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Overview

• Definition: Face recognition, verification, tracking…

• Feature subspaces: PCA 

• Side info: Interesting findings about human face recognition



Face detection and recognition

Detection Recognition “Sally”



Applications of Face Recognition

• Surveillance

• Digital photography

• Album organization



Consumer application: iPhoto 2009

• Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats



Consumer application: iPhoto 2009



Error measure

• Face Detection/Verification

– False Positives (%)

– False Negatives (%)

• Face Recognition

– Top-N rates (%)

– Open/closed set problems– Open/closed set problems

• Sources of variations:

With 
glasses

Without 
glasses

3 Lighting 
conditions

5 expressions



Face recognition

1. Treat pixels as a vector

2. Recognize face by nearest neighbor
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The space of face images

• When viewed as vectors of pixel values, face images 

are extremely high-dimensional

– 100x100 image = 10,000 dimensions

– Large memory and computational requirements

• But very few 10,000-dimensional vectors are valid 

face images

• We want to reduce dimensionality and effectively • We want to reduce dimensionality and effectively 

model the subspace of face images



Principal Component Analysis (PCA)
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• Pattern recognition in high-dimensional spaces

– Problems arise when performing recognition in a high-dimensional space 

(curse of dimensionality).

– Significant improvements can be achieved by first mapping the data into a 

lower-dimensional sub-space.
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where K << N.

– The goal of PCA is to reduce the dimensionality of the data while retaining 

as much as possible of the variation present in the original dataset.
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Change of basis
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Note that the vector [1 1] is longer 
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than the vectors [1 0] or [0 1]; 

hence the coefficient is still 3.



Dimensionality reduction
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Principal Component Analysis (PCA)
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• PCA allows us to compute a linear transformation that maps data from a 

high dimensional space to a lower dimensional sub-space.
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Principal Component Analysis (PCA)

• Lower dimensionality basis

– Approximate vectors by finding a basis in an appropriate lower dimensional 

space.

(1) Higher-dimensional space representation:

NNxxx vvvx 21 +++= L21

K21 uuux Kzzz +++= L21
ˆ
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(2) Lower-dimensional space representation:

are the basis vectors of the N-dimensional space

are the basis vectors of the K-dimensional space
K1 u,,u L

Note:  If N=K, then xx ˆ=



Illustration for projection, variance and bases
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Principal Component Analysis (PCA)

• Dimensionality reduction implies information loss !!

– Want to preserve as much information as possible, that is:

• How to determine the best lower dimensional sub-space?• How to determine the best lower dimensional sub-space?



Principal Components Analysis (PCA)

• The projection of x on the direction of u is: z = uTx

• Find the vector u such that Var(z) is maximized:

Var(z) = Var(uTx)

= E[ (uTx - uT µ) µ) µ) µ) (uTx - uT µ)µ)µ)µ)ΤΤΤΤ ]]]]

= E[(uTx – uTµ)2]                      //since (uTx - uT µµµµ) ) ) ) is a scalar

= E[(uTx – uTµ)(uTx – uTµ)]= E[(uTx – uTµ)(uTx – uTµ)]

= E[uT(x – µ)(x – µ)Tu]

= uT E[(x – µ)(x –µ)T]u

= uT∑ u

where ∑ = E[(x – µ)(x –µ)T]  (covariance of x)

In other words, we see that maximizing Var(z) is equivalent to maximizing
uT ∑ u where u is a candidate direction we can project the data and ∑ is the 

covariance matrix of the original data.



• The next 3 slides show that the direction u that maximizes Var(z) is 

the eigenvectors of ∑.
– You are not responsible of understanding/knowing this derivation.

• The eigenvectors with the largest eigenvalue results in the largest 

variance.

• As a result, we start picking the new basis vectors (new • As a result, we start picking the new basis vectors (new 

directions to project the data), from the eigenvectors of the cov. 

matrix in order (largest eigenvalue is first, then next largest etc.)

• In this process, we use unit vectors to represent each direction, to 

remove ambiguity.



• The following 3slides require understanding of matrix 

operation, Lagrange multipliers and Eigenvalues.

• You are are not required in CS412/512 to understand 

this material, read only if interested.



Principal Component Analysis - Advanced

• Same thing, a bit more detailed:

Projection of data point

N

Maximize

subject to ||u||=1

Covariance matrix of data

N

1/N



• Maximize Var(z) = uT∑ u subject to ||u||=1

• Taking the derivative w.r.t w1, and setting it equal to 0, we get:

∑u1 = αu1

⇒⇒⇒⇒ u1 is an eigenvector of ∑

• Choose the eigenvector with the largest eigenvalue for Var(z) to be 

( )1max 1111
1

−−Σ uuuu
u

TT α α, β:Lagrange multipliers

• Choose the eigenvector with the largest eigenvalue for Var(z) to be 
maximum

• Second principal component: Max Var(z2), s.t., ||u2||=1 and it is 
orthogonal to u1

• Similar analysis shows that, ∑ u2 = α u2

⇒⇒⇒⇒ u2 is another eigenvector of ∑ and so on.
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• Maximize var(z)=

• Consider the eigenvectors of ΣΣΣΣ for which

• ΣΣΣΣu = λu   where u is an eigenvector of ΣΣΣΣ and 

λ is the corresponding eigenvalue. λ is the corresponding eigenvalue. 

• Multiplying by uT:

uTΣΣΣΣu = uT λu = λ uT u = λ for ||u||=1.

� => Choose the eigenvector with the largest eigenvalue.



• So now that we know the new basis vectors, we need to 

project our old data which is centered at the origin, to 

find the new coordinates. 

• This projection is nothing but finding the individual 

coordinates of a point in the Cartesian space.coordinates of a point in the Cartesian space.
– The point [3 4] has x-coord of 3 and y-coord of 4 because if we project it onto 

[1 0] and [0 1] those are the values we find.



Principal Component Analysis (PCA)

• Given: N data points x1, … ,xN in R
d

• We want to find a new set of features that are 

linear combinations of original ones:

u(xi) = u
T(xi – µ)

(µ: mean of data points)(µ: mean of data points)

• Note that the unit vector u is in Rd (has the same 

dimension as the original data). 

Forsyth & Ponce, Sec. 22.3.1, 22.3.2



What PCA does

The transformation   z = WT(x – µµµµ)
where the columns of W are the eigenvectors of ∑, 

µµµµ is sample mean,

centers the data at the origin and rotates the axes

If we look at our new basis If we look at our new basis 

vectors straight, we see it this 

way: a zero mean, axis-aligned 

distribution.



The covariance matrix is symmetrical and it can always be 

diagonalized as:

TWWΛ=Σ

where

Eigenvalues of the covariance matrix - Advanced

where

• is  the column matrix consisting of 

the eigenvectors of Σ,
� WT=W-1

� Λ is the diagonal matrix whose elements 

are the eigenvalues of Σ. 

],...,,[ 21 luuuW =



Nice Summary of the PCA Algorithm



Principal Component Analysis (PCA)

• Methodology

– Suppose x1, x2, ..., xM are N x 1 vectors



Principal Component Analysis (PCA)

• Methodology – cont.



Principal Component Analysis (PCA)

• Linear transformation implied by PCA

– The linear transformation RN → RK that performs the dimensionality 

reduction is:



How many dimensions to select?

K should be << N

But  what should be K?

Not covered until slide 42



Principal Component Analysis (PCA)

• How many principal components?

• By using more eigenvectors, we represent more of the variation in the 

original data. 

– If we discarded all but one dimension, the new data would have lost of of 

the original variation in the discarded dimensions.

• So, the rule used is considering to have some percentage of the original • So, the rule used is considering to have some percentage of the original 

variance kept. The variance in each eigenvalue direction is lambda_i, 

so we sum the variance in the k direction and we require that it 

surpasses say 90% of the original variation.



How to choose k ?

• Proportion of Variance (PoV) explained

when λ are sorted in descending order 

dk
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when λi are sorted in descending order 

• Typically, stop at PoV>0.9

• Scree graph plots of PoV vs k, stop at “elbow”







Principal Component Analysis (PCA)

• What is the error due to dimensionality reduction?

– We saw above that an original vector x can be reconstructed using its 

principal components:

– It can be shown that the low-dimensional basis based on principal – It can be shown that the low-dimensional basis based on principal 

components minimizes the reconstruction error:

– It can be shown that the error is equal to:



Effect of units in computing variance

• What happens if our x1 dimension is height and x2
dimension is weight, but the height can be in cm 

(170cm, 190cm) or in meters (1.7m, 1.9m)…

• If the unit is centimeters the variance in the x1 dimension 

will be larger than if we used meters.will be larger than if we used meters.



Principal Component Analysis (PCA)

• Standardization

– The principal components are dependent on the units used to measure the 

original variables as well as on the range of values they assume.

– We should always standardize the data prior to using PCA.

– A common standardization method is to transform all the data to have zero 

mean and unit standard deviation, before applying PCA:



Eigenface Implementation



Eigenface Example



Eigenfaces example

• Training images

• x1,…,xN



Eigenfaces example

Top eigenvectors: u1,…uk

Mean: µ



Visualization of eigenfaces

Principal component (eigenvector) uk

µ + 3σkukµ + 3σkuk

µ – 3σkuk



Representation and reconstruction

• Face x in “face space” coordinates:

==



Representation and reconstruction

• Face x in “face space” coordinates:

=

• Reconstruction:

≈ +

µ       +    w1u1 + w2u2 + w3u3 + w4u4 + …

=

x ≈



P = 4

P = 200

Reconstruction

P = 200

P = 400

Eigenfaces are computed using the 400 face images from ORL 

face database. The size of each image is 92x112 pixels (x has ~10K 
dimension).



Recognition with eigenfaces

Process labeled training images
• Find mean µ and covariance matrix Σ

• Find k principal components (eigenvectors of Σ) u1,…uk

• Project each training image xi onto subspace spanned by 
principal components:
(wi1,…,wik) = (u1

T(xi – µ), … , uk
T(xi – µ))

Given novel image x
• Project onto subspace:

(w1,…,wk) = (u1
T(x – µ), … , uk

T(x – µ))

• Optional: check reconstruction error x – x to determine 
whether image is really a face

• Classify as closest training face in k-dimensional 
subspace

^

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991



PCA

• General dimensionality reduction technique

• Preserves most of variance with a much more 
compact representation
– Lower storage requirements (eigenvectors + a few – Lower storage requirements (eigenvectors + a few 
numbers per face)

– Faster matching

• What are the problems for face recognition?



Limitations

Global appearance method: 

• not robust at all to misalignment

• not very robust to background variation, scale 



Principal Component Analysis (PCA)

• Problems

– Background (de-emphasize the outside of the face – e.g., by 

multiplying the input image by a 2D Gaussian window centered on 

the face)

– Lighting conditions (performance degrades with light changes)

– Scale (performance decreases quickly with changes to head size)

• multi-scale eigenspaces• multi-scale eigenspaces

• scale input image to multiple sizes

– Orientation (performance decreases but not as fast as with scale 

changes)

• plane rotations can be handled

• out-of-plane rotations are more difficult to handle



Face recognition by humans

Face recognition by humans: 20 results

(2005)

Slides by Jianchao Yang



















Result 17: Vision progresses from 

piecemeal to holistic





Things to remember

• PCA is a generally useful dimensionality reduction 
technique
– But not ideal for discrimination

• FLD better for discrimination, though only ideal 
under Gaussian data assumptionsunder Gaussian data assumptions

• Computer face recognition works very well under 
controlled environments – still room for improvement 
in general conditions


