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Abstract

Spatial data often possess multiple components, such as local clusters and
global clustering, and these effects are not easy to be separated. In this study,
we propose an approach to deal with the cases where both global clustering
and local clusters exist simultaneously. The proposed method is a two-stage
approach, estimating the autocorrelation by an EM algorithm and detecting
the clusters by a generalized least square method. It reduces the influence
of global dependence on detecting local clusters and has lower false alarms.
Simulations and the sudden infant disease syndrome data of North Carolina
are used to illustrate the difference between the proposed method and the
spatial scan statistic.
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1. Introduction

In spatial data analysis, one of the frequently discussed issues is the rela-
tionship between geographical locations, that is, the identification of spatial
patterns. The particular interest is whether certain locations are significantly
different from other locations in the aspect of statistical testings. Besag and
Newell (1991) categorized such tests into two types: general tests and focused
tests. For the general tests, it can be further categorized as global clustering
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and cluster detection tests. Kulldorff et al. (2006) gave a great amount of
references of these tests.

Global clustering tests, such as Moran’s I statistic and Geary’s C statistic,
are concerned with global clustering patterns. Global clustering patterns can
be modeled by using spatial autoregressive models or conditional autoregres-
sive models (Besag, 1974; Cressie, 1993). On the other hand, cluster detec-
tion tests are used to determine if some attributes of one or more subregions,
such as incidence rates of disease, are unusually large, that is, to identify hot
spots. Getis and Ord (1992) and Anselin (1995) discussed several statistics
to test local dependence. In recent years, spatial cluster detection methods
have been widely applied to many different fields.

However, the efficiency of cluster detection methods is often data-dependent.
Among these methods, the spatial scan statistic (SaTScan) (Kulldorff and
Nagarwalla, 1995) is perhaps the most popular and is considered to be quite
effective in many instances. For example, Huang et al. (2008) had compared
several cluster detection methods, such as circular and elliptic spatial scan
statistics (SaTScan), flexibly shaped spatial scan statistics, Turnbull’s clus-
ter evaluation permutation procedure, local indicators of spatial association,
and upper-level set scan statistics. They found that the SaTScan had the
best performance in several synthetic cluster patterns. Although the past
studies have shown that the SaTScan is quite effective in detecting spatial
clusters (Kulldorff et al., 2003; Takahashi and Tango, 2006; Huang et al.,
2008), few of these studies (and other cluster detection methods) discuss the
performance of cluster detection in case of global spatial autocorrelation. Be-
sides, it should be noted that the SaTScan relies on the Monte Carlo method
to decide the significance of clusters, and the global spatial autocorrelation
can distort the Monte Carlo results. Intuitively, cluster detection can be
expected to be more accurate when considering the global dependence.

It should be noted that using different cluster analysis methods, such
as globally autoregressive models and cluster detection methods, can also
produce different interpretations. For example, Cressie and Read (1989)
discussed spatial autoregressive models on the sudden infant death syndrome
(SIDS) data from 1974–1984 for the counties of North Carolina and concluded
that the errors show some (nonsignificant) spatial dependent structure. On
the other hand, Kulldorff (1997) identified several local clusters using the
SaTScan for the same data but with different combinations of all years. In
other words, a pattern of one geographical scale can be identified as another
spatial pattern.
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In identifying spatial cluster patterns, almost all cluster detection meth-
ods assume that the data are independent rather than dependent. However,
the result of cluster detection may probably be affected by the local effects,
as well as global dependence. Ord and Getis (1995) showed that “when
global autocorrelation exists, local pockets are harder to detect.” Ord and
Getis (2001) said, “If existing tests are applied without regard to global au-
tocorrelation structure, type I errors may abound.” They provided the local
O statistic, which can accommodate spatial parameters identified from var-
iograms and correlograms, to detect local clusters. However, their method
did not consider that local clusters also affect the estimate of autocorrelation.
Kulldorff (2006) depicted the difficulties of identifying these two patterns and
gave a general framework for testing the spatial randomness. Lawson (2006)
differentiated these two effects and gave more specific definitions of them. Al-
though there are many articles describing the possibility of existing multiple
patterns in spatial data, the solution to the model involved local clusters and
global dependence is rarely mentioned. In this study, in addition to show-
ing the difficulty of disentangling these two effects, we propose a method
including both local clusters and global clustering.

In this paper, we propose a cluster detection approach that deals with
global spatial dependence. Before introducing the proposed method, we will
first review the conditional autoregressive spatial model (or the condition-
ally specified spatial Gaussian model) and the SaTScan in Section 2. In
addition, we will evaluate the performance of the SaTScan in case of spatial
autocorrelation. Then, the proposed approach is introduced, together with
the EM estimates, the scanning procedure, and the Monte Carlo testing for
handling both global dependence and clusters in Section 3. Simulations and
an empirical study (the SIDS data of North Carolina) are used to evaluate
the proposed methods in Sections 4 and 5. We will present comments and
discussions on the proposed approach in the final section.

2. Spatial Models and the SaTScan

We first introduce the concepts of global dependence and cluster detec-
tion. Regarding to global dependence, we will provide a brief introduction of
spatial models. For a complete introduction to spatial autoregressive models,
please refer to Chapter 6 of Cressie (1993). To identify spatial clusters, the
concept of the SaTScan is briefly introduced, and a detailed discussion of
which can be found in Kulldorff’s work (Kulldorff, 1997). Furthermore, we
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will demonstrate that the performance of the SaTScan can be influenced by
global dependence.

2.1. Conditional Autocorrelated Regressive Model with Gaussian Distribution

For the global dependence model, we will only use the conditional auto-
correlated regressive (CAR) model in this study. The CAR model is con-
sidered on the basis of its popularity and can be used in spatial regression
models. For a CAR model, {Z(si) : si ∈ D, ∀i ∈ {1, 2, . . . , n}} is defined
as a spatial process, or a random process in the spatial domain in lattice D,
and si = (ui, vi) is the location of cell i, where (ui, vi) are the coordinates.
In practice, si is often defined as the geographic center of cell i. Suppose the
full conditional distribution of Z(si) which follows a Gaussian distribution
can be expressed as

f(z(si)|{z(sj) : j 6= i}) = 1√
2πσi

2
exp[−{z(si)− θi({z(sj) : j 6= i})}2

2σi
2

], (1)

where f denotes the conditional density function of z(si), and θi and σ2
i are

the conditional mean and variance respectively. The term “pairwise-only
dependence” is defined as the condition of θi satisfying

θi({z(sj) : j 6= i}) = µi +
∑

j 6=i

cij(z(sj)− µj). (2)

Let us assume that the weight of neighborhood information, cij, is equal to
ρ×wij , where wij is a known weight and ρ is an unknown spatial dependent
parameter. Along with the Hammersley-Clifford theorem, the joint distri-
bution of Z ≡ (Z(s1), . . . , Z(sn))

T , the CAR model, can be established as
Z ∼ Gau(µ, (I − ρ ×W )−1M), where µ = (µ1, . . . , µn)

T is the mean vector,
W is an n × n matrix whose (i, j) element is wij, M ≡ diag(σ1

2, . . . , σn
2)

is an n × n diagonal matrix, and (I − ρ ×W ) is necessarily symmetric and
invertible (Besag, 1974; Cressie, 1993).

To estimate the unknown parameters in the CAR model, the maximum
likelihood estimates (MLEs) are the most popular method. However, the
MLEs do not have the closed forms and this reason could be an intractable
problem when we need to do some further computations. Besag (1974) in-
troduced the pseudo-likelihood to solve it and has been proved that the
estimates are consistent. We will apply the pseudo-likelihood to obtain the
EM estimates in case of clusters which will be discussed in Section 3.
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Besides, the selection of a suitable weight function is a difficult problem.
In this paper, we will use the “C” type weight function, which is a globally
standardized function (the number of cells divided by sums over all number of
neighbors in the study region), because it can maintain a symmetric property
required for the CAR model. It should be noted that the “spdep” package
in the freeware R provides several choices of weight functions; a detailed
discussion on the weight functions is provided by Tiefelsdorf et al. (1999).

2.2. Approximation of Conditional Autocorrelated Regressive Model with Pois-

son Data

For disease clusters, the data are often assumed to be binomial or Poisson
distributed instead of being normally distributed. The auto-binomial and
auto-Poisson models are established for dealing with these data (Cressie,
1993, Chapter 6). However, these models require extra effort and time
in computation to implement autocorrelation structure (such as the CAR
model) into generating data and in data analysis.

Instead, it is easier to facilitate the CAR model by a normal approxima-
tion through the Freeman-Tukey transformation, as suggested by Cressie and
Read (1989). Given that Z(si) follows a binomial or Poisson distribution,
this transformation is expressed as

Fi = (1000× Z(si)/ni)
1/2 + (1000× (Z(si) + 1)/ni)

1/2, (3)

where ni is the population size of cell i. Note that, after this transformation,
the covariance matrix will be changed, and it can not be ascertained that the
covariance matrix is symmetric and positive definite. We have to do some
adjustments to maintain these properties which we will demonstrate them
in the application section. Then, we can directly model Fi by the Gaussian
CAR model, and all parameters can be estimated in the same way that we
introduced for the Gaussian distribution.

In fact, there are other choices to approximate the CAR model. For
example, the estimated relative risk, r̂i, can be computed from a Poisson
distribution, and the real relative risk ri can be modeled as a log-linear
model,

log(ri) = θi + ui + ǫi, (4)

where ui is assumed from a normal CAR model and vi is a random normal
effect. This model is usually applied in the Bayesian spatial model (Lawson,
2008). Still, it is more convenient to use the Freeman-Tukey transformation
for the sake of consistent variance and fewer parameter estimations.
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2.3. The SaTScan

The SaTScan is a type of likelihood ratio test. This test uses a large
set of scanning windows to divide the study region into two separated parts
and computes the likelihood of cases being in a chosen region divided by
that of cases being outside the chosen region. The likelihood ratio statistic
is generally expressed as

λ =
supZ∈Z,p>q L(Z, p, q)

supp=q L(Z, p, q)
=

L(Ẑ)

L0
, (5)

where p and q are the incidence rates of inside and outside the chosen region
respectively, the Ẑ is the region which maximizes λ, and L0 is the likelihood
function under p = q; that is, spatial homogeneous (no local cluster). The
p-value of Equation (5) can be obtained through the Monte Carlo method
(Kulldorff, 1997). In this study, for the case that the data are generated
from a CAR model (or an approximation of a CAR model), we adopted the
normal distribution frame of the SaTScan, the details of which can be found
in Kulldorff et al. (2009).

2.4. Simulation Settings and Performances of the SaTScan in Case of Global

Autocorrelation

In this section, we will demonstrate that the global autocorrelation can
influence the cluster detection results of the SaTScan. In specific, we shall
evaluate the detecting performance of the SaTScan in case of spatial auto-
correlation. First, we introduce the simulation setting. Let the study region
be a grid area with 20 × 20 squares, and each cell has the same population
size n = 10, 000.

Basically, the log relative risk normal model, which follows Equation (4),
is proposed to generate data. Let θi is the mean of location i, ui is assumed
from a normal CAR(ρ) model with variance σ2

u, and ǫi is a random normal
effect with variance σ2

ǫ in Equation (4). To evaluate the effect of global
dependence on local clusters, the autocorrelation parameter, ρ, is set as four
different values (0, 0.2, 0.5, and 0.8), σ2

u is 0.1, and σ2
ǫ is 0.01. For the

null model, we set all the θis to be 0. In addition, suppose the data are
obtained from a CAR model with autocorrelation parameter, ρ, the “rooks”
type neighbors, and a first-order “C” type neighbor weight function. To
avoid edge effects, the “torus” method is applied to construct neighbors. In
our synthetic study region, there are 400 cells and each cell has 4 neighbors.
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Thus, the “C” type weight is 0.25 (400/1600). The simulations are repeated
100 times in each situation.

It should be noted that we only generate data from above model. How-
ever, we will not analyze them in the same model because we focus on finding
the local clusters. In our proposed algorithm, only Gaussian distributions
are suitable to be applied. So, the Freeman-Tukey transformation is used
to convert the simulated data into the Gaussian form, and then the cluster
detection algorithm is launched. Here, a normal model and circular windows
are set to detect clusters by using the “SaTScan” software, which is free to
download from http://www.satscan.org.

Although the SaTScan can test if the data are spatially homogeneous,
i.e., H0 : p = q (notations defined in Section 2.3), it cannot distinguish which
clustering pattern is (local clusters or global clustering) when the null hy-
pothesis is rejected. In this study, our goal is to check whether the detection
method can correctly detect the local clusters when the real spatial pattern
is involved with both global clustering and local clusters. For this reason, we
define the rejection probability as the probability of rejecting the null hypoth-
esis instead of the type I error, given that there exists global dependence but
not the local cluster. Table 1 lists the rejection probability of the SaTScan
and it increases with the autocorrelation. It seems that the cluster detection
of the SaTScan can be influenced by the global dependence. In addition, the
SaTScan is likely to detect more than one cluster as the value ρ increases.
In other words, using the SaTScan is possible to detect false clusters when
there exists spatial global autocorrelation instead of local clusters.

Table 1. Rejection probability of the circular SaTScan

Frequencies of Clusters

ρ Rejection Probability 0 1 ≥2

0 0.02 98 2 0
0.2 0.13 87 13 0
0.5 0.27 73 25 2
0.8 0.61 39 55 6

Notes: The significance level is 0.05. Frequency of
clusters represents the number of times that clusters
detected by the SaTScan in 100 simulation runs.
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Figure 1 shows the frequencies of cells being identified as clustered cells,
in which darker areas indicate higher frequencies, and it can be used to ex-
plain why the SaTScan can detect false clusters. It is obvious that the false
detected cells spread wider in the study region when the autocorrelation is
higher. Also, taking the case of ρ = 0.8 for example, the darker cells gather
around the centered area. Obviously, the rejection probabilities of cells ap-
parently are not randomly and are likely caused by the global autocorrelation.
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Fig. 1. Images of cluster detection result of the SaTScan in case of spatial autocorrelation
without spatial clusters. The labels denote the times of being specified as clustered cells
in 100 simulations.

We also check the performance of SaTScan’s cluster detection when both
autocorrelation and a local cluster are present. Assume that there is a cluster
of size 3 × 3 located at the center region. Based on Equation (4), we let the
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θc as the mean of clustered cells whose values are 0.4, 0.7, and 1, that is, the
clustered cells have higher relative risk with mean equal to 1.49, 2.01, and
2.72. In order to provide useful information, some measurements (including
the testing power) are used to evaluate the accuracy of detection results.
First, we define the terms of true positive, false positive, true negative, and
false negative. True positive (TP) cells means the true clustered cells are
correctly detected as clusters; false positive (FP) cells means the usual cells
are incorrectly detected as clusters; true negative (TN) cells means the usual
cells are not identified as clusters; false negative (FN) cells means the true
clustered cells are not identified as clusters.

We use the following values to measure the testing performance. First,
the power, as its usual definition, is the power to reject the null hypothesis.
However, as mentioned in the previous section, the power can not distinguish
whether there are local clusters and/or spatial dependence. To check if the
power conveys the true information of the local cluster, we define the false
alarm as the number of detected clusters which do not include any true
positive cell. This measure can show if the identified clusters are real clusters
or not. To check if the method can identify all clustered cells, the sensitivity,
defined as TP/(TP+FN), is used to measure the proportion of identified
clustered cells among all true clustered cells. The positive predictive value
(PPV), defined as TP/(TP+FP), is used to measure the proportion of true
clustered cells among the identified clustered cells. The specificity is not
included in this study since the number of clustered cells is small (9 out of
400) and the specificity is always high no matter what methods are applied.

In Figure 2, we show the preceding measures of the SaTScan under dif-
ferent RR values, and apparently the SaTScan has better performance when
the RR becomes larger. However, when there exists stronger global autocor-
relation, these measures reveal different information. Take the case of RR =
1.49 (θc = 0.4) as an example. As the autocorrelation increases, the power
becomes higher but the false alarm goes up as well. This indicates that the
SaTScan might detect more than one cluster, similar to those in Table 1.
Also, the sensitivity and PPV show that the SaTScan does not have good
performances in the cases of the small RR and the autocorrelation worsens
the results. In other words, the cluster detection of the SaTScan is obviously
influenced by spatial autocorrelation. The accuracy of the SaTScan decreases
and the false alarm increases as the autocorrelation increases. This suggests
that we shall be cautious about the interpretation of SaTScan’s detection
result when there exists autocorrelation. However, if the RR is large, spa-
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tial autocorrelation does not have a large impact on the performance of the
SaTScan with respect to the PPV and the false alarm. For example, for
ρ = 0.8, the PPV is just 0.1916 for RR = 1.49, raises to 0.6088 for RR =
2.01, and is almost perfect for RR = 2.72. Next, we will investigate the
other extreme whether a local cluster can affect the estimation of spatial
autocorrelation in a CAR model.
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Fig. 2. Results of SaTScan detection in case of autocorrelation and a cluster.

2.5. Performances of a CAR Model when a Cluster is Present

In the previous discussion, we found that the results of SaTScan’s cluster
detection can be confusing if there exists autocorrelation. We now show that
the autocorrelation estimate can also be influenced by the cluster. Suppose a
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3 × 3 cluster is located at the center and there is no spatial autocorrelation.
Table 2 lists the probability of discovering significant autocorrelation and
the average of autocorrelation estimates, with respect to different values of
RRs. The RRs are chosen as those in the previous section. The estimates
are determined by the “spautolm” function of the package “spdep” and the
results are again based on 100 simulation runs.

Table 2. Type-I error of autocorrelation and its estimate

Relative Risk
1.0 1.49 2.01 2.72

Type-I error 0.05 0.12 0.49 0.96
ρ̂ -0.0005 0.0462 0.2684 0.5482
S.D. of ρ̂ 0.1452 0.1681 0.1563 0.1316

Notes: The significance level is 0.05. The values in
the table show the average of estimates from 100
replications.

For RR = 1, i.e., no cluster case, the result is acceptable and the average
of autocorrelation estimate is close to the true value ρ = 0. However, as the
RR increases, the type-I error increases significantly and the cluster effect is
likely to be mistaken for autocorrelation. We also conducted simulation for
the case where both the cluster and autocorrelation exist. The discussion is
omitted because the result is similar.

From the simulation results, we found that the spatial cluster and auto-
correlation can be confounded to each other. Applying either the SaTScan
or CAR model alone can not produce a satisfactory result, and we shall pay
attention to the estimations of clusters and autocorrelation separately. Thus,
in the next section, we will construct a new approach which is more careful
to deal with the local clusters in the spatial pattern involved with global
dependence.

3. Proposed Method

In the previous section, it is showed that autocorrelation can affect the
performance of SaTScan’s cluster detection. We will now introduce an ap-
proach that can incorporate global dependence into the cluster detection.
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The proposed method can be treated as a combination of spatial models and
the SaTScan.

Spatial data possibly consist of both these two effects which are usually
confounded. In order to reduce the possibility of mixing two effects, we
propose a two-stage approach by handling the autocorrelation first. However,
rather than emphasizing the label of one effect, our goal is to make a more
flexible space to deal with these two effects. The proposed method can be
treated as a kind of step-wise methodologies. It is to estimate the covariance
matrix first, and then to scan all the circular regions to find possible clusters,
like in the SaTScan. The first step involves estimating spatial autocorrelation
by the EM algorithm under the settings of the CAR model. The next step
involves generating a series of scanning windows to be the elective clusters,
and testing the clusters using the Monte Carlo procedure.

3.1. Pseudo-likelihood

To avoid the intractable term of likelihood in CAR model, we use the
pseudo-likelihood (Besag, 1975) to estimate the parameters in the CAR
model. Suppose a CAR model is applied to fit a spatial regression model
with γ̂is, with µ = Dθ, where D is a designed matrix and θ is the correspon-
dent vector of coefficients, and covariance variance (I − ρ ×W )−1M , where
W is the neighborhood information weight matrix and M = V σ2 is the vari-
ance matrix, in which V is a diagonal matrix with diagonal elements being
{1/N1, . . . , 1/Nn} (Ni is the population size in each cell i). In this case, the
joint pseudo-likelihood can be expressed as

p(Ψ) =
n
∏

i=1

Pr(z(si)|z(sj), j 6= i; Ψ)

= (2πσ2/Ni)
−n/2 exp[−

∑ Ni

2σ2
{zi − µi −

n
∑

j=1

ρ× wij(zj − µj)}]. (6)

To obtain the maximum pseudo-likelihood estimates (MPLEs), it is equiva-
lent to solve

Ω =
n
∑

i=1

Ni{zi − µi −
n
∑

j=1

βij(zj − µj)}2/2σ2 (7)

= (z −Dθ)TBTV −1B(z −Dθ)/2σ2,
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where Dθ = µ ,βij = ρwij, B = (I − ρW ), and V = diag(1/N1, . . . , 1/Nn).
Thus, the MPLEs can be solved by the ordinary least squares method.

Them, the estimates that follow from the above equation can be obtained as

θ̂ = (DTBTV −1BD)−1DTBTV −1BZ, (8)

ρ̂ = (Z −Dθ)TW TV −1(Z −Dθ)/{(Z −Dθ)TW TV −1W (Z −Dθ)}, (9)

σ̂2 = n−1(Z −Dθ)TBTV −1B(Z −Dθ). (10)

3.2. EM algorithm

In Section 2, we have known that the estimates can be biased because of
the local clusters. The EM algorithm is helpful in estimating the parameters
if the locations of clusters are not certain. Besides, it is easy to imped the
EM algorithm into the MPLEs because the MPLEs have the closed forms
(Equation (8) to (10)).

From the simulation results of the SaTScan, we observed that the SaTScan
has relatively consistent sensitivity on detecting clusters but has lower PPV
as ρ gets larger, that is, finding more clusters than real ones. For this reason,
we treat the clusters detected by the SaTScan as the missing values, and then
apply the EM algorithm to estimate the parameters without these missing
values.

Suppose the true distribution is Z ∽ N(Dθ, (I − φW )−1V σ2). If we
divide the vector Z as (X, Y )T , treating X as the observed values and Y as
the missing values (outliers/clusters), the joint distribution can be expressed
as

(

X
Y

)

∽ N(

(

Dx

Dy

)

θ,

(

Σ11 Σ12

Σ21 Σ22

)

),

where Dx and Dy are the designed matrixes of X and Y respectively. Thus,
the conditional expectation and variance of Y given X are

µY |X=x = Dyθ + Σ21Σ
−1
11 (x−Dxθ), (11)

Cov(Y |X = x) = Σ22 − Σ21Σ
−1
11 Σ12. (12)

Suppose that we have the initial values of Ψ(0) = (θ̂(0), ρ̂(0), σ̂2
(0)
)T , setting

θ̂(0) = Z, ρ̂(0) = 0, and σ̂2
(0)

= V ar(z) in this study. In E-step, according
to the Equations (8) to (10), Equations (11) and (12) are used to replace
the missing values. Then, based on maximizing the joint pseudo-likelihood
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(Equation (6)) the EM estimates can be expressed as

θ̂(r+1) = (DTB(r)TV −1B(r)D)−1DTB(r)TV −1B(r)

(

X

µ̂
(r)
Y |X=x

)

(13)

ρ̂(r+1) =
(X −Dxθ̂

(r+1))TW11(X −Dxθ̂
(r+1)) + tr(W22Σ̂

(r)
Y |X)

(X −Dxθ̂(r+1))TU11(X −Dxθ̂(r+1)) + tr(U22Σ̂
(r)
Y |X)

(14)

σ̂2
(r+1)

=
1

n
{(X −Dxθ̂

(r+1))TU11(X −Dxθ̂
(r+1)) + tr(U22Σ̂Y |X)}, (15)

where B(r) = (I − ρ(r)W ), and Wnm and Unm are the partitions of WV −1

and W TV −1W , that is,

WV −1 =

(

W11 W12

W21 W22

)

, W TV −1W =

(

U11 U12

U21 U22

)

.

After several iteration steps, the EM estimates will convergence, and then
the EM estimates are obtained. It should be noted that if there is no cluster
detected by the SaTScan, we will estimate the autocorrelation by the MLE
in the CAR model.

3.3. Cluster Model

If the spatial covariance is known, we can directly model the cluster ef-
fects and use the generalized least square (GLS) to test their significance.
Otherwise, the EM algorithm is used to estimate the spatial covariance.
For example, suppose the data are obtained from a CAR model, that is,
Z ∼ N(µ, (I − ρ̂W )−1V σ2) after the ρ is estimated. We can estimate µ by
the GLS.

To detect clusters, we follow the SaTScan’s approach to generate circular
windows, which are generated from the centers with different radius, and
then compute the test statistics for all the circular window. The main differ-
ence between the proposed method and the SaTScan is we take the global
dependence into account. Without loss of generality, let the selected window
be G and δG be the set of the cells which are included in the selected window
G. Let µ = Dθ, where D is an orthogonal matrix with just two indicator
columns, one of which contains the cells that belong to the selected region,
and the other contains the cells without the selected cells. It can be expressed
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as

D = (d0,dδG) =











I{s1 /∈δG} I{s1∈δG}

I{s2 /∈δG} I{s2∈δG}
...

...
I{sn /∈δG} I{sn∈δG}











, (16)

where δG is a set of the selected cells. Isk∈δG is an indicator function (1
if sk ∈ δG and 0 otherwise), and Isk /∈δG is an indicator function with the
opposite definition. Hence, the problem is transformed to that of choosing
a suitable clustered set δG. Suppose the coefficients of {d0,dδ} are {θ0, θδ}.
The hypothesis of testing can be set as H0 : θ0 = θδ vs. H1 : θ0 6= θδ, which is
exactly defined to test the difference of means of two disjointed sets. Similar
to the concept of the geographic analysis machine (Openshaw et al., 1988)
and the scan statistic (Kulldorff and Nagarwalla, 1995; Kulldorff, 1997), we
use circular windows to find the optimal clustered set.

To check the cluster effects, we estimate them via the GLS. If the co-
variance is known or is estimated, we can transform the original spatial
dependent data into an independent form. Suppose the spatial covariance
matrix is known and non-singular; that is, there is a non-singular matrix
Pv satisfying (I − ρ̂W )−1V = PvPv

T . Suppose the original linear model
is Z = Dθ + ξ, where ξ ∼ N(0, (I − ρ̂W )−1V σ2) and the equation can
be expressed as P−1

v Y = P−1
v Xβ + P−1

v ξ after the transformation. Let
Zv = P−1

v Z, Dv = P−1
v D, ǫ = P−1

v ξ, where ǫ ∼ N(0, σ2). Thus, the usual
regression model is valid in this case, and the least square estimations of β
and σ2 are θ̂ = (XT

v Xv)
−1XT

v Yv, and σ̂2 = (Yv − Xvθ)
T (Yv − Xvθ)/(n − 2).

The testing of θδ − θ0 ≤ 0 can be conducted via methods used in the re-
gression analysis. Related topics can be found in Rencher (2000). Let
A = (a0 = −1, a1 = 1)T , SSH = (AT θ̂)T (AT (XT

v Xv)
−1A)−1(AT θ̂), and

SSE = Yv
T (I −Xv(X

T
v Xv)

−1XT
v )

−1Yv. Thus, the test statistic is

F =
SSH/1

SSE/(n− 2)
. (17)

All F scores of all elective windows are recorded, and will be tested via the
Monte Carlo method.

It should be noted that the F statistic will be smaller when the autocorre-
lation gets large. Because the test is equivalent to test the θ in a GLS model
with Σ = (I−ρW )−1V σ2, the covariance of the θ is (XTV −1(I−ρW )X)−1σ2.
Given that the X and σ2 are fixed and V is an identical matrix, it is easy to
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see that the variance will get higher with a larger positive ρ. It is harder to
reject the null hypothesis as ρ gets larger.

3.4. Monte Carlo Testing Procedure

To avoid the multiple testing problem in the scanning methods, the Monte
Carlo method is applied to our scanning approach. In stead of permuting
the disease cases in the study area like what the SaTScan does, we permute
the independent residuals from the fitted EM CAR model, and generate the
new data sets by the EM estimates. The simulated data are applied in the
same algorithm as those in the previous section, and then the maximum F
value is recorded. We denote it as Fs for each simulation result where s from
1 to G (simulation times). The procedures are as follows step by step: (1)
Obtain the EM estimates for the original data, Z. (2) Obtain the independent
residuals as r = P−1

v (Z− θ̂EM) (the notations are defined in Subsection 3.3).
(3) Randomly permute r to obtain new residuals r∗. (4) Let Z(s) = Pvr+θ̂EM

be the new data set, and then execute the EM-Scan method procedure to
obtain the value Fs.

Suppose we execute the simulations for G times (99 or 999). The actual
F scores are compared with these simulated maximum values. Thus, the
simulated p-values are obtained as

P-value =
#{Fs >= Fobs}Gs=1 + 1

G+ 1
.

The elective clusters are significant if the p-value ≤ 0.05. It should be noted
that the significant clusters are possibly overlapped. We will only report the
clusters with the largest F value while they are overlapped.

4. Simulations for Method Comparisons

Before we discuss the detection results, it is necessary to check the EM
estimates for the Freeman-Tukey transformation data. It should be reminded
that the simulation data sets are generated by Equation (4), but the data
need to be transformed by the Freeman-Tukey approach before being analyz-
ing. So, it is possible that the model has been biased after the transformation.
We will take the transformed data with the clustered effects as the baseline
to see if the EM estimates do work. In the following table, we show the
MLEs and EM estimates of the spatial autocorrelation ρ and σ2. The MLEs
are obtained by assuming that the locations of the local cluster have known
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and can be explained by a clustered effect. On the other hand, the EM esti-
mates are computed after treating the clusters detected by the SaTScan as
the missing values.

Table 3. Comparisons of MLE and EM estimates

RR 1 1.49 2.01 2.72

ρ MLE EM MLE EM MLE EM MLE EM

0 -0.01 0.00 -0.05 -0.01 -0.04 -0.02 -0.04 -0.02
0.2 0.16 0.16 0.15 0.19 0.15 0.17 0.16 0.18
0.5 0.43 0.43 0.41 0.43 0.40 0.42 0.42 0.43
0.8 0.71 0.66 0.71 0.68 0.72 0.70 0.71 0.71

Notes: For simplification reason, we didn’t show the variances of
the estimates in the Table. The variances are around 0.11 for all
the estimates.

From Table 3, we have observed that the EM estimates are close to the
MLEs with the real cluster effect except the cases when RR is lower and
ρ = 0.8. Because the real simulated model (Equation 4) is a Poisson-Gaussian
model, it is not applicable in our approach and we found that the estimates
are underestimated from the original settings. Although the Freeman-Tukey
transformation can change the original data structure, we think it is easier
to find local clusters under the spatial autocorrelation model.

The simulation setting is the same as that in Section 2.4 and we consider
both the no-cluster and one-cluster cases. The results are separately listed
for the circular SaTScan and the EM-Scan method (EMS). We first compare
the probability of rejecting the null hypothesis when there is no cluster. Note
that the null hypothesis is all cells having equal disease incidence, and an
upper-tail test (α = 0.05) is used to check if there are any hot spots. Table 4
shows the simulation results of the two cluster detection methods. The EMS
method provides relatively consistent results, but the rejection probability
of the SaTScan significantly increases as the autocorrelation gets large. If
we use the SaTScan’s detection results to judge possible clusters, it might
provide distorted information.
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Table 4. Rejection probabilities of the clus-
ter detection methods

Probability of rejecting
the null hypothesis with ρ

Method 0 0.2 0.5 0.8

SaTScan 0.02 0.13 0.27 0.61
EMS 0.06 0.10 0.09 0.17

Notes: The significance level is 0.05.

Because the Monte Carlo procedure of the SaTScan is based on the in-
dependent assumption, this assumption can underestimate the variance of
the data when a positive autocorrelation exists. The smaller variance could
be the reason for raising the false alarms. On the other hand, the proposed
method considers the effect of the autocorrelation, and thus reduces the false
alarm rates. A similar result appears in the case of a cluster.

Further comparisons can be made in the case of a cluster. The power and
the false alarm are shown in Figure 3, where the RR of cluster is equal to
1.49, and 2.01. When RR = 1.49, the two methods obviously have different
patterns on the power and the false alarm. The SaTScan has good power,
but also has large false alarms. For example, for RR = 1.49 and ρ = 0.8,
the SaTScan has power 0.76, but with a very high false alarm 0.47. The
proposed method is also affected by the larger autocorrelation because the
testing variance will get larger when autocorrelation is larger. Therefore,
it is more difficult to reject the null hypothesis when the autocorrelation is
large. The case where RR = 2.01 shows similar results, and the SaTScan
still has the better power but with detecting more false clusters. In contrast,
the proposed method does not have a big jump in power or false clusters,
when RR increases to 2.01.

Because the power and false alarm can only provide partial information
about detection accuracy, we also show the results of sensitivity and PPV,
as shown in Figure 4. At the first glance, the sensitivity of the proposed
method is not better than that of the SaTScan due to a lower power when
RR = 1.49. However, when RR = 2.01, the proposed method is not worse
than the SaTScan even the proposed method has a lower power.
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Fig. 3. The power and false alarm comparisons between the SaTScan and the proposed
methods with different relative risks.

5. Application

In this section, we use the SIDS data in North Carolina from 1974–1984
to evaluate the proposed EM-Scan method. The data can be found under the
package “spdep”. In order to compare the results of the proposed method
with those of the SaTScan, we use the same setting as Kulldorff (1997).
Since the SIDS is a rare disease, we sum up the data from 1974 to 1984 to
obtain a sufficiently large sample size to approximate the normal assumption
(after the Freeman-Tukey transformation) and Kullforff (1997) also used the
same combination. There are 100 counties in North Carolina, and the total
number of diseases and live births are 1,503 and 752,354 respectively. The
overall average incidence rate is close to 2 per 1,000.

19



0.0 0.2 0.4 0.6 0.8

0.
15

0.
25

0.
35

Sensitivity at RR = 1.49

Autocorrelation

S
en

si
tiv

ity

SaTScan

EMS

0.0 0.2 0.4 0.6 0.8

0.
70

0.
80

0.
90

Sensitivity at RR = 2.01

Autocorrelation

S
en

si
tiv

ity

SaTScan

EMS

0.0 0.2 0.4 0.6 0.8

0.
10

0.
20

0.
30

PPV at RR = 1.49

Autocorrelation

P
P

V

SaTScan

EMS

0.0 0.2 0.4 0.6 0.8

0.
60

0.
70

0.
80

0.
90

PPV at RR = 2.01

Autocorrelation

P
P

V

SaTScan

EMS

Fig. 4. The sensitivity and PPV comparisons between the SaTScan and the proposed
methods with different relative risks.

According to the cases and the population sizes, we can transform the
data by the Freeman-Tukey transformation (Figure 5) in order to apply a
CAR Gaussian model. Because the neighborhood information is more com-
plicated in the real case, we use the same neighborhood information and
weight function suggested by Cressie and Chan (1989), i.e.,

wij =

{

(m(k)/dkij)(nj/ni)
1/2 j ∈ Ni,

0 otherwise,

where dij is the distance between cells i and j, m(k) is the minimum distance
between all cells, ni and nj are the population sizes in cells i and j, and the
neighbors Ni are defined by a 30 miles criterion, that is, “all those counties
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with county seat within 30 miles of the seat of the county in question.” In this
study, we choose k = 1 to construct the neighborhood information matrix.
In such settings, the covariance of the fitted CAR model is claimed to be
symmetric.

under 2.48 2.48 − 2.89

2.89 − 3.3 over 3.3

Fig. 5. Map of the 1974–1984 North Carolina SIDS data after the Freeman-Tukey trans-
formation.

The clusters detected by the SaTScan are shown in Figure 6, where we
apply the Poisson model to identify SIDS spatial clusters using the software
“SaTScan” v9.1.1. Under the significance level 0.05, there are three positive
clusters detected by the SaTScan. These results are slightly different than
those of Kulldorff (1997) in which only two significantly higher clusters are
reported but their locations are not totally the same. The cluster with the
single cell in the middle of the study area is the main difference between the
detection result of software “SaTScan” and that reported in Kulldorf (1997).

usual cells clustered cells

Fig. 6. Clusters detected by the SaTScan.

To apply the proposed EM estimates, the clusters detected by the SaTScan
are treated as missing values in advance. We can follow the iterative EM
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algorithm to obtain the EM estimates. By the EM estimates, the spatial
autocorrelation ρ̂ = 0.4884 is obtained; then, the covariance structure can
be treated as a known covariance matrix, and we use the EM-Scan method
to detect the clusters. It should be noted that the estimate of the global
dependence ρ is 0.8381 if we directly fit the CAR model for the original
data without considering the local cluster effects. Based on the simulation
Monte Carlo testing in which the EM estimates are treated as the gener-
ating parameters, there is no cluster detected under the significance level
α = 0.05. However, the most significant cluster with p-value = 0.101 (with
999 simulations) as shown in Figure 7.

usual cells clustered cells

Fig. 7. Cluster detected by the proposed method where the Monte Carlo p-value is 0.101
with 999 simulations.

Although the cluster detected by the proposed method is wider than the
clusters detected by the SaTScan, we can not ascertain which clusters are
the real ones. Besides, it should be noted that we used different models and
data to detect clusters. The clusters detected by the SaTScan are based
on the independent Poisson model and using the original data set, but the
clusters detected by the proposed method are based on the Freeman-Tukey
transformed data and the Gaussian CAR model. The SaTScan would detect
a similar cluster as the proposed method if using the Freeman-Tukey trans-
formed data. The analysis of SIDS data also supports that the SaTScan
tends to identify more clusters.

In addition, we conduct a residual diagnosis of the proposed method.
Although there is no cluster detected by the proposed method, we still use
the EM estimates to get the fitted values and the residuals. First, we have
to check the normality of the residuals. Based on the Kolmogorov-Smirnov
test, the residuals do not reject the normal assumption (p-value = 0.7984).
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This means the Freeman-Tukey transformation is proper in analyzing the
SIDS data. Also, the spatial dependence is not significant by the Moran’s I
test (p-value = 0.0839). However, there are 6 outliers detected by the EM
fitted values (i.e., z-score ≥ 1.96 or ≤ 1.96). This means there could still be
factors affecting the model fitting.

6. Discussions

In this paper, we study the problem of cluster detection when there ex-
ists global spatial dependence, that is, a spatial pattern involved both effects.
Our goal is to demonstrate that it is difficult to distinguish the global de-
pendence and local clusters. Interestingly, not many past studies focus on
discussing this mixed pattern. In this study, we want to show that these two
effects can be confounded and need to be taken with care. In particular, we
found that the performance of the SaTScan can be influenced by global de-
pendence, and the influence is especially noticeable when the autocorrelation
is high.

We propose a two-stage cluster detection method to deal with global
dependence. We use computer simulation and empirical data analysis to
evaluate the proposed method. The simulation results show that, if the
autocorrelation exists, the proposed method can reduce the false alarms but
also loses the detection power. Nevertheless, when there is no cluster, the
proposed method gives a satisfactory result of detecting fewer false clusters.
On the other hand, the SaTScan seems to detect too many false clusters but it
also has better powers in detecting clusters. There is still room for improving
the cluster detection method when there exists global spatial dependence.

Note that the proposed method and the SaTScan both use Monte Carlo
procedure, but the independent assumption for permuting the observations
is invalid when there is spatial dependence. Instead, the proposed method
uses the Monte Carlo procedure and puts the autocorrelation into account.
Because the autocorrelation can raise the variance of the interested estimate
(i.e. variance of θ̂δ − θ̂0), this can help to reduce the false alarm when there
is a positive autocorrelation. Although this adjustment sacrifices the power
when the RR is small (RR = 1.49), it has similar detection accuracy as the
SaTScan when the RR is moderately large (RR = 2.01). Because it seems
impossible to completely separate these two effects, the power and accuracy
measures may not convey the effectiveness of the proposed model. Two
anonymous referees suggest the proposed method can be applied to produce
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a better map based on the ability of the hybrid (global dependence and local
clusters) model. Then, the MSE could be a more reliable measurement to
convey the effectiveness of the proposed model. This is a great consideration
and we will conduct it in our future researches.

This study mainly argues that global dependence and local clusters are
confounded, and it is likely that these two effects can be mislabeled to each
other. This is also the reason why we choose the EM algorithm and the
two-stage method to estimate the autocorrelation and to identity clusters.
However, this approach is possible to lose useful information and to obtain
biased estimates, if the missing values are informative or the area identified as
missing values is big. One possible modification is to use jackknife estimate,
but it has little improvement. We should continue searching other robust
methods to acquire stable estimate to the autocorrelation.

On the other hand, we can use other detection methods to choose elective
clusters instead of circular windows in the EM-Scan method after handling
global dependence. These methods include, for example, the upper level set
scan statistic (Patil and Taillie, 2004), the flexible scan statistic (Tango and
Takahashi, 2005), and the SaTScan with the elliptic windows (Kulldorff et
al., 2006). Then, the rest of the procedures are the same, as described in
Section 3. Based on this way, there could be more possible extensions of the
proposed method.
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