for annuity 
products.

This study treats the selection effect as a risk factor and modifies the Lee-Carter 
(LC) model [9] to handle the mortality improvement and selection effect. We use 
a two-stage estimation: first, we estimate the LC model parameters, and then the 
selection effect. The estimation was conducted until it converged recursively. This 
procedure has been used in many modifications of the LC model. As expected, the 
estimates of both parameters were negatively biased at first and then became rea-
sonably stable after a few iterations. We use a simulation to evaluate the proposed 
approach and verify whether it could provide unbiased parameter estimates. Further-
more, we use empirical data to demonstrate that the estimates of the selection effects 
are underestimated when mortality improvement is not considered.

The current proposed mortality model can identify mortality risk regarding pol-
icy years, and life insurance companies can use this value for underwriting and pric-
ing products and calculating the reserves. This is especially important in Taiwan 
because all insurance companies must implement IFRS 17 before 2026.4

The remainder of this paper is organized as follows. Section 2 describes the pro-
posed method and related literature. The simulation study presented in Sect. 3 evalu-
ates the estimation properties of the proposed approach. The evaluations are based 
on standard assumptions, using a pre-specified selection table and applying Taiwan 
national population mortality data as a template. The empirical analysis described in 
Sect. 4 determines whether the proposed models have smaller estimation errors than 

2 Conversely, the selection effect would be overestimated if the insured were ex-smokers.
3 Mortality improvement is an important factor for modeling mortality rates today; however, it was not 
considered until the late 1990s.
4 IFRS 17 is an International Financial Reporting Standard, and is expected to be effective in 2023. In 
2021, the Taiwan government decided to delay the effective date to 2026.
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the LC model. Empirical data was obtained from the largest insurance company in 
Taiwan, Cathay Life Insurance Company Ltd. (CLI). The results from the simulation 
and empirical studies verify the benefit of using the proposed approach, which can 
provide stable and accurate estimates of the parameters and mortality rates. Finally, 
the conclusions are presented in Sect. 5.

2  Methodology

As mentioned in the previous section, the size and length of the selection effect vary 
considerably, depending on the merits of the insured population and insurance prod-
ucts. For example, the selection period is five years for smokers [17] in terms of life 
products, and the size of the selection effect is greater than 60% (i.e., the mortality 
rate is 40% or less compared to the standard group). Ideally, the results of estimating 
the size and length of the selection effect should not be influenced by the estimation 
methods, population size, the structure of the insured population, and other factors 
(e.g., lapse rate or underwriting). Intuitively, the grand averages of mortality and 
incidence5 rates of different policy years can be used to estimate the size and length 
of the selection effect. However, mortality improvement distorts the estimation of 
the selection effects. Therefore, applying the LC [9] or other stochastic models is 
essential to reduce mortality. The LC model is a popular mortality model that has 
been used for more than 20 years to estimate and forecast mortality rates. The LC 
model assumes that:

where m
xt

 is the central mortality rate for age x and time t. For error �
xt

 , we apply the 
Poisson assumption [2], assuming that Dxt ~ Poisson(Ext × mxt), where Ext and Dxt are 
the exposure and number of deaths at age x and time t, respectively. We also assume 
Poisson errors for other modified LC models in this study. The LC model is simi-
lar to fitting a group of linear regression equations simultaneously with the same 
predictor (i.e., time), and each regression equation has its slope and intercept. The 
slope of the regression equation can be interpreted as an improvement in mortality 
over time for each age group. The time variable �

t
 is usually assumed to be a random 

walk with a drift.
We propose adding the selection effect to the LC model, or

where m
xts

 is the central mortality rate at age x, time t, and policy year s. Addition-
ally, C

xs
 is the size of the selection effect at age x and policy year s, and s

x
 is the 

length of the select period at age x. In other words, the proposed model has three 

(1)log(m
xt
) = �

x
+ �

x
�
t
+ �

xt
,

(2)log(m
xts
) = �

x
+ �

x
�
t
+ C

xs
I{s ≤ s

x
} + �

xts
,

5 The selection effect can also exist in health insurance products. For example, cancer insurance is a 
popular product in Taiwan, and insurance claims occur when the insured is diagnosed with cancer for the 
first time. Thus, we can plug the incidence rates into the population’s proposed model to evaluate a selec-
tion effect. Note that the proportion of initial disease cases is defined as an incidence rate.
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coordinates (age, time, and policy year), similar to those of the cohort LC model 
[14]. However, the proposed approach does not face a problem of linear dependency 
between the three coordinates as in the cohort LC model where time = age + cohort. 
The estimation of our proposed approach is divided into two stages. First, we esti-
mate the LC model’s parameters, followed by an estimation of the selection effect. 
This two-stage estimation is generally used in mortality models, and the cohort 
modification of the LC model is one such example [14]. Herein, we assume that the 
parameters of the selection effect do not change with time.

First, we obtain the parameter estimates of the LC model (i.e. �̂�
x
,𝛽

x
 , and �̂�

t
 ) via 

the maximum likelihood estimation (MLE) method with a Poisson error structure 
and then estimate the selection effect (size [C

xs
 and lengths

x
]). Note that we applied 

the “StMoMo” package in software R [18] for the parameter estimates of the LC 
model. Also note that 

∑
t
k̂
t
= 0 and 

∑
x
�̂
x
= 1 are the identifiability constraints used 

in “StMoMo” for the LC model. MLE estimates can also be obtained via other pack-
ages, such as “ilc” in R [3]. We only show the estimation results from the “StMoMo” 
package in this study, as the results from the “ilc” package are almost identical. If 
the model proposed in Eq. (2) is true, the difference between log(m

xts
) and �̂�

x
+ 𝛽

x
�̂�
t
 

can be used to estimate the selection effect.
Bear in mind that when we move from (t,s) to (t + 1,s + 1) after one year, a selec-

tion effect (s) and time effect (t) may be involved and confounded with each other. 
This study uses a two-stage estimation, and the selection and time effects were esti-
mated separately. The initial estimates �̂�

x
,𝛽

x
 , and �̂�

t
 are typically biased, and a few 

iterations are required to stabilize the recursive estimation. We use the difference 
between log(m

xts
) and C

xs
I{s ≤ s

x
} to revise the parameter estimates,�̂�

x
,𝛽

x
 , and �̂�

t
 . In 

other words, a two-stage estimation was performed recursively until all parameter 
estimates converged. The convergence criterion was chosen when the difference in 
estimates between two consecutive iterations is smaller than a selected threshold, 
such as in 10−4 and 10−6 . In addition, we computed Monte Carlo confidence intervals 
for the parameter estimates ( ̂𝛼

x
,𝛽

x
 , and �̂�

t
 ) as a double-check. The estimation process 

is summarized as follows: Furthermore, the weights in the algorithm are exposures.
Step 0. Let the selection effect be zero, or Ĉ

xs
= 0 , for all x and s.

Step 1. Let log(m
xt
)∗ be the weighted average of log(m

xts
) − Ĉ

xs
I{s ≤ s

x
} over all 

policy years and apply the MLE to log(m
xt
)∗ for estimates �̂�

x
,𝛽

x
 , and �̂�

t
.

Step 2. Compute the difference between log(m
xts
) and �̂�

x
+ 𝛽

x
�̂�
t
 and define the 

residuals of the selection effect e
xts

= log(m
xts
) − �̂�

x
− 𝛽

x
�̂�
t
 . Next, let the estimate of 

the selection effect Ĉ
xs

 equal the weighted average of e
xts

 over all t.
Step 3. Repeat Steps 1 and 2 until all differences in the parameter estimates ( ̂𝛼

x

,𝛽
x
,�̂�

t
 , and Ĉ

xs
 ) between two consecutive iterations become smaller than a selected 

threshold.
In the following two sections, we use simulations and empirical data to evaluate 

the proposed model. First, we use the simulation to analyze the two-stage estima-
tion process and verify whether it can provide unbiased and stable parameters and 
mortality rates. Since the preceding iteration process was simple and easy to use, 
it converged in a few seconds and fewer than 15 iterations. Then, we compare the 
parameter estimates between consecutive iterations and check whether these esti-
mates converged.
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In addition to the proposed model in Eq.  (2), we add a reduced model that 
includes only age and policy year effects.

where m
xs

 is the central mortality rate for age x and policy year s. The reduced 
model in Eq. (3) includes only the factor of the policy year, that is, year “t” in the 
LC model is replaced by policy year “s.” To simplify the calculation, we assume that 
�∗
s
 is linear in s for the rest of this study. However, parameter �

t
 in LC-type models is 

non-linear, and we suggest conducting initial data analysis before applying a linear 
assumption to the reduced model.

The reduced model can be introduced because it can provide a rough estimate of 
the selection effect without many computations. It is especially useful when we have 
a shorter data period, and the mortality improvement scale is not significant. As we 
will see in the following two sections, we believe that the reduced model can be 
treated as an exploratory data analysis tool to check for a selection effect. However, 
we do not suggest using the reduced model to forecast mortality rates since it fails to 
consider mortality reduction over time, which is crucial in mortality models.

3  Simulation results

We evaluate the performance of the proposed approach using a simulation study 
and empirical analysis, as described in Sects. 3 and 4. First, we use a simulation to 
examine the estimation properties of the proposed approach in Sect. 3, followed by 
verifying whether the proposed models have smaller estimation errors than the LC 
model using empirical data in Sect. 4. In other words, the selection effect (Table 1) 
and mortality data (based on Taiwan’s national population) are specified in Sect. 3. 
In Sect. 4, the proposed model is applied to real data from CLI.

(3)log(mxs) = �∗
x
+ �∗

x
�∗
s
+ �∗

xs
,

Table 1  Size of selection effect 
(Simulation)

Ages Policy Year

1 2 3 4 5 6 7 8 9 10 + 

15–19 0.7 0.8 0.9 1 1 1 1 1 1 1
20–24 0.7 0.8 0.9 1 1 1 1 1 1 1
25–29 0.6 0.7 0.8 0.9 1 1 1 1 1 1
30–34 0.6 0.7 0.8 0.9 1 1 1 1 1 1
35–39 0.5 0.6 0.7 0.8 0.9 1 1 1 1 1
40–44 0.5 0.6 0.7 0.8 0.9 1 1 1 1 1
45–49 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1 1
50–54 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1 1
55–59 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1
60–64 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1
65–69 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1



219

1 3

Selection effect modification to the Lee-Carter model  

This section aims to mimic real-world situations. We generate artificial data 
according to some pre-specified assumptions and check whether the estimation 
results of the proposed approach meet our expectations. We need two sets of param-
eters: one for mortality reduction (i.e., the parameters of the LC model) and the 
other for the selection effect. The parameters of mortality reduction were obtained 
from the real experience of Taiwan’s mortality data (2005–2014). We treated the 
estimates of �

x
,�

x
 , and �

t
 as true values (see Fig. 1 and Appendix). The parameters 

of the selection effect partly refer to the experienced values of CLI, with some modi-
fications, making the selection effect size a smooth function of the policy year.

To demonstrate the proposed approach, we assume that the size of the selec-
tion period is a linear function of the policy year. Table  1 presents the values of 
the size of the selection effect for 12 age groups spanning five years, each for ten 
policy years. The mortality rates for each policy year are the mortality rates from the 
LC model multiplied by the values in Table 1. For example, a value of 0.8 for ages 
15–19 at policy year 2 indicates that the mortality rate of this age group and policy 
year combination is 80% of the standard rate (i.e., 20% less) from the LC model. 
Moreover, the length of the selection effect was found to be a non-decreasing func-
tion of age, with a selection year of 3–8. Notably, the simulation setting suggests that 
the size of the selection effect is much larger than the mortality improvement. The 
15–19 age group showed the largest annual mortality reduction (approximately 3%). 
However, this was smaller than the selection effect between the two policy years 
(e.g., policy years 1 and 2). Note that the size of the selection effect from the empiri-
cal analysis is a decreasing (but not necessarily linear) function of the policy year.

We only include the age groups of 15–19, …, 70–74, and omit ages below 15 
and above 75, owing to the exposure sizes. Taiwan’s regulation is another reason for 
excluding ages 0–14. The Taiwanese government established a rule for purchasing 

Fig. 1  Parameters of the LC Model (Data from Taiwan)
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life insurance products for the insured aged 0–14 in 2010 to avoid moral hazard from 
harming children. Insurance companies return the premiums paid and interest when 
the insured dies before 15 years. The data before and after 2010 may not be homoge-
neous; therefore, we did not consider mortality rates aged 0–14.

To allow artificial data to be as close as possible to the real case, we generated 
data according to Taiwan’s populations (2005–2014). Approximately 23 million 
people live in Taiwan, and 2/3 have life insurance policies [22]. CLI is the largest 
life insurance company in Taiwan, and approximately eight million people hold life 
insurance policies with CLI. It was previously reported that the LC model yields 
unstable parameter estimates when the population size is small, especially when it is 
not larger than 200,000 [22]. Since the exposures from CLI are fairly large, param-
eter estimation of the LC model is expected to be suitable for this study. The esti-
mates of �

x
 and �

x
 are likely to be biased if the exposures are small [21, 23]. We use 

the MLE method with a Poisson error structure to obtain parameter estimates of the 
LC model.6 Additionally, we generate the number of deaths via Poisson distribution 
and then divide them into exposures to obtain the simulated mortality rates.

The simulation was repeated 10,000 times, and the estimates of all parameters 
were recorded. We first evaluate the full model in Eq. (2) and check if the estimates 
of parameters �

x
 , �

x
 , and �

t
 are close to the true values. The estimates of �

x
 should 

be used as a demonstration (Figs. 2, 7 in Appendix). The estimates of �
x
 and �

t
 are 

presented in Appendix. Figure 2 shows the bias of �
x
 estimate, that is, E(�̂

x
) − �

x
 , 

for the first iteration, and the estimates are negatively biased. The negative bias in �
x
 

estimate is due to the LC model estimation process. The first step of the full model 

Fig. 2  Bias of �
x
 Estimate for the Full Model (1st Iteration)

6 We also tried singular value decomposition for the parameter estimation, and the results were similar.
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estimation treats the average of log
(
m

xts

)
 for all x and s as the �

x
 estimate. This pro-

cess averages mortality rates overall policy durations, and the initial estimates of �
x
 

are expected to be negatively biased.
The estimates of the parameters �

x
 and �

t
 and the selection effect, are also biased 

for the first iteration. Note that the estimates of �
x
 , �

x
 , and �

t
 at the first iteration 

were the same as those of the LC model, confirming that the mortality improvement 
and selection effects are confounded with each other. Conversely, the estimates of 
all the parameters improve with an increase in the number of iterations. We demon-
strate the selection effect estimates for 15 iterations (Fig. 3), and observe that they 
converge quickly. Furthermore, the differences between the estimates of the two 
consecutive iterations are close to zero at the 15th iteration.

In addition to using the differences between the estimates of two consecutive iter-
ations, we apply a Monte Carlo confidence interval to verify whether the parameter 
estimates converge to the true values. We choose  10−8 as the stopping criterion and 
find the estimates of all the parameters from the simulation satisfying this stopping 
criterion at the 15th iteration. Note that we used the floating-point format to store 
numbers on computers, and  10−8 was used as the basic unit (i.e., single precision) to 
record real numbers. Next, we compute the Monte Carlo confidence intervals of all 
parameters based on the estimates of the 15th iteration. The 2.5 and 97.5 percentiles 
of the parameter estimates are treated as the lower and upper bounds of 95% confi-
dence intervals, respectively. The Monte Carlo confidence intervals cover the actual 
values of all the parameters (Appendix), indicating that the proposed estimation 
method is feasible and reliable. The lowest age groups have a relatively wider sam-
pling distribution due to a few larger estimates, and there are approximately 1.5% 
of �

x
 estimates with bias exceeding 0.1. The difference between the average �

x
 esti-

mates and the true parameters is approximately 0.01, less than 0.02% of the true �
x
 . 

Fig. 3  Differences of Selection Effect Estimates between Two Iterations
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Appendix also shows the bias of �
x
,�

x
 , and �

t
 estimates at the 1st and 15th iterations, 

and the convergence of �
x
 and �

t
 estimates were much faster.

The bias of the selection effect estimates is minimal for all combinations of age 
and policy year at the  15th iteration, as shown in Table  2. Notably, the proposed 
estimation process provides stable estimates of the parameters for the full model in 
Eq. (2).7 The evaluation of the reduced model in Eq. (3) was conducted similarly to 
the model in Eq. (2), and we only show the differences in the selection effect esti-
mates between the reduced and full models (Fig. 4). Note that the differences are 
defined as the values of (full model-reduced model). The estimates from the reduced 
model are negatively biased (i.e., lower mortality estimates) for all combinations of 
age and policy year. The bias of the reduced model is especially noticeable in the 
higher age groups and middle policy years (e.g., policy years 5 and 6). Notably, the 
reduced model (i.e., without considering mortality reduction) would overestimate 
the mortality rates within and outside the selected period.

We compare the estimates of the lengths of the selected periods for the full 
and reduced models. Table  3 presents the actual and estimated lengths of the 
selected periods for the two proposed mortality models. The estimated lengths 
of the selected periods were obtained from the Monte Carlo p value depending 
on whether the estimated size of the selection effect was significantly different 
from 1. The full model provides accurate estimates of the length of the selected 
period. However, the reduced model underestimated the size and length of the 

Table 2  Average estimates of the selection effect (15th Iteration, Full Model)

Ages Policy Year

1 2 3 4 5 6 7 8 9 10 + 

15–19 0.6918 0.7925 0.8900 0.9851 0.9867 0.9883 0.9881 0.9898 0.9874 0.9888
20–24 0.6977 0.7979 0.8960 0.9952 0.9953 0.9964 0.9966 0.9959 0.9964 0.9962
25–29 0.5982 0.6997 0.8006 0.9000 0.9999 0.9991 0.9989 0.9989 0.9992 0.9988
30–34 0.6004 0.7001 0.7998 0.8992 1.0013 0.9994 1.0003 0.9981 1.0005 0.9997
35–39 0.4989 0.5986 0.7004 0.7995 0.9006 1.0002 0.9990 0.9989 1.0002 0.9999
40–44 0.5000 0.6004 0.6994 0.7998 0.9003 0.9989 0.9989 1.0004 1.0000 1.0001
45–49 0.4003 0.5001 0.6000 0.6996 0.7998 0.8999 10.0004 1.0000 0.9993 1.0000
50–54 0.4001 0.5007 0.6000 0.7002 0.7995 0.9001 10.0009 0.9995 1.0003 1.0000
55–59 0.2999 0.3997 0.4997 0.6000 0.7004 0.7995 0.8998 1.0001 0.9999 1.0000
60–64 0.2997 0.4001 0.4997 0.6003 0.7001 0.8010 0.8996 1.0001 1.0002 1.0000
65–69 0.1998 0.3003 0.4004 0.4999 0.6001 0.6995 0.8007 0.8997 0.9994 1.0000
70–74 0.2000 0.3000 0.4004 0.4999 0.6002 0.7006 0.8002 0.9005 1.0001 1.0000

7 The estimates of parameters �
x
 , �

x
 , �

t
 , and C

xs
 are derived from the “StMoMo” package. The estimates 

obtained from the “ilc” package are extremely similar to those from “StMoMo.” The �
x
 estimates from 

“ilc” are also negatively biased at the  1st iteration.
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study period. The selection effect was confounded by mortality reduction. There-
fore, both factors should be included in the mortality rate model.

The mean absolute percentage error (MAPE) of mortality rates can also be 
used to evaluate the proposed model and is defined as

There are two reasons for considering log(m̂
xts
) , instead of m

xts
 in Eq. (4). First, 

we estimate log
(
m̂

xts

)
 using the LC model, and it is natural to measure the model 

performance concerning the target variable. The other reason is that the range 
of m

xts
 is extremely large, ranging from 0.0005 to 0.05 for ages 15–74; taking 

the logarithm would narrow down the scale at different ages. Table  4 presents 
the MAPEs of the LC, full (Eq. 2), and reduced (Eq. 3) models. Again, the full 
model exhibits the smallest error. Surprisingly, the LC model fit well, although 
the true model was the LC model with the selection effect. The main reason for 
this behavior is that the sizes of the selection effect are linear functions of the 
policy year, and the selection effects are larger than the mortality reductions. This 
also explains why the MAPE of the reduced model is very small. Conversely, the 
MAPE of the reduced model is smaller than that of the LC model, and capturing 
the selection effect becomes more important than the mortality reduction trend 
in a shorter observation period (10 years in the simulation study). This suggests 
that the reduced model can be used as an exploratory data analysis tool to check 
for selection effects. It is possible to confuse the cohort effect with the selection 
effect. However, due to Taiwan’s short data period, there is insufficient evidence 
of a cohort effect, and we ignore this possibility.

(4)MAPE = Average of

(
∑

x,t,s

||||
log(m̂

xts
) − log(m

xts
)

log(m
xts
)

||||

)
× 100%.
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Fig. 4  Selection Effect Differences between Full and Reduced Models (Simulation)
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4  Empirical results

For the empirical study, we adopted the same age setting (12 age groups rang-
ing from 5  years) but with a different policy year setting (20 policy years) for 
the study period of 2005–2014, based on the actual data (including age-specific 
exposures and numbers of deaths) from the CLI. These data are from whole-life 
and term-life policies for more than ten years. More women (51.7%) are insured 
than men (48.3%). A summary of the other data features (age, calendar year, and 
policy year) is presented in Table 5. On average, the CLI insured is 39.9 years 
old, with 10.9 policy years. Most insured individuals are between 25 and 29 and 
50 and 54, and the total number of policies increases with time. For example, the 
number of policies in 2005 and 2014 is 9.0% and 11.6% of all policies, respec-
tively, a significant increase (approximately 30% in 9 years). Moreover, there are 
many whole-life policies in Taiwan; thus, the proportion of 20 and more policy 
years (denoted by 20 +) is 11%. Note that the claim system of the CLI was under 
major reorganization in the early 2000s, and the sales of life insurance policies 
increased significantly at the turn of the twenty-first century. We chose experi-
enced data for the last ten years to avoid any data inhomogeneity problem.

We also used CLI data to evaluate the mortality rates fitting for the LC, full, 
and reduced models. To set the length of the selection effect, we chose a threshold 

Table 4  MAPE of mortality 
estimates (Simulation)

LC model Full model Reduced model

MAPE 5.15% 0.03% 1.52%

Table 5  Various data features of CLI insureds

Age Structure
 Ages 15–19 20–24 25–29 30–34 35–39 40–44
 Proportion 7.5% 8.8% 11.2% 12.0% 10.8% 10.5%
 Ages 45–49 50–54 55–59 60–64 65–69 70–74
 Proportion 11.1% 10.8% 8.3% 4.8% 2.6% 1.6%

Time Trend
 Calendar Year 2005 2006 2007 2008 2009
 Proportion 9.0% 9.1% 9.2% 9.3% 9.5%
 Calendar Year 2010 2011 2012 2013 2014
 Proportion 9.8% 10.3% 10.9% 11.3% 11.6%

Policy Year
 Policy Year 1 2 3 4 5 6 7 8 9 10
 Proportion 5.3% 5.0% 4.8% 4.5% 4.3% 4.3% 4.1% 4.5% 4.9% 5.1%
 Policy Year 11 12 13 14 15 16 17 18 19 20 + 
 Proportion 5.1% 5.3% 5.2% 5.3% 5.1% 4.8% 4.3% 3.7% 3.3% 11.0%
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value of 0.95 as a threshold based on our simulation study. If the estimated val-
ues of the sizes of the selection effect are smaller (or larger) than 0.95, there are 
(or no) selection effects. Note that we can choose the time series or random walk 
assumption to quantify the confidence intervals [9, 24] in addition to the boot-
strap simulation.

First, we compare the estimation results of the selection effect for the full and 
reduced models. The estimation results are similar to those of the simulation study. 
Generally, the reduced model shows shorter and smaller estimates of the selection 
effects. The estimated lengths of the selection effects are presented in Table 6. The 
full model also shows longer selection effects than the reduced model for all age 
groups. Similarly, the estimated sizes of the selection effect for the full model are 
larger than those of the reduced model, especially for the younger (ages 20–24 and 
25–29) and middle-aged (around ages 50–64) age groups (Fig. 5). We note that the 
differences in Fig. 5 are the values of (full model-reduced model).

Additionally, the sizes of the selection effect are large; particularly, they were 
50% larger for the elderly and early policy years (similar to those in Table 1). On 
average, the selection effect is larger than the smoker or non-smoker [15] and single 
or married effects [20]. Conversely, we believe that the selection effect might change 
with time as the improvement of technology in medical examination and big data 
analytics continues. However, we have only 10-year data (2005–2014). Additionally, 
we found that the selection effects of 2005–2009 and 2010–2014 show slight differ-
ences. We need to accumulate data for a longer period to ensure that the selection 
effect is constant over time.

Next, we compare the fitting performance of the three mortality models concern-
ing the MAPE in the empirical study (Table  7). The full model has the smallest 
MAPE, and all three generated satisfactory estimation results. Although there are 
selection effects, the LC model is still a good mortality model to consider, probably 
because the trend in mortality improvement was consistent. Conversely, the empiri-
cal results suggest that the size of the selection effect is much larger than the mortal-
ity improvement, similar to the setting in the simulation study. Thus, the reduced 
model has a smaller MAPE than the LC model. We also compute Akaike infor-
mation criterion (AIC) values for all the models to avoid using too many param-
eters, that is, AIC = 2 k–2log(L̂ ), where k is the number of parameters and L̂ is the 
maximized value of the  likelihood function for the model. The preferred model is 
the minimum AIC, and the full model again outperforms all the other models. Fur-
thermore, the reduced model outperforms the LC model, similar to the simulation 
results. Moreover, including the selection effect appears to be more significant than 
including mortality reduction for a shorter observation period.

We further evaluate the models based on the mortality estimates of the CLI data 
for the year and the policy year (Fig. 6). We do not show the mortality estimates of 
the three models concerning age because they are extremely similar to the observed 
values. Although all three models have relatively small MAPEs, the mortality esti-
mates are not the same as year and policy year. The reduced model has a significant 
bias with the year (left panel of Fig.  6), possibly due to the size of the selection 
effect (larger than the mortality improvement). Therefore, the reduced model should 
not be used in practice. Conversely, the LC model creates an apparent negative bias 
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concerning the policy year, ignoring the selection effect. Consequently, only the full 
model produces mortality estimates similar to the observed values, regardless of 
age, year, or policy year. Thus, it can be inferred that by including all three factors 

0.00
0.05

0.10

0.15
0.20
0.25
0.30

0.35

0.40
0.45

0.50
0.55

0.60
0.65

0.70

0.75
0.80

0.85
0.90

1 2 3 4 5 6 7 8 9 11 13 15 17 19

Policy Year

Ag
e

15
20

25
30

35
40

45
50

55
60

65
70

Fig. 5  Selection Effect Differences between Full and Reduced Models (Empirical)

Table 7  MAPE of mortality 
estimates (Empirical)

LC model Full model Reduced model

MAPE 4.66% 2.64% 3.61%
AIC − 29,254 − 33,292 − 31,486

Fig. 6  Mortality Estimates with Respect to Year and Policy Year
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(i.e., age, year, and policy year), it is possible to capture the mortality trend of the 
data from the CLI.

5  Conclusions

This study proposed a mortality model and an estimation method for mortal-
ity improvement and the selection effect. Simulation results confirm that the pro-
posed approach and its estimation method provide stable and reliable estimates. 
Conversely, the regular LC model showed biased estimates of mortality reduction 
parameters. Without including the mortality improvement, the reduced model also 
produced biased estimates. The results of this empirical study also support the pro-
posed approach. It appears that both the mortality improvement and selection effects 
exist and should be included in the mortality model. Moreover, the size of the selec-
tion, the effect is larger than that of the mortality reduction. Including the selection 
effect is more important than the trend of mortality reduction for a shorter observa-
tion period.

The estimated sizes of the selection effect are significant, that is, much larger than 
the effects of smoker or non-smoker and marriage status [20]. Therefore, they should 
be included in the pricing of life insurance products. Of course, lower mortality rates 
for early policy years lead to more flexibility and possibilities, such as reserve cal-
culations and product design. For example, insurance companies can provide free 
or discounted health examinations to the insured as a bonus for mortality improve-
ment every five or ten years. In this regard, if an insured shows a satisfactory condi-
tion from health examinations, they can receive a discount in the annual premium. 
Additionally, as lower mortality rates indicate lower risk to insurance companies, 
the insured and insurance companies can benefit from such modifications. Further-
more, this study can be generalized to other insurance companies in Taiwan (and 
other countries) to explore the nature of the selection effect. However, this depends 
on the support of insurance companies, such as whether there is sufficient exposure 
and the underwriting process is consistent over time, especially if they are willing to 
share their data. Unfortunately, Taiwanese insurance companies usually treat their 
experienced data as confidential data.

We believe that our findings on the selection effect are novel and that previ-
ous studies have not reported similar findings. However, we do not know the exact 
cause of the noticeable selection effect at older ages; insurable age might be a pos-
sible cause. In Taiwan, no insurance policies are usually offered to those older than 
75 years (70 for some policies). Consequently, only 9% of the total life insurance 
exposures are aged 60 and over, indicating that insurance companies are more cau-
tious in granting insurance policies to older people. Furthermore, it would require a 
long time and significant exposure to observe the trend in the selection effect. There-
fore, we selected CLI as the study object. The CLI was established in 1962 and is 
the largest life insurer in Taiwan.

The proposed estimation comprises a two-stage iterative process. The estimation 
stabilized after the 4th iteration and converged before the 15th iteration (i.e., esti-
mates between two consecutive iterations |�̂�

i+1−�̂�i| < 10−8 for i ≥ 15 ). Interestingly, 
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the convergence rate was not the same for all parameters, and it was found that the 
estimates of �

x
 and �

t
 were more sensitive. However, simulation and empirical stud-

ies have shown that this is not true. Although the role of parameters �
x
 and selection 

effects were similar to that of the intercept and dummy variables, they required more 
iteration steps to become stable, especially the selection effect. This contradicted our 
intuition but matched our research results on the LC model when the population size 
was small, where the estimate of parameter �

x
 was more sensitive to the population 

size [23]. The mortality rate within the selected period was a monotonic function of 
time; however, the proposed approach did not include this information in the model. 
We may use constrained estimation or the Lagrange multiplier method to restrict the 
range of estimates for the selection effect.

Although the mortality reduction and selection effect can be easily mixed, they 
do not result in linear dependency, not similar to the cohort modification of the LC 
model [14] and the Age-Period-Cohort model [20]. This is perhaps why the pro-
posed approach’s parameter estimates converged relatively quickly. If we consider 
more factors in the mortality model, we need to focus more on the estimation meth-
ods. We expect that the iteration process will be unstable if linear dependency or 
similar problems have existed. This situation can become even more challenging if 
the target population’s exposure (or population size) is small [21]. We may need to 
employ techniques in variance reduction, such as importance sampling and control 
variates, to acquire stable parameter estimates.

Appendix: Estimates and Monte Carlo Confidence Intervals of �
x
 , �

x
 , 

and �
t
 (Simulation)

Bias of ̨
x
 Estimates

See Fig. 7

Bias of βx Estimates

See Fig. 8

Bias of �
t
 Estimates

See Fig. 9
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Estimates of Selection Effect

See Fig. 10

Fig. 7  Bias of Estimates for Parameter �
x
(1st and 15th iteration)

Fig. 8  Bias of Estimates for Parameter βx (1st and 15th iteration)
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Parameters ̨
x
,ˇ

x
 , and �

t
 with the Monte Carlo 95% Confidence 

Intervals

See Tables 8 and 9

Fig. 9  Bias of Estimates for Parameter �
t
(1st and 15th iteration)
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Fig. 10  Estimates of Selection Effect (15th iteration)



233

1 3

Selection effect modification to the Lee-Carter model  

Funding Not applicable.

Availability of data and material The empirical data are the property of the Cathay Life Insurance Co. 
and are not open to the public.

Code availability The code is open source and is written in R statistical software.

Declarations 

Conflict of interest We declare that we have no competing interests.

Table 8  Parameters �
x
 and �

x
 with their Monte Carlo 95% Confidence Intervals

Ages �
x

�
x

True Lower Upper True Lower Upper

15–19 − 7.0373 − 7.0586 − 6.9893 0.119549 0.101459 0.141123
20–24 − 6.7161 − 6.7356 − 6.6895 0.142789 0.126561 0.156717
25–29 − 6.4327 − 6.4491 − 6.4129 0.169877 0.156357 0.182158
30–34 − 6.0174 − 6.0309 − 6.0051 0.134303 0.123443 0.144662
35–39 − 5.5471 − 5.5576 − 5.5358 0.088160 0.079217 0.095998
40–44 − 5.1332 − 5.1416 − 5.1246 0.056840 0.050118 0.063495
45–49 − 4.8009 − 4.8079 − 4.7938 0.022028 0.015211 0.028349
50–54 − 4.5123 − 4.5190 − 4.5059 0.024510 0.018643 0.030241
55–59 − 4.2124 − 4.2190 − 4.2053 0.028670 0.022625 0.034549
60–64 − 3.8476 − 3.8542 − 3.8403 0.082479 0.075641 0.088487
65–69 − 3.4272 − 3.4339 − 3.4199 0.064053 0.057579 0.071064
70–74 − 2.9646 − 2.9719 − 2.9574 0.066741 0.059955 0.072729

Table 9  Parameters �
t
 with their 

Monte Carlo 95% Confidence 
Intervals

Year �
t

True Lower Upper

2005 1.932799 1.835162 2.052252
2006 1.323163 1.225568 1.429404
2007 0.804807 0.710995 0.915893
2008 0.503682 0.399526 0.611485
2009 − 0.018732 − 0.126364 0.076648
2010 − 0.593321 − 0.703687 − 0.491194
2011 − 0.379154 − 0.487906 − 0.282482
2012 − 0.904560 − 1.010008 − 0.804055
2013 − 1.385099 − 1.492573 − 1.288221
2014 − 1.283585 − 1.388874 − 1.190643
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