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A Synthesis Mortality Model for the Elderly

Karen C. Su' and Jack C. Yue®

'Department of Insurance and Finance, National Taichung University of Science and Technology, Taichung, Taiwan,
Republic of China

*Department of Statistics, National Chengchi University, Taipei, Taiwan, Republic of China

Mortality improvement has been a common phenomenon since the 20th century, and the human longevity continues to prolong.
Postretirement life receives a lot of attention, and modeling mortality rates of the elderly (ages 65 years and beyond) is essential
because life expectancy has reached the highest level in history. Mortality models can be divided into two groups, relational and
stochastic models, but there is no consensus on which model is better in modeling mortality rates of the elderly. In this study, instead
of choosing either a relational or stochastic model, we propose a synthesis model, selecting and modifying appropriate models from
both groups, which not only has a satisfactory estimation result but also can be used for mortality projection. We use the data from
the United States, the United Kingdom, Japan, and Taiwan (data were from the Human Mortality Database) to evaluate the proposed
approach. We found that the proposed model performs well and is a possible choice for modeling mortality rates of the elderly.

1. INTRODUCTION

Mortality improvement has been well recognized by life insurers, pension providers, and government officials. As the number
in the elder population increases, more related financial and insurance products are created, and suitable tools are needed to price
these products. There is a growing interest in modeling and projecting mortality rates of the elderly (age 65 years and older),
among all solutions in better managing longevity risk (Bohk-Ewald and Rau 2017; Li et al. 2011; Preston and Stokes 2012;
Thatcher et al. 1999). However, the process of modeling mortality rates of elderly population has not worked well yet in Taiwan,
because of a lack of quantity and good quality in the data on the elderly. For example, Taiwan has an excellent population regis-
tration system but the highest attained age of 100+ (ages 100 and beyond) is found in records from 1992 forward. This indicates
that only 25 years of data are available if we want to study the mortality rates of the oldest-old (85+) population.

The inadequate data availability for the elderly population increases the difficulty of mortality modeling. There is no consen-
sus about the future trend of elderly mortality, and whether life expectancy has a limit is one of the points in dispute (Carnes
et al. 2003; Yue 2012). Researchers and institutions also noticed that mortality improvement patterns of different age groups
may not be the same (Bohk-Ewald and Rau 2017; Borger and Schupp 2018; Kannisto 1994; Kannisto et al. 1994). Figure 1 dis-
plays the trends of mortality rates for those at age 30 years from the United States, the United Kingdom, Japan, and Taiwan for
the period 1970-2005, whereas Figure 2 shows those for persons ages 65 and 80 at the same period. While mortality improve-
ments of younger populations have begun to stabilize, there are still obvious decreasing trends for mortality rates of the elderly.
As a result, applying stochastic mortality models such as the Lee—Carter model (Lee and Carter 1992), assuming that the chang-
ing rates with respect to time of all ages are similar, may not result in the required accuracy for mortality fitting or projection.
We need to modify the mortality models in order to incorporate various rates of mortality improvement at different ages.

Mortality models can be separated into two categories: the traditional relational models and the modern stochastic models.
Traditional relational models, such as the Gompertz model, the Makeham model, and the Weibull model, often use single-year
mortality data and assume that the age-specific mortality rates satisfy a certain function form. The Coale—Kisker model
(Coale and Kisker 1990) and the logistic model are two other popular relational models that receive lots of attention in model-
ing elderly mortality. Most relational models usually provide sound mortality estimation, but they are not good for prediction
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FIGURE 1. Trend of Mortality Rates of Persons at Age 30 for Various Countries (1970-2005).

over time. Many researchers proposed modifications to increase the predicting accuracy of relational models. Tsai and Yang
(2014) proposed a linear regression approach to relate one mortality sequence to another of equal length. Cadena and Denuit
(2016) applied the accelerated failure time model and propose a semiparametric accelerated hazard relational model.

Stochastic models, on the other hand, use multiple-year data and focus on the time/cohort trend of mortality rates. Most of
them are good for mortality prediction but may not be used for data extrapolation, that is, predicting the mortality rates beyond
the highest attained ages. The LC model (Lee and Carter 1992) is probably the most widely used stochastic model in mortality
predictions and applications. The RH model (Renshaw and Haberman 2006) generalized the LC model by including a cohort
effect. The CBD model (Cairns et al. 2006), has been commonly used for modeling the mortality rates of higher ages (Cairns
et al. 2009). Among these three models, only the CBD model can extrapolate the mortality rates of these ages without mortal-
ity records.

More studies have focused on the stochastic models in recent years, mainly because of their performance in modeling mor-
tality improvement, and many modifications of the LC and CBD models are proposed, including, to name a few, those of
Chen and Cox (2009), Haberman and Renshaw (2009), Li et al. (2009), Cox et al. (2010), Cairns et al. (2009), and Mitchell
et al. (2013). To improve predictability, Brouhns et al. (2002) substituted a log-bilinear Poisson regression model for single
vector decomposition (SVD) in the LC model’s parameter estimation. Ahcan et al. (2013) suggested forecasting mortality for
small populations by mixing appropriately the mortality data obtained from other populations. Tsai and Lin (2017) incorpo-
rated Bihlmann credibility into mortality models to improve forecasting performances. However, as mentioned previously,
most of the analysis results of stochastic models are limited to the age range of the historical data. For ages beyond the given
sample age range, stochastic models may not provide results for mortality estimation and projection.

The main goal of this study is to propose a mortality model for post-retirement populations, ages 65 years and older.
Instead of setting up a new model, we aim to combine existing mortality models with accurate and stable results in mortality
estimation and/or prediction. In particular, we first choose a stochastic model as the basis and modify it with a relational
model. We hope that the proposed synthesis model can be used to extrapolate mortality rates for higher ages, as well as pos-
sessing good performance in estimation and prediction. In this study, we choose the LC and CBD models for the group of sto-
chastic models and use the Gompertz, Coale-Kisker, and logistic models for the group of relational model.

The concept of combining two different models is used quite often in constructing life tables (or mortality graduation), par-
ticularly for graduating the mortality rates for the elderly. For example, it is believed that the quality of data on the elderly is
more reliable in data from the Medicare program, with the U.S. Social Security Administration, and the mortality rates for
ages 85 and over were produced based on the Medicare data. In constructing the 1979-1981 U.S. Life Table, the mortality rates
for ages 85 and over were decided by the following formula (Brown 1993):
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FIGURE 2. Trends of Mortality Rates for Ages 65 and 80 Years for Various Countries (1970-2005).

ge = 70 [(95-2)gS + (x ~ 84)g)]. (1)
where ¢¢ and ¢! are the estimated mortality rates of age x(85 <x < 94) from the population census and Medicare,
respectively, and higher weights are on the Medicare mortality rates for higher ages. This simple but useful weighted formula
provides smooth and reliable estimates between two models, provided that they produce smooth and accurate estimates and
the weights are properly chosen. This formula also encourages the proposed synthesis model.

There are other methods for handling the case of populations with limited data, including survivor ratio method and
partial standard mortality ratio (SMR) method (Lee 2003; Thatcher et al. 2002; Wang et al. 2018). Terblanche (2016) proposed
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TABLE 1
List of Mortality Models Used in This Study
Model Target variable Assumption
LC Central death rate Inmy , = o, + Bk + &
CBD Mortality rate logit(qy,r) = In (fq’;[) = ke, + kea, (Xx=X) + &xr,
Gompertz Force of mortality u, = BC*
CK Central death rat 84)(r— 2
entral death rate Mingg, o 3, W5 [ln My — o — ki gs(x — 84) + (x 84)2(x 85) 5x
Logisti Mortality rat _ _ e [Brothr1-(x+0.5)]
ogistic ortality rate 0, =—Inp, = o] [7120+L/5L],1~(x+0.5)]

retrospective tests based on a number of extrapolative methods to forecast mortality rates of elderly populations in Australia.
For a population of 1 million or more, graduation methods such as the Whittaker and LC models can produce stable mortality
estimates at ages other than the elderly (Wang et al. 2018). We often apply relational models to acquire mortality estimates for
the elderly. For example, the Taiwan government uses a two-stage estimation to construct official life tables. At the first stage,
the Whittaker method is used to graduate mortality rates for ages 0-79 years and the Gompertz model is applied to acquire
mortality rates for ages 65 years and over. At the second stage, the mortality rates at ages 65-79 years are determined by the
linear combination of Whittaker and Gompertz estimates; higher weights are on the Gompertz estimates for higher ages.

This article is organized as follows: Section 2 provides a brief review of both relational models and stochastic model
applied in the article. Section 3 describes the process of constructing the synthesis models. In Section 4, we compare the pro-
posed models with existing models and apply the forecasted mortality rates to calculate the premium of a pure annuity.
Finally, the conclusion and discussion are given in Section 5.

2. REVIEW OF MORTALITY MODELS

We first give a brief introduction of mortality models used in this study (Table 1), following by the description of proposed
approach. For the group of stochastic models, we choose the LC and the CBD models. Both are popular and are well known
for providing good mortality estimation and prediction. For the group of relational models, we selected the Gompertz, the
Coale—Kisker, and the logistic models. These models are known for providing sound fitting results for mortality rates for the
elderly’s We introduce the stochastic models first.

Among all stochastic mortality models, the simplicity and accuracy of the LC model make it the most popular and widely
used. Lee and Carter (1992) assumed that the central death rate of an individual aged x at year ¢ follows the form

Inmy, = o + Bek + ex, 2)
where o, describes the average age pattern of mortality over time, f, is the deviations from the average pattern, x;, describes

the variation in the level of mortality over time, and &, ; is the error term.
The parameters are subject to constraints

Zkt:O and Zﬂle, (3)

to ensure model identification. When forecasting mortality rates, it is assumed that the a,’s and f5,’s remain constant over time
and the values of x; are modeled by random walk with drift:

Ki =K1+ ¢+ e “4)

'Source: Ministry of Interior, Department of Statistics, http://www.moi.gov.tw/stat
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where ¢, ~ N(0, a¢?), and ¢ is known as the drift parameter. The parameters can be estimated via singular value decomposition
(SVD), weighted least squares, the maximum likelihood estimation, or an approximation method, if there are missing data.

The CBD model, proposed by Cairns et al. (2006), was designed to model mortality rates for higher ages. Assuming that there
are two time trends, k¢, and k¢», ;, the model, for given age range [x;, x; + n — 1] and time period [#, t; + K — 1], is given by

logit(¢...) = In (1 9. ) — kers + kens (%) + e, 5)
- qx,t
where
x1+n—1
ZXIZM X
= ©)
n

and g, , is the mortality rate of an individual aged x in year ¢.
The errors are assumed to be independent and identically distributed and the two time trends are modeled by a bivariate ran-
dom walk with drift:

{ kevr = ket -1 + ¢y +ect o

keat = keo -1 + oy +eca

The Gompertz law probably is a well-known relational model and is often applied to acquire mortality rates for the elderly.
The Gompertz law of mortality assumes that the force of mortality at age x takes the form of u, = BC*, where B>0 and C>1.
Under this assumption, the probability that an individual at age x would survive to age x + 1, denoted by p,, is

px = exp[-BC*(C —1)/InC]. )
Let [, be the number of individuals alive at age x; then the amount who will survive 1 year later is
Lyt =1 - exp[-BC*(C —1)/InC]. )
From Equation (8), we also have
Inp,11/Inp, = C. (10)
Therefore, if the mortality pattern of the observed population follows the Gompertz law, the ratios of Inp, to Inp, remain

fairly constant.
The CK model (Coale and Kisker 1990) assumes that the central death rate can be modeled as

my = my_; - exp [kg. g5 + (x — 85) - 5], for x > 85, (11)
where
In (284 4 26k
g = G K5 and kggs = In [ 755, (12)
325 ’ nga

Given that m is set at 1.0/0.8 for men/women, the mortality rates above age 85 can be obtained recursively and allow us to
carry out the extrapolation of the age-extended mortality table. A further revised method used weighed least squares on the fol-
lowing quadratic form related to the central death rate:

(x—84) (x—85) SK} ?

min Z Wy {lnmx — Og — k](’gj ()C - 84) + B

0K SK
X

(13)

The logistic model was proposed by Perks (1932), who found empirically that the values of force of mortality in a life table
that he was examining could be fitted by a logistic function (Thatcher et al. 1999). In other words, the population growth rate
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declines with population numbers and reaches a limit. In this article, we assume that the logarithm of p,, the probability that
an individual at age x would survive to age x + 1, is modeled as the following:

__°*p Bro~+Br1- (x+0.5)]
L+ exp[Bo+ B (x+05)]

Ny = —1Inpy (14)

3. THE PROPOSED SYNTHESIS MODEL

Before introducing the process of combining two mortality models, we note that mortality models may not use the same tar-
get variables, and these can be death rate, central death rate, or force of mortality. The Gompertz model is based on the
assumption of the force of mortality, whereas the LC model is based on the central death rate and the CBD model is based on
death rates. Thus, we need to modify all the models to have the same target variable. By definition, the central death rate of a
person aged x at year ¢, denoted by m, ,, is calculated as follows:

my :@_L (15)

=— ,
Ly .[0 lx+y, t+y—1 dy

where d ; = Iy ;—l4+1.++1 1S the number of deaths between age x and age x+ 1 at year ¢, and L, ; is the exposure, or number of
person-years lived between age x and x 4 1 at year . We first assume that the force of mortality follows the Gompertz assump-
tion, u, , = B;Cy, at year 1. Assuming that the force of mortality is uniformly distributed within year ¢, we further approximate
the exposure (or stationary population) L, ; of age x at time ¢, under the uniform distribution of death, via

lx,z + lx+],t _ lx,z(l +px,z)

L,
! 2 2

14

: (16)

Then we have

mx’,:@:;(l*px”) (17)

Ly, (lJpr,z) .

Given that p, ; = exp [-B,C}(C; — 1)/ In C;] from the Gompertz model, we can derive the following estimation for the cen-
tral death rate:

l_mx,r
In ( In <1 +i>> = In (B,(c, - 1)/1nc,) +xInC,. (18)

2

We combine the advantages of both the relational and the stochastic mortality models to build the proposed model. The pro-
cess of constructing the synthesis mortality model is similar to that of constructing life tables in Taiwan. The relational models
have a better fit for the mortality rates of the elderly but may not have good estimation for all ages generally. This is the reason
for using the Gompertz law for the mortality rates at only ages 65 years and over in Taiwan. Thus, we use the stochastic models
for younger ages, apply relational models for the older ages, and design a method to connect these two models in between. In
other words, we use the two different mortality models before and after a chosen age. The chosen age, termed the transition age
(Figure 3), is set so that the morality curve will be separated into two parts: the stochastic model before the transition age and the
synthesis model after that. Figure 4 briefly describes the process of the proposed synthesis model. The estimation of the stochas-
tic model is performed first, followed by that of the relational model for mortality rates of ages over the transition age.

The model combining the LC model and the Gompertz law is called the LC-G model. Similarly, the one combining the LC model
and the CK/logistic model is referred as the LC-CK/LC-Log model, while that of combining the CBD model and the Gompertz law,
the CK model, and the logistic model are referred as the CBD-G, the CBD-CK, and the CBD-Log model, respectively.

Notice that the Gompertz parameters now have subscripts 7. Instead of setting a fixed Gompertz parameter for the whole period, we estimate the
parameter on a year-to-year basis.
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Step 1: Estimate the stochastic parameters using original mortality data of
the training period.

Step 2: Forecast future mortality rates of testing period using stochastic
parameters.

e N
Step 3: Assuming that the transition age being from 65 to 98, estimate
parameters of relational model based on mortality paths of training period
generated by the stochastic model repeatedly. The transition age is set as

the certain age that minimizes RMSE.
\ S

;
Step 4: For each year of the testing period, estimate parameters of
relational model after the transition age.

FIGURE 4. The Synthesis Process.

4. EMPIRICAL STUDY AND APPLICATIONS
4.1. Empirical Data and Determining the Transaction Ages

We use empirical data to evaluate the proposed synthesis model described in the previous section. The mortality data used
are from four countries: the United States, the United Kingdom, Japan, and Taiwan (source: Human Mortality Database
[HMD]), with age range 65-99 years and time period 1970-2009. We use the backcasting (or cross-validation) procedure as
mentioned by Dowd et al. (2010), Tsai and Yang (2015), and Tsai and Lin (2017). Since projection results are highly sensitive
to calibration periods and accuracy does not consistently increase with increased length of fitting period (Van Berkum et al.
2016; Terblannche 2016), we consider the backcasting procedure with a 10-year training period and a 5-year testing period.
We assume that the training period is [to, to + 9], where ty is 1970, 1975, 1980, 1985, 1990, and 1995, with 5 years of overlap
between two consecutive periods, and the testing period is [tp + 10, ty + 14]. The data from training periods are used to con-
struct mortality models and the fitted model is applied to the data from the testing periods.

We first look at the results of the transition age. As defined, the certain transition age point is set so that the morality curve
will be separated into two parts: the stochastic model before the transition age, and the combined model after that. To find the
transition age for each year period [ty: to + 9], we assume the transition ages as 65 to 98 years and repeatedly run the synthesis
process for each, as described in Figure 4. The resulted transition age is then set as the one that minimizes the root mean square
error.
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TABLE 2
Transition Ages for the Synthesis Models

LC+CK LC + Gompertz

Data period  United States  United Kingdom Japan Taiwan United States  United Kingdom Japan Taiwan

1970-1979 77 77 67 85 78 65 75 70
1975-1984 77 77 73 96 77 65 75 71
1980-1989 77 69 76 96 77 68 76 75
1985-1994 75 68 74 71 77 75 77 74
1990-1999 75 68 75 77 77 65 75 66
1995-2004 66 66 75 74 66 66 75 74
CBD +CK CBD + Gompertz
Data period  United States  United Kingdom Japan Taiwan United States  United Kingdom Japan Taiwan
1970-1979 66 72 98 96 65 86 98 98
1975-1984 66 75 95 97 65 81 97 98
1980-1989 66 75 95 96 65 77 98 98
1985-1994 66 66 98 95 65 67 98 98
1990-1999 66 66 69 98 65 69 68 98
1995-2004 66 66 66 98 65 69 65 98

Table 2 summarizes the transition ages of synthesis models for countries at different data periods.” Generally speaking,
most transition ages lie in the age range of 65-80 years, except for the cases of Taiwan and Japan. It seems that the trend of
mortality rates of the elderly is different from that for younger ages, and introducing relational models for the older ages may
improve the model fit.

The results of CBD model and Gompertz model require further attention, especially for the combination of CBD model and
Gompertz model. For this treatment combination, the transition age is 65 years in the case of U.S. data and is 98 years in the
case of Taiwan data (and some of the Japan data). This indicates that the Gompertz model has better fit than the CBD model
in the case of American elderly persons, but the CBD model fits better than the Gompertz model in the case of Taiwanese eld-
erly persons (i.e., there is no need to consider the Gompertz model). Since the CBD and Gompertz models are designed to
model the elderly’s mortality rates, our results imply that the fitting performance of elderly mortality models is likely to be
data dependent, which is mentioned in the previous studies (e.g., Wang et al. 2016). The combination of CBD and the
Coale—Kisker model also reveals similar pattern regarding the determination of the transition age.

Note that in addition to applying mortality models directly, we can also check whether the empirical data support using
these models. As mentioned in the previous section, the ratios of Inp,; to Inp, should remain fairly constant if the mortality
pattern of the observed population follows the Gompertz law. The results show that we cannot reject the assumption that the
mortality rates of elderly population follow the Gompertz law. Yue (2002) proposed using a bootstrap simulation to construct
the confidence interval of parameter C, and we can use this to verify whether the elderly mortality rates follow the Gompertz
assumption. The bootstrap simulation (Appendix A) suggests that the Gompertz model is a feasible assumption for the data
from four countries, since the intersections of confidence intervals are not empty. We can consider similar tests for other mor-
tality models as part of the exploratory data analysis before constructing the synthesis model. We use the empirical data to
evaluate the proposed synthesis model in the next section.

4.2. Fitting and Forecasting Results

We can evaluate the performance of mortality models based on the training data (estimation) or the testing data (prediction). We
consider the case of training data first. More parameters in the model usually would have smaller estimation error, but there is risk
from using too many parameters (i.e., overfitting). Thus, we use the Akaike information criterion (AIC) to evaluate the model fit for
the training data. The AIC was proposed by Akaike (1973) and has been widely used for model selection. It is defined as

*We did not apply the transition age process on the Lee-Log and the CBD-Log models because estimating parameters for the logistic model requires
regression on all ages.
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TABLE 3
AIC Results for All Models

Country Model Male Female
United States LC —2442.39 —2710.06
CBD —2900.39 —2901.45
LC + logistic -2137.96 —2298.65
LC+CK —2770.56 —2909.07
LC + Gompertz —2627.22 —2960.20
CBD + Gompertz -3170.57 -2962.67
CBD + logistic —2505.06 -2616.81
CBD +CK -2976.2 —2874.85
United Kingdom LC -2188.61 —2485.58
CBD —2832.27 -3054.74
LC + logistic —2006.08 —2238.35
LC+CK —2340.22 —2735.48
LC + Gompertz -2502.70 -2699.24

CBD + Gompertz —2871.12 -3032.61
CBD + logistic —2358.40 —2598.59
CBD +CK —2877.96 -3033.13
Japan LC —2287.47 -2511.17
CBD —2894.01 -3106.61
LC + logistic -2162.06 —2387.90

LC+CK —2563.81 —2850.71
LC + Gompertz -2711.83 —2844.52
CBD + Gompertz -2602.32 —2683.34
CBD + logistic -2511.96 —2740.09
CBD +CK —2897.29 -3078.81
Taiwan LC —2292.74 -2391.17
CBD —2357.67 —2584.49
LC + logistic -2141.92 -2502.43
LC+CK —2351.51 —2479.17
LC + Gompertz —2265.03 —2415.86
CBD + Gompertz —2353.67 —2580.49
CBD + logistic -2318.17 —2703.30
CBD +CK —2348.34 —2575.16

Note: The numbers with shadow are the best among all models.

AIC = —2log (ML) + 2K, (19)

where ML is the maximum likelihood under the given model and K is the number of fitted parameters. If the errors of mortality
models are assumed to be normally distributed with constant variance, then AIC can be also computed from the least squares
regression (Burnham and Anderson 2002), redefining the AIC as

where RSS is the residual sum of squares,

RSS

T n—1

RSS =" " (Gorsj—aesi)

=1 i=0

(20)

21
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TABLE 4
Fitting Outperformance Scores of All Models
RMSE MAPE
Model 65-84 85-99 65-84 85-99 Total
LC 9 1 15 2 27
CBD 9 5 4 7 25
LC + logistic 1 2 2 2 7
LC+CK 0 8 4 5 17
LC + Gompertz 4 7 9 5 25
CBD + Gompertz 13 8 8 11 40
CBD + logistic 2 3 0 3 8
CBD + CK 10 14 6 13 43
Total score 48 48 48 48 192
Note: The numbers with shadow are the best among all models.
TABLE 5
Forecasting Outperformance Scores of All Models
RMSE MAPE

Model 65-84 85-99 65-84 85-99 Total
LC 4 0 5 2 11
CBD 9 4 9 6 28
LC + logistic 7 4 8 4 23
LC+CK 0 2 1 1 4
LC + Gompertz 2 10 5 11 28
CBD + Gompertz 9 10 12 10 41
CBD + logistic 9 6 2 2 19
CBD + CK 8 12 6 12 38
Total score 48 48 48 48 192

Note: The numbers with shadow are the best among all models.

where N is the number of observations and K is the total number of estimated regression parameters. Smaller AIC val-
ues indicate better performance in estimation. Given that we use the weighted least squares to estimate parameters of
our combined models, we applied Equation (20) for the calculation of the AIC values of all models, as shown in
Figure 5. In general, the synthesis models tend to have smaller AIC values, compared to those without combining the
relational models, although additional parameters are added. For example, the LC + CK model has smaller AIC values
than the LC model. However, no models have the smallest AIC values in all cases. Detailed results are given in
Table 3.

Of course, we can use the estimation errors to evaluate the mortality models, such as in terms of root mean square error
(RMSE) and mean absolute percentage error (MAPE), which are defined as

12
1. (182 2
RMSE = - > [;Z (Gxrij=Gwtig) @2)

=1 i=0

and
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1 T 1 n—1
MAPE = T E P E |Gsij — Gerifl | 5 (23)
=1 "M i=o

where T is the time period, n is the age range, g, +ij is the observation value, and g, ; is the estimated value.

We divide the results into two age groups: [65, 84] and [85, 99], for younger and older elderly mortality. Detailed results
are in Appendix B-1 and B-2. In terms of estimation errors, the synthesis models have smaller errors for the age group [85,
99], but the LC and CBD models have smaller errors for the group [65, 84]. The estimation errors generally are larger for the
group [85, 99], almost 10 times as large as those for the group [65, 84].

It seems that the fitting performance of models is data dependent and we cannot find a single model that dominates the
others. Still, we look for the mortality models that have fitted well in most countries, and we apply the voting method to deter-
mine this. The voting is to count the scores for each data set, and the model thaty has the best performance gets 3 points and
the second and third best get 2 points and 1 point, respectively. Outperformance scores of overall fitting are based on RMSE
and MAPE (Table 4). Given that the total outperformance score is 48 points for each comparison, with 4 treatment combina-
tions, models with scores over 32 points can be considered as having a performance better than average. The
CBD + Gompertz and CBD 4 CK models are the best among all models.

We can follow the same procedure to evaluate the forecasting performance. We apply the models acquired from the training
data to the testing data. Again, we use the RMSE and MAPE as the criteria for comparison, and the calculation results are
shown in Appendix Tables B-3 and B-4. Unlike the results of fitting errors, the synthesis models have smaller forecasting
errors, but no mortality models can outperform other models. Thus, we also use the voting method for overall comparison
(Table 5). Again, the CBD + Gompertz and CBD + CK models are the best among these with respect to forecasting errors. It
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should be noted that, among all other models, the LC and CBD models have fine performance in fitting for ages 65-84,
whereas the CBD + Gompertz and CBD + CK models perform well in fitting and forecasting for the oldest-old (ages 85-99).

One of our motivations for introducing a synthesis model is extrapolation beyond the highest recorded ages, and thus we
illustrate the extension of mortality rates for age 100 and over. Because not all countries have data beyond age 100, we select
the United States and Japan to demonstrate our approach. Also, due to the data availability, only two data periods are consid-
ered: [1990, 1999] and [1995, 2004] for training periods, [2000, 2004] and [2005, 2009] for testing periods. We estimate
parameters of mortality models from ages 65 to 99 years, and apply the acquired models to ages 100 to 105 years. Note that
the LC model is not considered here since it cannot be used to extrapolate.

Figure 6 displays the forecasting results of our synthesis models, compared with the CBD model, and Figure 7 shows the
average mortality curves of ages 85—105 years. We use the RMSE errors to demonstrate the forecasting results. In general, the
CBD + Gompertz and LC 4 Gompertz models have the smallest forecasting errors in almost all cases, and the average errors
are smaller than 30%, which is not bad for ages 85-105. Also, as shown in Figure 6, the combined model CBD + Gompertz
always has a smaller RMSE than the CBD model for all 8 cases, which is equivalent to p value = (0.5)% ~ 0.004 (i.e., run
test). This indicates the CBD + Gompertz model is better than the CBD model for the group of ages 85+ years. It seems that
combining the stochastic and relational models is a feasible approach. Also, it seems that the CBD model may overestimate
mortality improvements for ages over 95, resulting in the lower mortality curve shown in Figure 7.

4.3. Pricing Annuity Products

Other than the empirical study, we also consider applications by applying our synthesis model to annuity products. To sim-
plify the discussion, we consider the single premium of a 10-year life annuity product that pays $1 at the end of each year. The
interest rate, 7, is 2% and the insured ages are 70, 80, and 90 years. We use the data from 1980-1999 for parameter estimation,
and the premiums are calculated for the insured period 2000-2009 based on the acquired mortality models. We also calculate
the actual values of the annuities based on the real mortality data of the insured period. Detailed results of premium calcula-
tions and estimated errors (reported as % of actual values) are listed in Appendix C.

Figure 8 shows the annuity premiums derived from all models, compared with the actual values based on the true mortality
rates. Not surprisingly, the premiums of mortality models with lower forecasting errors (the proposed approaches) in the previ-
ous section are closer to the actual values. This means that the synthesis models can be used in practice. However, all mortality
models underestimate the premiums for insured age 70 and overestimate the amount for insured age 90. This indicates that all
models tend to overestimate the mortality rates at younger ages and underestimate those at older ages.

5. CONCLUSION AND DISCUSSIONS

Postretirement life has received a lot of attention in recent years. Forecasting the life expectancy for the elderly is essential
to deal with the longevity risk, and mortality models are a popular choice. However, there is no consensus on which model is
better in modeling the mortality rates of the elderly. Also, due to the data availability, it is often necessary to interpolate mor-
tality rates beyond the highest recorded ages. In this article, we propose a synthesis model, combining relational and stochastic
mortality models, in order to achieve a better fit of mortality rates for the elderly and mortality extrapolation.

The idea behind the synthesis model is similar to the construction of life tables in Taiwan, where two different approaches
are used: one for the elderly and the other for younger ages. Basically, we think that stochastic models are preferable for
younger ages and relational models can be used for the elderly. In this study, we consider LC and CBD models for younger
ages and Gompertz, CK, and logistic models for the older ages. We use empirical data from the Human Mortality Database
(the United States, the United Kingdom, Japan, and Taiwan; years 1970-2009) to evaluate the proposed approach. The data
are separated into training and testing periods, and the RMSE and MAPE are used as error criteria. The synthesis mortality
models generally have smaller fitting errors (and AIC values) in the training periods and smaller forecasting errors in the test-
ing periods.

In addition, we found that the LC and CBD models perform well for mortality rates of ages 65 to 84 years and the synthesis
models are a good choice for older ages. The synthesis models also have stability performance for mortality extrapolation, up
to age 105 years. It seems that the synthesis model performs especially well for the elderly and the oldest-old (i.e., ages 85 and
over), and it can be used for annuity products and insurance products related to older ages. However, similar to the results of
previous studies, we found that no mortality models can dominate other models at all cases and the fitting results are highly
data dependent. We only include four countries in this study, and we should consider more data in the future.
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There are many choices for the stochastic and relational models. In addition to using the historical data and the backcasting
procedure to choose the feasible combination of models, we can also use the idea of exploratory data analysis to screen pos-
sible choices of models. We can adapt the idea of Yue (2002) and develop tools for checking whether the mortality data satisfy
certain model assumption. For example, bootstrapping simulation can be used to construct possible range of parameter C for
the Gompertz model. This can help to narrow down the possible choices of mortality models.

There is a small difference between the synthesis model and life table construction in Taiwan. We use one single connection
(single transition age) between two models, while Taiwan’s life tables use a transition period (15 to 20 ages). The advantage
of using a transition period is that the mortality rates are smoother around the connect points and this won’t create jumps at
consecutive ages. This is important in calculating insurance premiums. Also, since no mortality models can dominate, we
should impose possible variations (or variance) to the mortality predictions. One possible approach is to use the block boot-
strap simulation and derive 1,000 or 10,000 sample paths of predictions. The variance can be calculated via these sample paths.
Another possibility is to adapt a Bayesian approach via Markov-chain Monte Carlo (MCMC) method, but it would require
more computations.
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APPENDIX A. BOOTSTRAP CONFIDENCE INTERVALS OF UNITED STATES, UNITED KINGDOM, JAPAN,
AND TAIWAN
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APPENDIX B. EMPIRICAL RESULTS OF MORTALITY MODELS

K. C. SU AND J. C. YUE

TABLE B.1
Fitting Errors for Ages 65-84 Years
Male Female
Country Model RMSE (x107?) MAPE (%) RMSE (x107%) MAPE (%)
United States LC 3.3560 3.1277 1.4594 2.1621
CBD 2.1185 2.5550 1.8546 4.0348
LC + logistic 3.5496 3.2161 1.7389 3.4426
LC+CK 4.6253 3.4927 2.4752 2.7939
LC + Gompertz 3.9362 3.2945 1.7601 2.2613
CBD + Gompertz 1.9626 2.3263 1.6819 3.6132
CBD + logistic 2.3927 2.9576 2.1067 4.5994
CBD +CK 2.0941 2.4997 1.7936 3.8961
United Kingdom LC 4.9721 3.8591 2.1960 2.6960
CBD 2.4688 2.3131 1.8309 3.1763
LC + logistic 4.6858 3.7752 2.2085 2.7896
LC+CK 5.8437 4.3659 2.8245 3.0330
LC + Gompertz 5.2510 4.3488 2.6865 29121
CBD + Gompertz 2.4403 2.3125 1.7862 3.0816
CBD + logistic 2.6401 2.5159 2.0874 3.7577
CBD +CK 2.4272 2.2817 1.8207 3.1184
Japan LC 3.5715 3.0268 1.7504 2.1575
CBD 2.1805 2.7498 1.6379 3.7064
LC + logistic 4.1610 3.5400 2.4842 3.7494
LC+CK 4.3507 3.3342 2.5940 2.6477
LC + Gompertz 4.3719 3.2891 2.5311 2.5368
CBD + Gompertz 2.1934 2.6369 1.6582 3.4820
CBD + logistic 2.2652 3.0344 1.6669 4.0903
CBD +CK 2.2044 2.7541 1.6462 3.7030
Taiwan LC 5.8133 4.5638 3.9634 4.1601
CBD 6.8117 5.7656 4.4357 5.1083
LC + Logistic 7.8068 6.1683 4.9867 5.3945
LC+CK 6.9567 5.1280 4.6875 4.6720
LC + Gompertz 6.4367 4.7221 4.1599 4.2192
CBD + Gompertz 6.8117 5.7656 4.4357 5.1083
CBD + Logistic 6.6875 5.7677 4.4041 5.1468
CBD +CK 6.8117 5.7656 4.4357 5.1083

Note: The numbers with shadow are the best among all models.
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TABLE B.2
Fitting Errors for Ages 85-99 Years
Male Female

Country Model RMSE (x107%) MAPE (%) RMSE (x107%) MAPE (%)

United States LC 37.4976 11.3087 25.5738 9.0608
CBD 24.1130 6.6857 24.2132 8.4894
LC + logistic 55.4611 16.6398 44.2728 16.0002
LC+CK 19.7779 7.7307 16.8179 7.3884
LC + Gompertz 24.6415 8.7118 15.4925 6.9827
CBD + Gompertz 13.3335 3.8946 17.7827 6.4567
CBD + logistic 39.9940 10.4867 34.0051 11.1086
CBD + CK 17.7228 5.3219 20.6657 7.6032

United Kingdom LC 53.8685 13.1828 35.3625 10.6348
CBD 24.8964 47524 18.2539 5.5562
LC + logistic 66.3180 15.4857 47.6979 14.6451
LC+CK 35.8483 9.6428 20.8625 7.8345
LC + Gompertz 27.8738 7.1356 21.7907 8.1852
CBD + Gompertz 20.6717 42787 16.2918 4.5904
CBD + logistic 47.8889 9.1208 33.8142 9.1015
CBD + CK 19.8658 3.8724 15.4734 4.9204

Japan LC 47.3160 12.2084 35.0886 10.2843
CBD 23.1915 5.7631 17.1989 5.6509
LC + logistic 52.6172 14.1613 38.1043 13.0589
LC+CK 28.1403 8.3231 18.0771 6.6864
LC + Gompertz 22.8317 7.0423 18.7452 6.3077
CBD + Gompertz 35.8247 8.1371 32.9483 8.0402
CBD + logistic 38.1077 8.6331 26.763 8.2957
CBD +CK 21.6431 5.3908 16.8237 5.4409

Taiwan LC 44.5132 12.4697 38.6652 10.8262
CBD 57.7218 20.0147 37.3526 10.9785
LC + logistic 51.8190 16.1094 30.8100 8.8296
LC+CK 38.1068 11.5223 31.9804 9.5293
LC + Gompertz 42.0679 12.6552 32.4046 9.8854
CBD + Gompertz 57.7218 20.0147 37.3526 10.9785
CBD + logistic 50.7823 16.6938 28.6391 8.1733
CBD + CK 57.7215 20.0147 37.3525 10.9785

Note: The numbers with shadow are the best among all models.
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TABLE B.3
Forecasting Errors for Ages 65-84 Years
Male Female
Country Model RMSE (x107%) MAPE (%) RMSE (x107%) MAPE (%)
United States LC 3.3740 3.9212 2.0057 3.8829
CBD 2.8898 3.9629 2.6157 5.6883
LC + logistic 3.7241 4.1513 2.4206 5.1069
LC+CK 4.6562 4.4027 3.0765 4.7087
LC 4 Gompertz 3.8357 4.0913 2.1757 3.9097
CBD + Gompertz 2.7170 3.6410 24714 5.2919
CBD + logistic 3.1676 4.4455 2.8240 6.2341
CBD + CK 2.8342 3.8672 2.5631 5.5667
United Kingdom LC 4.0196 4.2840 2.2153 4.4132
CBD 3.0639 3.8845 2.2554 4.5885
LC + logistic 3.8397 3.9780 2.2655 42714
LC+CK 4.9212 5.0706 2.4642 4.4244
LC 4 Gompertz 4.2132 4.3535 2.3816 4.1642
CBD + Gompertz 2.8290 3.7237 2.0652 4.4468
CBD + logistic 3.5034 4.3308 2.6572 5.2325
CBD +CK 2.9109 3.8051 2.1679 4.5415
Japan LC 4.0920 6.1659 1.8233 4.8791
CBD 2.6074 4.5133 1.5196 4.4374
LC + logistic 4.6493 6.1616 2.3510 5.4622
LC+CK 4.7505 6.4669 2.3772 5.1434
LC 4 Gompertz 4.7055 6.3933 2.3313 5.1169
CBD + Gompertz 2.6725 4.5106 1.5464 42312
CBD + logistic 2.5333 4.5737 1.5036 47498
CBD + CK 2.6360 4.5406 1.5280 4.4394
Taiwan LC 7.3002 8.2912 5.3172 7.7119
CBD 5.9859 6.1255 4.2835 5.9536
LC + logistic 5.8909 6.0399 4.0245 5.2832
LC+CK 7.4214 8.1515 5.2624 7.4556
LC 4 Gompertz 7.1015 8.1854 5.1306 7.6294
CBD + Gompertz 5.9859 6.1255 4.2835 5.9536
CBD + logistic 5.9436 6.2005 4.3752 6.1213
CBD +CK 5.9859 6.1255 4.2835 5.9536

Note: The numbers with shadow are the best among all models.
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TABLE B4
Forecasting Errors for Ages 85-99 Years
Male Female
Country Model RMSE (x107%) MAPE (%) RMSE (x107%) MAPE (%)
United States LC 39.4826 11.5883 27.6544 9.9862
CBD 29.7181 8.0761 30.3576 10.7362
LC + logistic 62.4814 18.1527 50.6321 17.8374
LC+CK 22.2683 8.1030 21.6274 9.1569
LC 4 Gompertz 26.1881 9.0437 18.5894 8.2137
CBD + Gompertz 16.6971 5.0162 21.5568 8.4009
CBD + logistic 46.0261 11.7647 39.9645 13.1683
CBD + CK 22.2178 6.5447 25.6593 9.6790
United Kingdom LC 51.9006 12.8568 347497 10.6434
CBD 22.6302 5.0615 19.2496 6.0992
LC + logistic 61.9280 15.0403 48.4727 14.9654
LC+CK 52.0008 11.9610 23.1984 8.6991
LC 4 Gompertz 27.7059 7.5214 26.6892 9.6011
CBD + Gompertz 20.2961 4.8595 16.0250 5.1120
CBD + logistic 42.6221 8.7252 33.1332 9.3357
CBD + CK 18.3238 4.3022 16.9487 5.5190
Japan LC 45.2495 12.9741 31.2740 10.4128
CBD 24.9037 7.4609 18.5358 7.7907
LC + logistic 51.7791 15.7953 36.8234 14.5451
LC+CK 30.0134 9.6770 23.1293 8.9763
LC 4 Gompertz 22.3085 8.0699 18.1496 7.1200
CBD + Gompertz 30.9035 8.0922 26.5387 8.5839
CBD + logistic 38.4739 10.5045 28.0938 10.5815
CBD + CK 22.7956 7.0297 17.3811 7.5203
Taiwan LC 479116 12.6169 41.1403 11.4193
CBD 45.2508 14.9925 35.6224 12.2041
LC + logistic 40.1348 12.6390 27.9482 9.2390
LC+CK 44,5323 12.7162 38.2318 11.2188
LC 4 Gompertz 40.9803 11.2288 31.7637 9.9403
CBD + Gompertz 45.2508 14.9925 35.6224 12.2041
CBD + logistic 39.9630 12.8570 27.8872 9.9199
CBD + CK 45.2506 14.9925 35.6231 12.2042

Note: The numbers with shadow are the best among all models.
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APPENDIX C
TABLE C.1
Single Premium of 10-Year Pure Annuity Paying $1 Each Year—United States
Male Female

Model 70 80 90 70 80 90
Actual cost of annuity 5.8109 4.4646 2.3788 6.1381 5.0381 2.9376
LC 5.7842 4.4748 2.6695 6.1014 5.0846 3.2451

—0.46% 0.23% 12.22% —0.60% 0.92% 10.47%
CBD 5.7420 4.4193 2.6552 6.0971 5.0165 3.2645

-1.19% -1.01% 11.62% —0.67% —0.43% 11.13%
LC+Log 5.7526 4.5020 2.8967 6.0812 5.0576 3.4755

-1.00% 0.84% 21.77% —0.93% 0.39% 18.31%
LC+CK 5.7816 4.5371 2.5336 6.0998 5.1172 3.2039

—0.50% 1.63% 6.51% —0.62% 1.57% 9.06%
LC+G 5.7825 4.5059 2.6051 6.1013 5.0917 3.2441

—0.49% 0.93% 9.51% —0.60% 1.07% 10.43%
CBD+G 5.7462 4.4259 2.5790 6.0992 5.0265 3.2149

-1.11% —0.86% 8.42% —0.63% —0.23% 9.44%
CBD + Log 5.7369 4.4083 2.7410 6.0946 5.0031 3.3172

-1.27% -1.26% 15.23% —0.71% —0.69% 12.92%
CBD + CK 5.7418 4.4279 2.6255 6.0964 5.0244 3.2481

-1.19% —0.82% 10.37% —0.68% —0.27% 10.57%

TABLE C.2
Single Premium of 10-Year Pure Annuity Paying $1 Each Year—United Kingdom
Male Female

Model 70 80 90 70 80 90
Actual cost of annuity 5.7830 4.2021 2.2652 6.1471 4.8601 2.7991
LC 5.6945 4.3331] 2.4933 6.0703 4.9700 3.0157

-1.53% 3.12% 10.07% -1.25% 2.26% 7.74%
CBD 5.6866 4.2074 2.3276 6.0856 4.8734 2.9406

-1.67% 0.13% 2.76% -1.00% 0.27% 5.05%
LC +Log 5.6955 4.3147 2.6242 6.0648 4.9259 3.1992

-1.51% 2.68% 15.85% -1.34% 1.35% 14.29%
LC+CK 5.6867 4.3849 2.4093 6.0615 5.0144 2.9784

-1.67% 4.35% 6.36% -1.39% 3.17% 6.41%
LC+G 5.7057 4.3335 2.4500 6.0696 4.9565 3.1023

-1.34% 3.13% 8.16% -1.26% 1.98% 10.83%
CBD +G 5.6842 4.2217 2.2783 6.0832 4.8867 29111

-1.71% 0.47% 0.58% -1.04% 0.55% 4.00%
CBD + Log 5.6800 4.1927 2.4322 6.0826 4.8542 3.0042

-1.78% —0.22% 7.37% -1.05% —0.12% 7.33%
CBD + CK 5.6865 4.2188 2.2901 6.0847 4.8844 2.9200

-1.67% 0.40% 1.10% -1.02% 0.50% 4.32%
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TABLE C.3
Single Premium of 10-Year Pure Annuity Paying $1 Each Year—Japan
Male Female

Model 70 80 90 70 80 90
Actual cost of annuity 5.9874 4.6890 2.6888 6.4584 5.5623 3.4986
LC 5.9883 4.6916 2.7974 6.4627 5.5616 3.5392
0.02% 0.05% 4.04% 0.07% -0.01% 1.16%
CBD 5.9441 4.7565 29710 6.4428 5.6021 3.7805
—0.72% 1.44% 10.49% —0.24% 0.72% 8.06%
LC +Log 5.9421 4.7436 3.0383 6.4376 5.5649 3.7626
—0.76% 1.16% 13.00% —0.32% 0.05% 7.55%
LC+CK 5.9854 4.7224 2.7465 6.4619 5.5728 3.5220
—0.03% 0.71% 2.15% 0.05% 0.19% 0.67%
LC+G 5.9872 4.7147 2.7255 6.4624 5.5722 3.4956
0.00% 0.55% 1.36% 0.06% 0.18% —0.09%
CBD+G 5.9441 4.7565 29711 6.4428 5.6021 3.7807
—0.72% 1.44% 10.50% —0.24% 0.72% 8.06%
CBD +Log 5.9404 4.7483 3.0495 6.4417 5.5937 3.8292
—0.78% 1.26% 13.41% —0.26% 0.56% 9.45%
CBD +CK 5.9441 4.7565 29710 6.4428 5.6021 3.7805
—0.72% 1.44% 10.49% —0.24% 0.72% 8.06%

TABLE C.4
Single Premium of 10-Year Pure Annuity Paying $1 Each Year—Taiwan
Male Female

Model 70 80 90 70 80 90
Actual cost of annuity 5.7768 4.4971 2.5655 5.7768 4.4971 2.5655
LC 5.8175 4.3359 2.6022 5.8175 4.3359 2.6022
0.70% -3.59% 1.43% 0.70% -3.59% 1.43%
CBD 5.7461 4.4618 2.7092 5.7461 4.4618 2.7092
—0.53% —0.78% 5.60% -0.53% —0.78% 5.60%
LC +Log 5.7500 4.4972 2.8797 5.7500 4.4972 2.8797
—0.46% 0.00% 12.25% —0.46% 0.00% 12.25%
LC+CK 5.8175 4.3359 2.6022 5.8175 4.3359 2.6022
0.70% -3.59% 1.43% 0.70% -3.59% 1.43%
LC+G 5.8115 4.4286 2.4247 5.8115 4.4286 2.4247
0.60% -1.52% -5.49% 0.60% -1.52% -5.49%
CBD+G 5.7461 4.4618 2.7092 5.7461 4.4618 2.7092
—0.53% —0.78% 5.60% —0.53% —0.78% 5.60%
CBD + Log 5.7422 4.4588 2.8066 5.7422 4.4588 2.8066
—0.60% —0.85% 9.40% —0.60% —0.85% 9.40%
CBD +CK 5.7461 4.4618 2.7092 5.7461 4.4618 2.7092

—0.53% —0.78% 5.60% —0.53% —0.78% 5.60%
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