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Summary 

In microbial sciences, as well as other disciplines, it is often valuable to sample 

communities in a sequential or group sequential manner, in order to determine their 

structure or their similarity.  We develop sequential sampling procedures to 

accomplish this by first assuming that one observation is drawn with replacement 

from each population at a time.  Suppose that the sampling is terminated after n pairs 

of observations and k shared species were discovered, and assume that we receive 

payoff ,)( cnkh − where h(k) is non-decreasing and the sampling cost c is 

non-negative.  Similar to Rasmussen and Starr (1979), we show that an optimal 

stopping rule exists if )()1( khkh −+ is non-increasing.  An analogous result holds 

for group sequential sampling.  This leads to using an estimate of the probability of 

discovering new shared species as a stopping indicator for comparing two populations 

with respect to the similarity index. We show by simulation and real examples that 

this is a feasible approach which can help to reduce the sample size. 

 

Key Words: Optimal stopping; Comparing populations; Similarity index; Discovering 

new species; Simulation 
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1. Introduction 

In ecology, it is often of interest to describe the structure of a community, or to 

describe or compare the structure of two or more communities.  A simple descriptor 

of a single community is the number of species – its “species richness.”  Because 

sampling is usually incomplete, and because of the size and complexity of many 

communities, this problem is surprisingly challenging – Bunge and Fitzpatrick (1993) 

refer to a bibliography of over 550 papers on the topic as of 1991.  Our primary 

interest in this paper is the even greater challenge of comparing two communities, but 

we will borrow ideas from the richness literature in the process.  We shall use the 

terms “community” and “population” interchangeably for the rest of the study.  

This work is motivated by applications in microbial ecology, but it has relevance 

to more general settings.  As an example, it is of interest to compare the 

communities of microbes that exist in two different soils, one representing agricultural 

land, and one representing undisturbed land (Harris, 2003, Miyoshi et al. 2005).  The 

community, in this context, consists of the microbes present in some volume of soil 

extracted from the site and subjected to laboratory analyses.  In such a setting, there 

could easily be 109 or more microbes in each extracted volume. In a typical 

application, a random sample of 100 to 1000 microbes is taken from each volume on a 

single sampling occasion.  This “group sampling” can be done repeatedly to obtain 

further data.  Obtaining the soil volumes is comparatively easy, but sampling 

microbes from within these is time-consuming, expensive, and nontrivial, because it 

relies on advanced molecular techniques (Standing et al., 2007).  Consequently, there 

is interest in limiting the number of observations taken.  Of course, issues of cost 

arise in numerous settings beyond the microbial situation.  

Whether describing a single community or comparing two communities, we 
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separate two actions: the process of sampling from communities, and the estimation 

of richness or similarity once sampling has stopped.  Here we focus largely on the 

issue of sampling, and we begin with a theoretical development based on an earlier 

sampling approach that addressed the question of species richness for a single 

community. We adapt this to cover the more realistic group sampling methods 

outlined above, and then extend it to the problem of comparing two communities. 

In an elegant paper, Rasmussen and Starr (1979) supposed that a community is 

sampled sequentially, one representative at a time (with replacement), and that each 

observation is classified according to species.  Suppose that when sampling stops, 

there are n observations and k species discovered.  They take a decision-theoretic 

perspective and assume a payoff equal to ,)( cnkh − where )()1( khkh −+ is 

non-increasing function and c is a non-negative cost per observation.  An important 

special case occurs when the reward function h is the identity function.  In that case, 

it is optimal to stop sampling when cnu ≤)( , where u(n) is the probability of 

discovering a new species given that n observations have already been taken.   

At the time of stopping, a simple estimate of the number of species is the 

observed number of species, k, although more complex estimates could also be used.  

Just as important, whether sampling proceeds as outlined above, or by some other 

method, knowing that u(n) is large should be an important indicator that the current 

sample size is likely inadequate.  The general utility of an estimate of u(n) seems to 

be largely unappreciated in the ecological literature, however. 

Rasmussen and Starr proposed estimating u(n) with Turing’s estimate r/n where r 

is the number of species with a single representative in the sample.  This estimate 

provides a good approximation if the sample size is sufficiently large.  Other 

estimates have also been proposed, such as Chao (1981), Clayton and Frees (1987), 
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and Lee (1989). 

Our ultimate goal is to construct a sampling approach to be used for the 

comparison of communities.  Several similarity indices have been proposed in the 

literature (e.g., Smith et al., 1996; Yue and Clayton, 2005); here we will focus on the 

one proposed by Yue and Clayton (2005).  Given the use of the index, we seek a 

sequential sampling rule that will indicate how long we should sample to ensure, in 

some sense, a sufficiently large sample upon which to base an estimate of similarity.  

Following Rasmussen and Starr, we will take a decision-theoretic approach to this, 

and we will also describe practical solutions.  

Before proceeding, we note that the term “species” can be interpreted quite 

broadly, and besides its traditional Linnaean use in biology, it has also been used to 

refer to “operational taxonomic units” in modern metagenomics studies (Schloss and 

Handelsman, 2008), to words in linguistics (Eforn and Thisted, 1976), to coins in 

numismatics (Esty, 1984 and 1985), to bugs in computer code (Chao et al., 1993), 

typographical errors in text (Nayak, 1989; Okello et al., 2005) and, quite recently, in 

the development of indexes for web search engines; comparable extensions exist for 

the term “community.” 

In the next section we first explore an optimal stopping rule for discovering new 

shared species of two populations. A Turing type estimate of the probability of 

discovering new shared species is also discussed and we employ it in a stopping rule.  

We then extend this work to cover the group sequential setting. Some simulations and 

real data appear in Section 3, and in Section 4 we make some concluding remarks.  

 

2. Optimal Stopping for Discovering Shared Species 

Suppose there are two populations and let ),,,( 21 spppp K

v = and ),,,( 21 sqqqq K

r =  
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denote the species proportions of the two populations, where s is the number of 

distinct species in the pooled communities. Initially, we suppose the populations are 

sampled sequentially, with one observation taken from each population at each 

sampling occasion.  The following argument is similar to that of Rasmussen and 

Starr (1979). 

The random variable  

( ) )1()0)(,0)(()0)(,0)((
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is the probability of discovering a new shared species, where )(nX i and )(nYi are the 

numbers of occurrences for species i from n observations in each of populations 1 and 

2, respectively.  In other words, v(n) is the conditional probability that a shared 

species will be discovered in the next, (n+1)st draw from each population.  

 Suppose the payoff function for discovering a new shared species is of the form 

cnnshnw −= ))(()( 12 , where the reward function h(k) is non-decreasing, h(k+1)−h(k) 

is non-increasing, s12(n) is the number of observed shared species in n pairs of 

observations, and c > 0 is a sampling cost. Then the expected payoff of taking the 

(n+1)st pair of observations is 

),1()()1)(())(1())(()|)1(( 1212 +⋅−⋅++−⋅=+ ncnvnshnvnshFnwE n
 

where Fn is the observed information based on the first n pairs of observations. Thus, 

it is reasonable that sampling will be terminated, i.e., ),()|)1(( nwFnwE n ≤+  if and 

only if  

( ) cnvnshnsh ≤⋅−+ )())(()1)(( 1212 ,     (2) 

and indeed the following result holds.  
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Theorem 1. If the reward function is such that )()1( khkh −+ is non-increasing, then it 

is optimal to stop sampling at time  

})())](()1)(([:0inf{ 1212
* cnvnshnshnn ≤⋅−+≥= .   (3) 

Proof: The proof is similar to that of Theorem 1 of Rasmussen and Starr (1979), who 

are interested in the number of new species in one population; their proof is based on 

the following inequality: 

( ) 1

1

))(()1)((1 −
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−+−>∑ nshnshcp
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i
i , 

assuming that ip  is a monotone non-increasing sequence.  For discovering new 

shared species, we can show a similar inequality:  

( ) 1
1212 ))(()1)((1
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where I1 is a subset of {1, 2, …, s} and has n members, where 1I  represents the list 

of currently observed species, and where the labels have been arranged such that 

iiqp is a monotone non-increasing sequence. Because the expected sample size 

needed to discover the shared species i is not larger than },max{ 11 −−
ii qp , it is 

immediate that ∞<)( *nE . The rest of the proof is similar to Rasmussen and Starr’s 

and is omitted.�    

 Thus far we have an optimal stopping rule for estimating the number of species 

in a single population (due to Rasmussen and Starr) and an optimal rule for estimating 

the number of shared species in two populations.  However, both of these rules are 

based on the notion of sampling one observation (resp. one pair of observations) at a 

time.  As noted in Section 1, however, there are situations where group sampling 

would be desirable.  In that light, we note that both Theorem 1 of Rasumssen and 

Starr (1979) and Theorem 1 above can be extended to the group sequential sampling 
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case. We shall begin by using the one-population case to show the extension. In the 

one-population case, Rasmussen and Starr (1979) showed that it is optimal to stop 

sampling once  

( ) cnunshnsh ≤⋅−+ )())(()1)(( ,     (4) 

where s(n) is the number of observed species in n observations and u(n) is the 

conditional probability of discovering a new species defined above. If h is the identity 

function, this inequality is equivalent to requiring that the expected number of newly 

discovered species in a single draw be less than or equal to c.  Suppose now that a 

group of m observations is drawn at every stage and the sampling cost is cm ⋅  per 

group. Then inequality (4) can be modified to yield the stopping rule: stop taking 

observations when it first happens that  

[ ] cmnsmnsE ⋅≤+ )(|)( .     (5) 

(This rule is optimal within the class of rules based on sampling m observations at a 

time, although it is not optimal among the class of rules based on sampling one 

observation at a time.) 

 A simple estimate of the left hand side of equation (5) is not easy to obtain.  

However, because u(n) is non-increasing, we can construct an upper bound, i.e.,  

[ ] ∑∑
==

×≤×=+
m

l

m

l

nulnsobsmofgroupinspeciesnewlPlnsmnsE
11

)())(|.()(|)(  

and thus it is never optimal to take more observations when  

[ ] cmnulnsmnsE
m

l

⋅≤×≤+ ∑
=1

)()(|)( .  

This yields the following result. 

 

Theorem 2. If the reward function h is the identity function and a group of m 

observations is sampled at every stage, then it is never optimal to continue sampling 
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beyond time  

})(:0inf{ ** cnunn ≤≥= ,     (6) 

where 
1

2
2

)1(*

+
=+⋅=

m

cmm
cmc . 

Note that the group sampling setting in Theorem 2 can also be extended to the 

two-population case by replacing the payoff function with cnnshnw −= ))(()( 12 , and 

using the stopping indicator v(n).  

 Thus far we have developed stopping rules for both individual and group 

sampling scenarios, and for the goal of estimating the number of species or for 

estimating the number of shared species.  Our primary goal, however, is to use a 

sampling rule such that, upon stopping, we can compare communities in terms of their 

similarity, as measured by the index in Yue and Clayton (2005), Jaccard’s index, or 

some other index.  Unfortunately, the complexity of such indices means that it is 

quite difficult to design an associated optimal stopping rule.  Such a stopping rule 

would tell us how to optimally gather a sample such that we could best estimate 

similarity. 

We resort, therefore, to a suboptimal approach, and evaluate it through 

simulations and applications to real data.  Our proposed procedure builds on the 

preceding work.  Specifically, we sample until cnv ≤)( , and then estimate similarity.  

If sampling is done one pair of observations at a time, then this rule results in 

sampling optimally to estimate the number of shared species, and then uses that 

sample to estimate similarity.  (If sampling proceeds group-wise, then the procedure 

is suboptimal – within the class of all sampling rules – for estimating the number of 

shared species).  Although a reward function in terms of the similarity index might 

not be monotone, there is still something to be said about optimality.   
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Theorem 3. Suppose we have two populations, with species proportions 

),,,( 21 spppp K

v =  and ),,,( 21 sqqqq K

r = , respectively. Then, )()(ˆ nn θθ → in 
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nonparametric maximum likelihood estimator 
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nqi

2.#
)(ˆ =  (Yue and Clayton, 2005).  

Proof: The proof is straightforward and is omitted.  

With respect to the payoff function cnn −)(θ̂ , suppose we stop group sampling at 

the point  

})(:0inf{* cnvnn ≤≥= .     (7) 

Unlike (3), the stopping rule in (7) is not necessarily optimal and seemingly only 

provides an upper bound for stopping the sampling. However, heuristically speaking, 

if c is small, cnv ≤)(  means that there is a very small probability of discovering 

new shared species. This indicates that the similarity index )(ˆ nθ  will not change 

too much and sampling should stop. Therefore, if the sampling cost c is chosen 

properly, cnv ≤)(  may be a possible candidate for judging whether there are 

enough observations to evaluate the similarity of two populations. We next use 

simulations to explore the use of cnv ≤)(  as a stopping indicator.   
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3. An Adaptive Rule  

Parallel to the development of Rasmussen and Starr (1979), we note that the existence 

of the optimal stopping rule is predicated on knowing v(n), which is in fact 

unobservable. Also parallel to the work of Rasmussen and Starr, we develop a 

Turing-type estimate for the probability of discovering shared species given by  
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(See the Appendix for further discussion of the derivation of this estimator.) Note that 

the estimate v’(n) is always non-negative since the first two terms in (8) are always 

not smaller than the last two terms. The expected bias in (8) is   
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(see Appendix) which converges to 0 as the number of observations n goes to infinity.   

Our goal is to sample sequentially to estimate community similarity, and based 

on the above work we propose doing so by first using cnv ≤)('  as a stopping 

indicator, and then estimating θ with θ̂ calculated from the sample obtained upon 

stopping. To evaluate this approach we use the decision-theoretic ideas cited above. 

That is, we estimate ncnsE −))(( , the estimated number of species, discounted by 

the cost of sampling.  

There are two additional considerations.  First, to use a simulation effectively, 

we need to know the true parameters being estimated.  Moreover, specification of θ  

does not provide complete information about community structure, and thus we must 
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specify that for each community.  We take two approaches to this. First, we use 

geometric distributions to model the distribution of species within each community. 

That is, we assume that i
ip α∝  and likewise for iq . In addition, we consider three 

types of shared species patterns for the geometric distribution (Yue et al., 2001; Yue 

and Clayton, 2005). For Type 1, the shared species are dominant in both populations, 

for Type 2 the shared species are dominant in one population but rare in the other, and 

for Type 3 the shared species are rare in both populations. As an alternative for 

specifying community structure, we use the structure of communities for which 

sample data are available.  The idea in this is to take existing sample data, pretend 

that these represent the entire communities, and sample from these in simulations.  

This will provide additional simulation results, but from populations that arise 

naturally, and that may not follow simple parametric models.  Our focus will be on 

the third of these, an example from microbial ecology.  However, to examine 

additional possible community structures, we also look at communities of 

macroorganisms. 

To emulate a practical approach for sampling microbial communities, we use a 

group-sampling approach whereby each community is sampled m = 10 members at a 

time. Group sampling may be less natural for macroorganisms, but again, we rely on 

those examples more as exemplars of community structure, rather than as 

communities where our approach would typically be applied.  Finally, note that the 

behavior of v’(n) is erratic for small n.  For example, the estimated probability v’(1) 

can be as small as 0, or as large as 3!  To stabilize the behavior of v'(n) it is practical 

to assume that some initial sample has been taken.  In the simulations below, this is 

taken to be between 20 and 1000.  The use of an initial sample, and the use of group 

sampling here is similar to sequential sampling in some clinical trials. 



 13 

Note that the simulations conducted in this study are based on an Intel-based PC, 

using the statistical software R, version 2.4.0. All results are from 1,000 simulation 

replications for each case. 

 

Example 1. Suppose that the species proportions of the two populations follow 

geometric distributions and i
ii qp α∝= with α=0.8. Let the numbers of species in the 

two populations be 30, and the number of shared species be 15 or 30.  The results are 

each based on 1,000 simulation runs. 

 

[Attach Table 1 here.] 

 

 Table 1 lists the similarity indices corresponding to the three types of shared 

species structures for geometric distributions.  The differences in the true similarity 

values and the observed similarity values are within two times the standard deviations 

for both Types 2 and 3.  When the sample size is large, the differences between the 

true similarity values and the observed similarity values are about two times the 

standard deviations in Type 1, regardless of whether 12s = 15 or 30.  This might 

suggest that if the shared species are dominant, then the sample required may be 

larger than in the unbalanced cases.  This makes intuitive sense: if the populations 

are quite different, early sampling might reveal that, while if the populations are very 

similar, it might require extensive sampling to detect any subtle differences.   

 

Example 2. In addition to considering the same settings as in Example 1, we include a 

sampling cost and sampling is terminated once cnv ≤)(' , where v’(n) is defined in (8), 

and c = 0.001. Let the numbers of species in two communities satisfy 
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3021 == ss or 6021 == ss . Also, let the number of shared species be 1512 =s or 30 

if 3021 == ss , and 3012 =s or 60 if 6021 == ss . For computational simplicity, we set 

the starting sample size to be 100 and the sampling increment to be 10 observations at 

a time from each population, in each simulation.  

For each simulation, we record the number of observations drawn from each 

population when the sampling is terminated.  Next, we calculated the estimated 

similarity indexθ̂ and the observed 95% confidence interval ofθ̂ via the delta method, 

checking whether the true θ is in the 95% confidence interval. We can then use the 

information to check if the sampling rule can provide a reliable estimate for the true θ . 

Generally speaking, if we take a sample, it is not necessary that the sample 

information can provide an accurate estimate of the parameter. If the proposed 

stopping rule can give acceptable estimates, this implies that the proposed rule is not 

only cost efficient but is also a good practical rule. The summary of these numbers are 

listed in Table 2, including the averages and their standard errors (inside the 

parentheses) calculated from 1,000 computer simulation runs.  

 

[Attach Table 2 here.] 

 

 Except for the cases with very small similarity index values, the true θ  is 

covered in the intervals of the average of θ̂  and 2 times the standard error calculated 

from delta method. This can show us briefly how the estimated similarity indexθ̂  

behaves using the proposed stopping rule.  

 The coverage probability of the type 1 cases show promising results, and those 

probabilities are closer to the nominal 95% value if we increase the number of species 
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from 3021 == ss  to .6021 == ss  It seems that, if empirically the communities are of 

the Type 1 case, we can use the average estimated similarity index values and their s.e. 

via the delta method to build confidence intervals for θ. In other words, once the 

sampling is terminated, the observed θ̂  can provide a fair estimate for the true θ.   

The Types 2 and 3 geometric cases behave somewhat differently.  The observed 

results for the average sample sizes are quite severe, either with very large or zero s.e. 

Since there are at most 60 species and the values of v’(n) depends on the number of 

species appearing exactly once, v’(n) is likely to have a discrete behavior.  That is, 

because the shared species in the Types 2 and 3 cases are rare in at least one 

community and the starting sample size is 100, the sampling is likely to terminate 

early unless there are singletons.  However, the shared species are rare and on 

average it requires many observations to observe these shared species. For example, if 

we increase the starting sample size to 1,000 in the Types 2 and 3 cases of 

3021 == ss , the coverage probabilities are very close to the 95% value. However, 

taking at least 1,000 observations for a community with 30 species seems excessive.  

We next study three real examples with larger numbers of species. The data will 

be treated as the populations, and the observed species proportions and the similarity 

values are treated as the real values. We conduct sampling on these 

pseudo-populations until the proposed stopping rule v’(n) is less or equal to the 

sampling cost. Then, we compare observed θ̂  to the “real” θ  and evaluate if using 

v’(n) is a feasible choice, by checking whether the confidence intervals build at 

terminating sampling would cover the real θ.  Also, we will check the average 

sample sizes, comparing with the original data size, to see if the proposed sampling 

rule is cost efficient.   

Example 3. The Taiwan Bird data (Yue et al., 2001) contain two communities of wild 
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birds, with 184 different species and 144,963 observations. These two wild bird 

communities are at two heavily polluted river estuaries in northwestern Taiwan. The 

observed similarity index θ is .8402. We shall treat this value as the true similarity 

index. Also, since the shared species of bird data are close to the Type 1 case in the 

previous simulation, we expect that using the optimal stopping rule would have good 

results.  

For practical reasons, the starting sample size is 1,000 for each population, with 

increments of 10 observations in each simulation.  The reason for choosing a larger 

starting value and the increment of 10 observations is that the wild birds are relatively 

easy to observe and they often come in groups. Sampling continues unless v’(n) 

≤ .005 or .001. We summarize the value ofθ̂ , the sample size, and whether the true θ 

lies in the 95% confidence interval of θ̂ .  We also record the theoretical value v(n) 

and the observed v’(n) when sampling is terminated; the results are listed in Table 3. 

 

[Attach Table 3 here.] 

 

 From Table 3, for c = .005 and .001, the average of θ̂  is close to the true θ and 

the probability of the 95% confidence interval θ̂  covering the true θ  is also close to 

its nominal value 0.95. This suggests the feasibility of using the probability of 

discovering shared species in a stopping rule. In particular, sampling is terminated 

relatively early and yet still provides a fairly accurate estimate of the trueθ . In the 

case of sampling terminated when v’(n) ≤ 0.005, the average sample size at stopping 

is less than 6,000 (i.e., 2 times 2,968), which is about 1/20 of the original sample 

size – a very appealing outcome. Similar results appear in the case of sampling 

terminated when v’(n) ≤ 0.001, where the average sample size is less than 30,000, 
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which is 5 times that in the case of sampling cost 0.005, and about 1/4 of the original 

sample size.  

Also, the average value of the true v(n) is close to the sampling cost. This result 

supports the idea that the unconditional expectation of v’(n) can be used to 

approximate that of v(n), and the average bias is small. (Note: Approximately, for the 

sampling cost = 0.005 and 0.001, the standard errors of v’(n) and the sample size are 

in proportion to the cost.)  

 

Example 4. The Panama Crab data (Smith et al., 1996) contain two populations, with 

74 different species and 5,831 observations. The crab samples collected are living in 

two coral communities at two locations in Panama. The observed similarity index θ 

is .3591. We shall treat this value as the true similarity index and proceed as in 

Example 3. This means that the observed species proportions are treated as the true 

proportions and the sampling is terminated until v’(n) ≤ c. The starting sample size is 

100 for each population, with increments of 10 observations in each simulation. The 

simulation results are listed in Table 4. Again, the shared species of crab data are close 

to the Type 1 case and the idea of the optimal stopping rule would have some good 

results. 

Again, we can see that v’(n) ≤ .005 or v’(n) ≤ .001 are feasible stopping 

indicators.  In either case, the average sample size needed is about 40% and 100% of 

the original sample size, for v’(n) ≤ .005 or v’(n) ≤ .001, respectively.  Also, the 

average of θ̂  is close to the true θ and the probability of the 95% confidence interval 

θ̂  covering the true θ  is also close to its nominal value 0.95. 

 

[Attach Table 4 here.] 
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Example 5. The microorganisms data (Table 1 in Miyoshi et al., 2005) contain two 

populations, with 14 different species and 125 observations. They are from a total of 

247 clones of 16S rRNA genes from microorganisms captured by 0.2- and 

0.1-m-pore-size filters from sediment. The microorganism samples collected are from 

in two underground water communities at two locations in Japan. There are two data 

sets and here we use the one with filter size 0.2. The observed similarity index 

between communities θ is .7449. Again, we treat this value as the true similarity index 

and proceed as in Examples 3 and 4 -- the results are listed in Table 5.  

 

[Attach Table 5 here.] 

 

 Because there are not a lot of observations (about 1/50 of those in Example 4), 

v’(n) would behave like a step function. If the sampling cost is chosen to be small, 

like in previous two examples, the sampling will be terminated only when there are no 

species appearing exactly once. Since there are about 100 observations, the sampling 

cost is set to be 0.01 and 0.05.  Also, in order to avoid early stopping, the starting 

sample size is either 20 or 50 for each population, with increments of one observation 

in each simulation. Unlike in the previous two examples, the coverage probabilities 

are less than the nominal probability 0.95, except for the case of starting sample size 

50 and sampling cost 0.01. The average value of sample size in the case of starting 

sample 50 and sampling cost 0.01 is about 82, or 164 for two populations, which is 

larger than the observed value 125. This might suggest that more observations are 

needed to have a better idea of the similarity level.  
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4. Conclusion and Discussions 

Some authors (e.g., Esty, 1986; Bunge and Fitzpatrick, 1993, I.J.Good, 1991, personal 

communication, cited in Bunge and Fitzpatrick) have argued that the presence of rare 

species in communities means that we can never be assured of characterizing them 

fully. If, indeed, we accept the notion that it is impossible to guarantee perfect 

characterization of populations, then instead we should seek to characterize them 

“well enough” – that is, to balance the goal of learning as much as possible about the 

populations while recognizing the finite limits of resources available to do so.  

Rasmussen and Starr and the above development provide one way to do this, which 

leads itself to a method for sampling “enough.” 

  In this paper we have extended a simple decision theoretic approach of 

Rasmussen and Starr (1979), to the examination of population similarity. If the reward 

of discovering new shared species h(k) is such that h(k+1) − h(k) is non-increasing, 

then an optimal stopping rule for estimating the number of shared species can be 

formulated based on the probability of discovering new shared species in the two 

populations.  Simulation studies support the possibility of adapting an empirical 

estimate of this probability v’(n) into a stopping rule, and combining that stopping 

rule with an estimate of population similarity.  The examples based on real data 

show promising results.  

 However, according to our simulation, if the probability of observing species 

occurring exactly once is small (like the Type 2 and Type 3 cases), then the sampling 

is likely to stop too early.  In that case, v’(n) gives us little information. This is 

similar to using a Turing estimate to estimate the number of species in a population, 

where the estimate relies solely on the number of observed species and the species 

appear exactly once.  Because the Turing type estimate is highly discrete in the cases 
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where it is not easy to observe the species appearing exactly once, the sample size 

could have large variance. We can see from Table 2 that all of the geometric 

distribution cases show very large variances. We expect that this is the case in general, 

especially given a small number of species.  

Therefore, in order to have an acceptable result for applying the optimal stopping 

rule, we recommend checking the observed species structures first.  If the shared 

species follow a Type 1 structure, the observed similarity index would be a feasible 

tool to measure the community similarity and we can enjoy the advantage of 

sequential approach by reducing the sample sizes.  Fortunately, many data sets we 

encounter are of the Type 1 structure.  However, if the shared species are close to the 

Type 2 or 3, many observations may be required before getting a good estimate of the 

similarity index value, and a larger starting sample size is suggested.  

Simplicity is the advantage of using the Turing estimate, but it also suffers from 

its discreteness. Of course, the Turing estimate can be extended to a function of 

species appearing fewer than 10 times (Chao et al., 2000). We suggest using v’(n) 

with care if the number of observed species is small and recommend taking more 

initial observations in this case. 

There is another interesting result in our simulation that, although the observed 

similarity index of two identical populations is close to the true value 1, the 95% 

confidence interval fails to provide good coverage of true θ . For the number of 

species being 30, even a sample of 3,000 cannot guarantee a 95% confidence interval 

covering 1=θ . Note that the calculation of confidence intervals is based on delta 

method, for obtaining the standard errors and this approximation might be inadequate 

for this sample size. This suggests that it may require a much larger sample or 

alternative approach to determine whether two populations are identically distributed.  
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This paper has focused on sequential stopping rules for estimating the number of 

shared species in two populations, and for estimating similarity of two populations.  

The proposed stopping rule is quite simple: stop sampling when the (empirical) 

estimate of discovering a new shared species is sufficiently small.  In the 

introduction, we noted that this probability is itself an interesting quantity.  We 

conclude by calculating v’(n) for each of the three real examples provided in the 

preceding section. Because our estimator requires equal sample sizes from each 

population, we approximate v’(n) by conservatively using the minimum number of 

observations taken per population.  Respectively, then, we find v’(n) = .0005 for the 

Taiwan Bird data; .0072 for the Crab data; and .033 for the Microbial data.  Using a 

value of c = .01 would suggest that the former two data sets are adequate in size, and 

that some further sampling of the microbial data would be in order.  Although it 

might not always be possible to sample sequentially in the manner outlined in this 

paper, calculating v’(n) might still be a useful tool for evaluating the adequacy of a 

given sample size. 
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APPENDIX: Turing type estimate v’(n) 

The probability of discovering new shared species after n observations, from (1), is 
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It should be noted that the last approximation is due to the fact that the upper bound of 

the summation is different.  Also, although equation (b) is useful for interpretation, it 
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The unconditional expectation of v’(n) is  

∑∑

∑∑∑

=

−

=

−

=

−−

=

−

=

−

−−−−−−

−−+−+−=

s

i

n
ii

n
i

s

i

n
i

n
ii

s

i

n
ii

n
ii

s

i

n
ii

s

i

n
ii

qqpqpp

qqppqqppnvE

1

1

1

1

1

11

1

1

1

1

)1()1()1()1(

)1()1()1()1())('(

 



 23 

which gives the bias approximately as 

E(v'(n) − v(n)) ≅ pi
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Similar to Turing’s estimate, the bias converges to 0 as the number of observations 

increases and it converges at an exponential rate.   
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Table 1. Similarity indices of Geometric distribution 
(Numbers inside the parentheses are the standard deviations.) 

 

12s = 15 
n 

Type 1 Type 2 Type 3 

50 .7630(.1274) .0036(.0051) .00049(.00104) 

100 .8610(.0598) .0039(.0037) .00060(.00076) 

200 .9250(.0317) .0040(.0024) .00058(.00047) 

500 .9665(.0141) .0040(.0016) .00060(.00026) 

1000 .9818(.0073) .0041(.0011) .00061(.00018) 

2000 .9922(.0026) .0042(.0007) .00062(.00010) 

True .9975 .0042 .00062 

 

12s = 30 
n 

Type 1 Type 2 Type 3 

50 .7633(.0928) .0079(.0077) -- 

100 .8644(.0558) .0080(.0053) -- 

200 .9267(.0336) .0082(.0038) -- 

500 .9700(.0136) .0083(.0023) -- 

1000 .9843(.0072) .0083(.0016) -- 

2000 .9921(.0038) .0084(.0013) -- 

True 1 .0084 -- 

Note: When 12s = 30, Type 3 is identical to Type 1. The results are 

based on 1,000 simulation runs. 
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Table 2. Using sampling cost for Geometric distributions 
 

   θ  θ̂  
Coverage 
of θ 

Sample 
Size 

Type 1 .9975 
0.9279 
(.0534) 

0.891 
(.0099) 

271.4 
(142.5) 

Type 2 .0042 
0.0028 
(.0026) 

0.586 
(.0156) 

1,189 
(1,112) 12s =15 

Type 3 .00062 
0.00021 
(.00052) 

0.238 
(.0135) 

496.1 
(1037) 

Type 1 1 
0.9718 
(.0559) 

0.928 
(.0082) 

1,977 
(1331) 

Type 2 .0084 
0.0073 
(.0031) 

0.814 
(.0123) 

2,668 
(1,332) 

3021 == ss  

12s =30 

Type 3 -- -- -- -- 

Type 1 .999997 
0.9828 
(.0286) 

0.939 
(.0076) 

2105 
(1243) 

Type 2 .00062 
0.00013 
(.00047) 

0.120 
(.0103) 

373.2 
(847.1) 12s =30 

Type 3 7.6 710−×  
0 

(0.0000) 
0 

(0.0000) 
100 

(0.0000) 

Type 1 1 
0.9858 
(.0229) 

0.946 
(.0071) 

3002 
(2360) 

Type 2 .00002 
0 

(0.0000) 
0 

(0.0000) 
100 

(0.0000) 

6021 == ss  

12s =60 

Type 3 -- -- -- -- 

Note: For the cases of 1221 sss == , the type 3 case is identical to the type 1 

case. If the average sample size is 100, this indicates that the sampling 

stops right away. The results are based on 1,000 simulation runs. 
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Table 3. Using Sampling cost on Taiwan Bird Data 
 

Sampling 
Cost θ̂  

Coverage 
of θ 

v(n) v’(n) 
Sample 
Size 

0.005 
0.8348 
(.0163) 

0.9550 
(.0066) 

0.0058 
(.0030) 

0.0048 
(.0002) 

2,968 
(964.6) 

0.001 
0.8394 

(.0074) 

0.9520 

(.0068) 

0.0011 

(.0006) 

0.0010 

(.00004) 

14,222 

(4,014) 

Note: The true θ is 0.8402 and there are 184 species from 

144,963 observations altogether. The results are based on 1,000 

simulation runs.  
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Table 4. Using Sampling cost on Panama Crab Data 
 

Sampling 
Cost θ̂  

Coverage 
of θ 

v(n) v’(n) 
Sample 
Size 

0.005 
0.3554 
(.0247) 

0.9580 
(.0063) 

0.0046 
(.0024) 

0.0042 
(.0010) 

1,203 
(266.9) 

0.001 
0.3577 

(.0163) 

0.9470 

(.0071) 

0.0017 

(.0018) 

0.0009 

(.00015) 

3,031 

(1,038) 

Note: The true θ is 0.3591 and there are 74 species from 5,831 

observations altogether. The results are based on 1,000 

simulation runs.  
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Table 5. Using Sampling cost on Microorganism Data 

 
 (a) Starting = 20 
 

Sampling 
Cost θ̂  

Coverage 
of θ 

v(n) v’(n) 
Sample 
Size 

0.05 
0.6923 
(.1478) 

0.916 
(.0088) 

0.0438 
(.0340) 

0.0269 
(.0224) 

24.44 
(7.844) 

0.01 
0.7122 

(.1247) 

0.910 

(.0090) 

0.0336 

(.0300) 

0.0018 

(.0040) 

50.95 

(37.11) 

 

(b) Starting = 50 
 

Sampling 
Cost θ̂  

Coverage 
of θ 

v(n) v’(n) 
Sample 
Size 

0.05 
0.7238 
(.1059) 

0.912 
(.0090) 

0.0228 
(.0200) 

0.0207 
(.0154) 

52.14 
(3.981) 

0.01 
0.7313 

(.0897) 

0.941 

(.0066) 

0.0163 

(.0202) 

0.0037 

(.0047) 

82.05 

(27.38) 

 

Note: The true θ is 0.7499 and there are 14 species from 125 

observations. The results are based on 1,000 simulation runs.  

 

 


