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A Synthesis Mortality Model for the Elderly 

 

Abstract 

Mortality improvement has been a common phenomenon since the 20
th

 century and the 

human longevity continues to prolong. Post-retirement life receives a lot of attention and the 

need for modelling mortality rates of the elderly (ages 65 and beyond) is essential because life 

expectancy has reached the highest level in history. Mortality models can be divided into two 

groups: relational and stochastic models, but there is no consensus which model is better in 

modelling the elderly’s mortality rates. In this study, instead of choosing either relational or 

stochastic models, we propose a synthesis model, selecting and modifying appropriate models 

from both groups, which not only has satisfactory estimation result but also can be used for 

mortality projection. We use the data from U.S., U.K., Japan, and Taiwan to evaluate the 

proposed approach (Data source: Human Mortality Database). We found that the proposed 

model performs well and is a possible choice for modelling the elderly’s mortality rates.  

 

Keywords: Longevity Risk, Relational Models, Stochastic Models, Mortality Projection, 

Mortality Improvement 
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A Synthesis Mortality Model for the Elderly 

 

1. Introduction 

Mortality improvement has been well recognized by life insurers, pension providers, and 

government officials. As the number of elder population increases, more related financial and 

insurance products are created, and suitable tools are needed to price these products. There is a 

growing interest in modelling and projecting mortality rates of the elderly (ages 65 and 

beyond), among all solutions in better managing longevity risk (Bohk-Ewald and Rau, 2017; 

Li et al., 2011; Preston and Stokes, 2012; Thatcher et al., 1999). However, the process of 

modelling mortality rates of elderly population didn’t go so well, because of lacking good 

quality and enough quantity of elderly data. For example, Taiwan has fine population 

registration system but the highest attained age is 100+ (ages 100 and beyond) in 1992. This 

indicates that only 25 years of data are available if we want to study the mortality rates of 

oldest-old (85+) population.  

The inadequate data availability of the elderly population increases the difficulty of 

mortality modelling. There is no consensus about the future trend of elderly mortality and life 

expectancy is with/without a limit is one of the points in dispute (Carnes et al., 2003; Yue, 

2012). Researchers and institutions also noticed that mortality improvement patterns of 

different age groups may not be the same (Bohk-Ewald and Rau, 2017; Börger and Schupp, 

2018; Kannisto, 1994; Kannisto et al., 1994). Figure 1 displays the trends of mortality rates of 

age 30 from the U.S., U.K., Japan, and Taiwan for the period 1970-2005, whereas Figure 2 

shows those of ages 65 and 80 at the same period. As mortality improvements of younger 

populations began to stabilize, there are still obvious decreasing trends for the elderly’s 

mortality rates. As a result, applying stochastic mortality models, such as the Lee-Carter model 

(Lee and Carter, 1992), assuming that the changing rates with respect to time of all ages are 
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similar, may not obtain required accuracy for mortality fitting or projection. We need to modify 

the mortality models in order to incorporate with various rates of mortality improvement at 

different ages. 

(Please insert Figure 1 about here) 

(Please insert Figure 2 about here) 

Mortality models can be separated into two categories: the traditional relational models and 

the modern stochastic models. Traditional relational models, such as the Gompertz model, the 

Makeham model, and the Weibull model, often use single-year mortality data and assume that 

the age-specific mortality rates satisfy certain function form. The Coale-Kisker model (Coale 

& Kisker, 1990) and the logistic model are two other popular relational models which receive 

lots of attention in modelling elderly mortality. Most relational models usually provide sound 

mortality estimation but they are not good in prediction over time. Many researchers proposed 

modifications to increase the predicting accuracy of relational models. Tsai and Yang (2014) 

proposed a linear regression approach to relate one mortality sequence to the other of equal 

length. Cadena and Denuit (2016) applied the accelerated failure time model and propose a 

semi-parametric accelerated hazard relational model.  

Stochastic models, on the other hand, use multiple-year data and focus on the time/cohort 

trend of mortality rates. Most of them are good in mortality prediction but may not be used for 

data extrapolation, i.e., predicting the mortality rates beyond highest attained ages. The LC 

model (Lee and Carter, 1992) probably is the most widely used stochastic model in mortality 

predictions and applications. The RH model (Renshaw and Haberman, 2006), generalized the 

LC model by including a cohort effect. The CBD model (Cairns et al., 2006), has been 

commonly used for modeling the mortality rates of higher ages (Cairns et al., 2009). Among 

these three models, only the CBD model can extrapolate the mortality rates of ages without 

mortality records.  

More studies are on the stochastic models in recent years mainly because of the ability for 
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their performance in modelling mortality improvement, and many modifications of the LC and 

CBD models are proposed, including, to name a few, Chen and Cox (2009), Haberman and 

Renshaw (2009), Li et al. (2009), Cox et al. (2010), Cairns et al. (2009), and Mitchell et al. 

(2013). To improve predictability, Brouhns et al. (2002) substituted a log-bilinear Poisson 

regression model for single vector decomposition (SVD) in the LC model’s parameter 

estimation. Ahcan et al. (2013) suggested forecasting mortality for small populations by mixing 

appropriately the mortality data obtained from other populations. Tsai and Lin (2017) 

incorporated Bühlmann credibility into mortality models to improve forecasting performances. 

However, as mentioned previously, most of the analysis results of stochastic models are limited 

to the age range of the historical data. For ages beyond the given sample age range, stochastic 

models may not provide results for mortality estimation and projection. 

The main goal of this study is to propose a mortality model for post-retirement populations, 

ages 65 and over. Instead of setting up a new model, we aim to combine existing mortality 

models with accurate and stable results in mortality estimation and/or prediction. In particular, 

we first choose a stochastic model as the basis and modify it with a relational model. We hope 

that the proposed synthesis model can be used to extrapolate mortality rates of higher ages, as 

well as possessing good performance in estimation and prediction. In this study, we choose 

LC and CBD models for the group of stochastic model and use the Gompertz, Coale-Kisker, 

and logistic models for the group of relational model. 

The concept of combining two different models is used quite often in constructing life 

tables (or mortality graduation), particularly for graduating the mortality rates for the elderly. 

For example, it is believed that the elderly data quality is more reliable from the Medicare 

program, U.S. Social Security Administration, and the mortality rates for ages 85 and over 

were produced based on the Medicare data. In constructing the 1979-81 U.S. Life Table, the 

mortality rates of ages 85 and over were decided by the following formula (Brown, 1993),  

𝑞𝑥 =
1

11
[(95 − 𝑥)𝑞𝑥

𝐶 + (𝑥 − 84)𝑞𝑥
𝑀].       (1) 
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C

xq and
M

xq are the estimated mortality rates of age x (85 94)x  from the population census 

and Medicare, respectively, and more weights are on the Medicare mortality rates for higher 

ages. This simple but useful weighted formula provides smooth and reliable estimates 

between two models, provided that they produce smooth and accurate estimates and the 

weights are properly chosen. This formula also motivates the proposed synthesis model.  

There are other methods for handling the case of populations with limited data, including 

survivor ratio method and partial standard mortality ratio (SMR) method (Lee, 2003; Thatcher 

et al., 2002; Wang et al., 2018). Terblanche (2016) proposed retrospective tests based on a 

number of extrapolative methods to forecast mortality rates of elderly populations in Australia. 

For a population with one million or more, graduation methods such as Whittaker and LC 

model can produce stable mortality estimates at ages other than the elderly (Wang et al., 2018). 

We often apply relational models to acquire mortality estimates for the elderly. For example, 

Taiwan government uses a two-stage estimation to construct official life tables.
1
 At the first 

stage, Whittaker method is used to graduate mortality rates for ages 0-79 and the Gompertz 

model is applied to acquire mortality rates for ages 65 and over. At the second stage, the 

mortality rates at ages 65-79 are determined by the linear combination of Whittaker and 

Gompertz estimates, larger weights are on the Gompertz estimates for higher ages.  

This paper is organized as follows. Section 2 provides a brief review of both relational 

models and stochastic model applied in the paper. Section 3 describes the process of 

constructing the synthesis models and compares the proposed model with existing models. In 

section 4, we apply the forecasted mortality rates to calculate the premium of a pure annuity. 

Final conclusion and discussions are given in Section 5. 

 

                                                 

1
 Source: Ministry of Interior, Department of Statistics  http://www.moi.gov.tw/stat 
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2. Review of Mortality Models 

We will first give a brief introduction of mortality models used in this study (Table 1), 

following by the description of proposed approach. For the group of stochastic models, we 

choose the LC and the CBD models. Both are popular and well-known for providing good 

mortality estimation and prediction. For the group of relational models, we select the 

Gompertz, the Coale-Kisker, and the logistic model. These models are known as candidates of 

providing sound fitting results for the elderly’s mortality rates. We introduce the stochastic 

models first.  

(Please insert Table 1 about here) 

Among all stochastic mortality models, the simplicity and accuracy of the LC model makes it 

the most popular and widely used. Lee and Carter (1992) assumed that the central death rate of 

an individual aged-x at year t follows the form: 

, ,ln x t x x t x tm       ,      (2) 

where 

x  describes the average age pattern of mortality over time, 

x  is the deviations from the average pattern, 

t  describes the variation in the level of mortality over time, and 

,x t  is the error term. 

The parameters are subject to constraints 

0t   and 1 x ,        (3) 

to ensure model identification. When forecasting mortality rates, it is assumed that x ’s and 

x ’s remain constant over time and the values of t are modeled by random walk with drift: 

1t t te             (4) 
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where 2~ (0, )t LCe N  , and   is known as the drift parameter. The parameters can be estimated 

via singular value decomposition (SVD), weighted least square, the maximum likelihood 

estimation, or approximation method, if there are missing data. 

The CBD model, proposed by Cairns et al. (2006), was designed to model mortality rates for 

higher ages. Assuming that there are two time trends, 
1,C tk  and 

2,C tk , the model, for given 

age range [x1, x1+n-1], and time period [t1, t1+K1], is given by: 

,

, 1, 2, ,

,

logit( ) ln ( ) ,
1

x t

x t C t C t x t

x t

q
q k k x x

q


 
       

    (5) 

 where 

1

1

1x n

x x

x

x
n

 





              (6) 

and txq , is the mortality rate of an individual aged x in year t.

 

The errors are assumed to be independent and identically distributed and the two time 

trends are modeled by a bivariate random walk with drift: 

1, 1, 1 1 1,

2, 2, 1 2 2,

C t C t C C t

C t C t C C t

k k e

k k e









  


  
          .   (7) 

The Gompertz law probably is a well-known relational model and is often applied to 

acquire mortality rates for the elderly. The Gompertz law of mortality assumes that the force of 

mortality at age x takes the form of
x

x BC  , where 0B   and 1C  . Under this assumption, 

the probability that an individual at age x would survive to age x+1, denoted by xp , is 

exp ( 1) / lnx

xp BC C C     .       (8) 

Let xl  be the number of individuals alive at age x, then the amount that will survive one year 

later would be 

1 exp ( 1) / lnx

x xl l BC C C
      .      (9) 
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From eq. (7), we also have 

1ln / lnx xp p C  .        (10) 

Therefore, if the mortality pattern of the observed population follows the Gompertz low, the 

ratios of 1ln xp  over ln xp shall remain fairly constant.  

The CK model (Coale and Kisker, 1990) assumes that the central death rate can be modeled 

as  

1 ,85exp ( 85) , for 85x x Km m k x s x
        , where     (11) 

84
,85

110

ln 26

325

K

m
k

m
s

 
 

  

 

and 85
,85

84

lnK

m
k

m

 
  

  .     (12) 

Given that 110m  is set at 1.0/0.8 for men/women, the mortality rates above age 85 can be obtained 

recursively and allow us carry out the extrapolation of the age-extended mortality table. A further 

revised method used weighed least square on the following quadratic form related to the central 

death rate: 

2

,85
,

( 84)( 85)
min ln ( 84)

2K K

x x K K K
s

x

x x
w m k x s




  
    

 
    (13) 

The logistic model was proposed by Perks (1932), who found empirically that the values of 

force of mortality in a life table which he was examining could be fitted by a logistic function. 

In other words, the population growth rate declines with population numbers and reaches a 

limit. In the paper, we assume that the logarithm of xp , the probability that an individual at age 

x would survive to age x+1, is modeled as the following: 

,0 ,1

,0 ,1

exp ( 0.5)
ln

1 exp ( 0.5)

L L

x x

L L

x
p

x

 


 

      
     

.     (14) 
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3. The Proposed Synthesis Model 

Before introducing the process of combining two mortality models, we notice that 

mortality models may not use the same target variables, and they can be death rate, central 

death rate, or force of mortality. The Gompertz model is based on the assumption of the force 

of mortality, whereas the LC model is based on the central death rate and the CBD model is on 

death rates. Thus, we need to modify all models to have the same target variable. By definition, 

the central death rate of a person aged-x at year t, denoted by ,x tm , is calculated as follows: 

, ,

, 1

,
, 1

0

x t x t

x t

x t
x y t y

d d
m

L l dy  

 


,       (15) 

where , , 1, 1x t x t x td l l     is the number of death between age x and age x+1 at year t, and ,x tL  is 

the exposure, or number of person-years lived between age x and x+1 at year t. We first assume 

that the force of mortality follows the Gompertz assumption,
,

x

x t t tB C  , at year t.
2 

Assuming 

that the force of mortality is uniformly distributed within year t, we further approximate the 

exposure (or stationary population) ,Lx t of age x at time t, under the uniform distribution of 

death, via  

, 1, , ,

,

(1 )

2 2

x t x t x t x t

x t

l l l p
L  

  .        (16) 

Then we have 

 
 

,,

,

, ,

2 1

1

x tx t

x t

x t x t

pd
m

L p


 

 .        (17) 

Given that 
, exp ( 1) / lnx

x t t t t tp B C C C    

 

from the Gompertz model, we can derive the 

following estimation for the central death rate as follows: 

                                                 

2
 Notice that the Gompertz parameters now have subscripts t. Instead of setting a fixed Gompertz parameter for 

the whole period, we estimate the parameter on a year-to-year basis. 
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 

,

,

1
2ln ln ln ( 1) / ln ln

1
2

x t

t t t t
x t

m

B C C x C
m

  
  

     
    

  

.   (18)
 

We will combine both the advantages of relational and stochastic mortality models to build 

the proposed model. The process of constructing synthesis mortality model is similar to that 

of constructing life tables in Taiwan. The relational models have a better fit of the elderly’s 

mortality rates may not have good estimation for all ages generally. This is the reason for 

using the Gompertz law for the mortality rates at only ages 65 and over in Taiwan. Thus, we 

will use the stochastic models for younger ages, apply relational models for the older ages, 

and design a method to connect these two models in between. In other words, we use two 

different mortality models before and after a chosen age. The chosen age, namely the 

transition age (Figure 3), is set so that the morality curve will be separated into two parts: the 

stochastic model before the transition age and the synthesis model after that.  

(Please insert Figure 3 about here) 

(Please insert Figure 4 about here) 

Figure 4 briefly describes the process of proposed synthesis model. The estimation of 

stochastic model is performed first, followed by that of relational model for mortality rates of 

ages over the transition age. 

The model combining the LC model and the Gompertz law is called the “LC-G” model. 

Similarly, the one combining the LC model and the CK/logistic model is referred as the 

LC-CK/LC-Log model, while that of combining the CBD model and the Gompertz law, the 

CK model and the logistic model are referred as the CBD-G, the CBD-CK and the CBD-Log 

model, respectively. 

 

4. Empirical Study and Applications 

4.1 Empirical data and determining the transaction ages 
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We use empirical data to evaluate the proposed synthesis model described in the previous 

section. The mortality data used are from four countries: U.S., U.K., Japan, and Taiwan 

(Source: Human Mortality Database; HMD), with age range 65-99 and time period 

1970-2009. We use backcasting (or cross-validation) procedure as mentioned by Dowd et al. 

(2010), Tsai and Yang (2015) and Tsai and Lin (2017). Since projections results are highly 

sensitive to calibration periods and accuracy does not consistently increase with increase 

length of fitting period (Berkum et al. 2016; Terblannche, 2016), we consider the backcasting 

procedure with 10-year training period and 5-year testing period. We assume that the training 

period is [t0, t0+9], where t0 is 1970, 1975, 1980, 1985, 1990, and 1995, with 5 years overlap 

between two consecutive periods and the testing period is [t0+10, t0+14]. The data from 

training periods are used to construct mortality models and the fitted model is applied to the 

data from the testing periods. 

We first look at the results of the transition age. As defined, the certain transition age point 

is set so that the morality curve will be separated into two parts: the stochastic model before 

the transition age and the combined model after that. To find the transition age for each year 

period [t0:t0+9], we assume the transition age being from 65 to 98 and repeatedly run the 

synthesis process, as described in Figure 4. The resulted transition age is then set as the one 

that minimizes the root mean square error. 

(Please insert Table 2 about here) 

Table 2 summarizes the transition ages of synthesis models for countries at different data 

periods.
3
 Generally speaking, most transition ages lie at the age range of 65-80, except for the 

cases of Taiwan and Japan. It seems that the trend of elderly’s mortality rates is different to 

that of younger ages and introducing relational models at the older ages may improve the 

model fit.  

                                                 

3
 We did not apply the transition age process on the Lee-Log model because estimating parameters for the 

logistic model requires regression on all ages. 
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The results of CBD model and Gompertz model require further attention, especially for the 

combination of CBD model and Gompertz model. For this treatment combination, the 

transition age is 65 in the case of U.S. data and is 98 in the case of Taiwan data (and some of 

Japan data). This indicates that the Gompertz model has better fits than the CBD model in the 

case of American elderly, but the CBD model fits better than the Gompertz model in the case 

of Taiwanese elderly (i.e., we don’t need to consider the Gompertz model). Since the CBD 

and Gompertz models are designed to model the elderly’s mortality rates, our results imply 

that the fitting performance of elderly mortality models is likely to be data dependent, which 

is mentioned in the previous studies (e.g., Wang et al., 2016). The combination of CBD and 

the Coale-Kisker model also reveals similar pattern regarding to the determination of the 

transition age. 

Note that, in addition to applying mortality models directly, we can also check whether the 

empirical data support using these models. As mentioned in the previous section, the ratios of 

1ln xp  over ln xp  shall remain fairly constant if the mortality pattern of the observed 

population follows the Gompertz low. The results show that we cannot reject the assumption 

that the mortality rates of elderly population follow the Gompertz law. Yue (2002) proposed 

using the bootstrap simulation to construct the confidence interval of parameter C and we can 

use it to verify if the elderly mortality rates follow the Gompertz assumption. The bootstrap 

simulation (Appendix A) suggests that the Gompertz model is a feasible assumption for the 

data from four countries, since the intersections of confidence intervals are not empty. We can 

consider similar tests for other mortality models as part of exploratory data analysis before 

constructing the synthesis model. We will use the empirical data to evaluate the proposed 

synthesis model in the next section.  

 

4.2 Fitting and forecasting results 

We can evaluate the performance of mortality models based on the training data (estimation) 
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or the testing data (prediction). We consider the case of training data first. More parameters in 

the model usually would have smaller estimation error, but there is risk for using too many 

parameters (i.e., overfitting). Thus, we use the Akaike information criterion (AIC) to evaluate 

the model fit for the training data. AIC was proposed by Akaike (1974) and has been widely 

used for model selection. AIC is defined as: 

2log( ) 2AIC ML K   ,             (19)
 

where ML is the maximum likelihood under the given model and K is the number of fitted 

parameters. If the errors of mortality models are assumed to be normally distributed with 

constant variance, then AIC can be also computed from the least squares regression (Burnham 

and Anderson, 2002), i.e., redefining the AIC as:  

log( ) 2
RSS

AIC N K
N

  ,             (20)
 

where RSS is the residual sum of squares,  

1
2

, ,

1 0

ˆ( )
T n

x i j x i j

j i

RSS q q


 

 

                  (21) 

and N is the number of observations and K is the total number of estimated regression 

parameters. Smaller AIC values indicate better performance in estimation. Given that we use 

the weighted least squares to estimate parameters of our combined models, we applied 

equation (20) for the calculation of the AIC values of all models, as shown in Figure 5. In 

general, the synthesis models tend to have smaller AIC values, comparing to those without 

combining the relational models, although additional parameters are added. For example, the 

LC+CK model has smaller AIC values than the LC model. However, no models have the 

smallest AIC values in all cases. Detailed results are in Table 4. 

(Please insert Figure 5 about here) 

 (Please insert Table 4 about here) 

Of course, we can use the estimation errors to evaluate the mortality models, such as in 

terms of root mean square error (RMSE) and mean absolute percentage error (MAPE), which 
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are defined as: 

1/ 2
1

2

, ,

1 0

1 1
ˆ( )

T n

x i j x i j

j i

RMSE q q
T n



 

 

 
  

 
               (22) 

and 

1

, ,

1 0

1 1
ˆ

T n

x i j x i j

j i

MAPE q q
T n



 

 

 
  

 
  ,             (23) 

where T is the time period, n is the age range, ,
ˆ

x i jq   is the observation value and ,x i jq   is the 

estimated value. 

We divide the results into two age groups: [65, 84] and [85, 99], for younger and older 

elderly mortality. Detailed results are in Appendix B-1 and B-2. In terms of estimation errors, 

the synthesis models have smaller errors for the age group of [85, 99] but the LC and CBD 

models have smaller errors for the group [65, 84]. The estimation errors generally are larger 

for the group [85, 99], almost ten times as large as those for the group [65, 84].  

It seems that the fitting performance of models is data-dependent and we cannot find a 

single model that dominates the others. Still, we look for the mortality model(s) which have 

fitted well in most countries, and we apply the voting method to determine. The voting is to 

count the scores for each data set, and the model has the best performance gets 3 points and 

the second/third best has 2/1 points, respectively. Out-performance scores of overall fitting are 

based on RMSE and MAPE (Table 5). Given that the total out-performance score is 48 points 

for each comparison, with 4 treatment combinations, models with scores over 32 points can 

be considered as a performance better than average. The CBD+Gompertz and CBD+CK 

models are the best among all models.  

(Please insert Table 5 about here) 

(Please insert Table 6 about here) 

We can follow the same procedure to evaluate the forecasting performance. We apply the 

models, acquired from the training data, to the testing data. Again, we use the RMSE and 
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MAPE as the criteria for comparison, and the calculation results are shown in Appendix B-3 

and B-4. Unlike the results of fitting errors, the synthesis models have smaller forecasting 

errors, but no mortality models can outperform other models. Thus, we also use the voting 

method for overall comparison (Table 6). Again, the CBD+Gompertz and CBD+CK models 

are the best among with respect to forecasting errors. It should be noted that, among all other 

models, the LC and CBD models have fine performance in fitting for ages 65-84, whereas the 

CBD+Gompertz and CBD+CK models performs well in fitting and forecasting for the 

oldest-old (ages 85-99).  

One of our motivations for introducing synthesis model is extrapolation beyond highest 

recorded ages, and thus we will illustrate the extension of mortality rates for age 100 and over. 

Because not all countries have data beyond age 100, we select U.S. and Japan to demonstrate 

our approach. Also, due to the data availability, only two data periods are considered: [1990, 

1999] and [1995: 2004] for training periods, [2000, 2004] and [2005: 2009] for testing periods. 

We estimate parameters of mortality models from ages 65 to 99, and apply the acquired 

models to ages 100 to 105. Note that the LC model is not considered here since it cannot be 

used to extrapolate. 

Figure 6 displays the forecasting results of our synthesis models, compared with the CBD 

model, whereas Figure 8 shows the average mortality curves of ages 85-105. We should use 

only the RMSE errors to demonstrate the forecasting results. In general, the CBD+Gompertz 

and LC+Gompertz models have the smallest forecasting errors in almost all cases, and the 

average errors are smaller than 30% which is not bad for the ages 85-105. Also, as shown in 

Figure 6, the combined model CBD+Gompertz always has smaller RMSE than the CBD 

model for all 8 cases, which is equivalent to p-value = (0.5)8  0.004 (i.e., run test). This 

indicates the CBD+Gompertz model is better than the CBD model for the group of ages 85+. 

It seems that combining the stochastic and relational models is a feasible approach. Also, it 

seems that the CBD model may overestimate mortality improvements for ages over 95, 
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resulting in lower mortality curve shown in Figure 7.  

(Please insert Figure 6 about here) 

(Please insert Figure 7 about here) 

4.3 Pricing Annuity Products 

Other than the empirical study, we also consider applications by applying our synthesis 

model to annuity products. To simplify the discussion, we consider the single premium of a 

10-year life annuity product that pays $1 at the end of each year. The interest rate, i, is 2% and 

the insured ages are 70, 80, and 90. We use the data from 1980~1999 for parameter estimation 

and the premiums are calculated for insured period 2000~2009 based on the acquired 

mortality models. We also calculate the actual values of the annuities based on the real 

mortality data of the insured period. Detailed results of premium calculations and estimated 

errors (reported as % of actual values) are listed in Appendix C.  

Figure 8 shows the annuity premiums derived from all models, compared with the actual 

values based on the true mortality rates. Not surprisingly, the premiums of mortality models 

with lower forecasting errors (the proposed approaches) in the previous section are closer to 

the actual values. This means that the synthesis models can be used in practice. However, all 

mortality models underestimate the premiums for insured age 70 and overestimate the amount 

for insured age 90. This indicates that all models tend to over-estimate the mortality rates at 

younger ages and under-estimate those at older ages.  

(Please insert Figure 8 about here) 

 

5. Conclusion and Discussions 

Post-retirement life has received a lot of attention in recent years. The need for forecasting 

the life expectancy for the elderly is essential to deal with the longevity risk and mortality 

models are a popular choice. However, there is no consensus which model is better in 
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modelling the elderly’s mortality rates. Also, due to the data availability, it is often necessary 

to interpolate mortality rates beyond the highest recorded ages. In this paper, we propose a 

synthesis model, combining relational and stochastic mortality models, in order to achieve a 

better fit of mortality rates for the elderly and mortality extrapolation.  

The idea behind the synthesis is similar to the construction of life tables in Taiwan, where 

two different approaches are used: one for the elderly and the other for younger ages. 

Basically, we think that stochastic models are preferred for younger ages and relational 

models can be used for the elderly. In this study, we consider LC and CBD models for 

younger ages and Gompertz, CK, and logistic models for the older ages. We use empirical 

data from the Human Mortality Database (U.S., U.K., Japan, and Taiwan; years 1970-2009) to 

evaluate the proposed approach. The data are separated into training and testing periods, and 

the RMSE and MAPE are used as error criteria. The synthesis mortality models generally 

have smaller fitting errors (and AIC values) in the training periods and smaller forecasting 

errors in the testing periods.  

In addition, we found that the LC and CBD models perform well for mortality rates of age 

65 to 84 and the synthesis models are a good choice for older ages. The synthesis models also 

have stability performance for mortality extrapolation, up to age 105. It seems that the 

synthesis model performs especially well for the elderly and the oldest-old (i.e., ages 85 and 

over) and it can be used to annuity products and insurance products related to older ages. 

However, similar to the results of previous studies, we found that no mortality models can 

dominate other models at all cases and the fitting results are highly data-dependent. We only 

include four countries in this study, and we should consider more data in the future.  

There are quite a lot of choices for the stochastic and relational models. In addition to use 

the historical data and the backcasting procedure to choose the feasible combination of 

models, we can also use the idea of exploratory data analysis to screen possible choices of 

models. We can adapt the idea of Yue (2002) and develop tools for checking whether the 
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mortality data satisfy certain model assumption. For example, bootstrapping simulation can 

be used to construct possible range of parameter C for the Gompertz model. This can help to 

narrow down the possible choices of mortality models.   

There is a small difference between the synthesis model and life table construction in 

Taiwan. We use one single connection (single transition age) between two models, while 

Taiwan’s life tables use a transition period (15 to 20 ages). The advantage of using a transition 

period is that the mortality rates are smoother around the connect points and this won’t create 

jumps at consecutive ages. This is important in calculating insurance premiums. Also, since 

no mortality models can dominate, we should impose possible variations (or variance) to the 

mortality predictions. One possible approach is to use the block bootstrap simulation and 

derive 1,000 or 10,000 sample paths of predictions. The variance can be calculated via these 

sample paths. Another possibility is to adapt Bayesian approach via MCMC (Markov Chain 

Monte Carlo) but it would require more computations.  
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Figure 1. Trend of mortality rates of age 30 for various countries (1970-2005) 
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(a) Mortality rates of age 65 

 

(b) Mortality rates of age 80 

Figure 2. Trends of mortality rates of ages 65 and 80 for various countries (1970-2005) 
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Figure 3. The transition age after which we apply the synthesis process 
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Figure 4. The synthesis process 

 

 

  

Step 1: Estimate the stochatic parameters using origianal mortality data of the training period 

Step 2: Forecast future mortality rates of testing period using stochastic parameters 

Step 3: Assuming that the transition age being from 65 to 98, estimate parameters of relational 

model based on mortality paths of training period generated by the stochastic model repeatedly. 

The transition age is set as the certain age that minimized RMSE. 

Step 4: For each year of the testing period, estimate parameters of relational model after the 

transition age. 

註解 [c1]: 如果我沒弄錯意思，應該

是分別使用隨機及關係模型（都是估

計、不是預測！），再依照線性加權

確定 transition age。現在這個寫法有

點難懂，建議修改這個圖形，或甚至

以口頭敘述，不需要這個圖形。 

步驟 1、分別套入各一個隨機、關係

模型，計算死亡率的估計值及誤差。 

步驟 2、以線性加權計算步驟 1 的合

成模型，在不同 transition age 的死亡

率估計值及誤差。 

步驟 3、比較隨機、關係、合成模型

的估計誤差，如果合成模型誤差最小，

紀錄最佳模型的 transition age。 
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Figure 5. The AIC values of each countries using 1970-2009 data 
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Figure 6. RMSE forecasting error for ages 85~105 
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Figure 7. 5-year average mortality curve of ages 85-105 (CBD and synthesis models) 

Note: The black solid lines are the observed mortality rates.  
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Figure 8. Single premium of 10-year pure annuity for insured ages 70, 80, and 90 
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Table 1. List of mortality models used in this study 

Model Target variable Assumption 

LC Central death rate , ,ln x t x x t x tm        

CBD Mortality rate 
,

, 1, 2, ,

,

logit( ) ln ( ) ,
1

x t

x t C t C t x t

x t

q
q k k x x

q


 
       

 

Gompertz Force of mortality 
x

x BC   

CK Central death rate 

2

,85
,

( 84)( 85)
min ln ( 84)

2K K

x x K K K
s

x

x x
w m k x s




  
    

 
  

Logistic Mortality rate 
,0 ,1

,0 ,1

exp ( 0.5)
ln

1 exp ( 0.5)

L L

x x

L L

x
p

x

 


 

      
     
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Table 2. Transition ages for the synthesis models 

 LC + CK LC + Gompertz 

Data period U.S. U.K. Japan Taiwan U.S. U.K. Japan Taiwan 

1970-1979 77 77 67 85 78 65 75 70 

1975-1984 77 77 73 96 77 65 75 71 

1980-1989 77 69 76 96 77 68 76 75 

1985-1994 75 68 74 71 77 75 77 74 

1990-1999 75 68 75 77 77 65 75 66 

1995-2004 66 66 75 74 66 66 75 74 

 CBD + CK CBD + Gompertz 

Data period U.S. U.K. Japan Taiwan U.S. U.K. Japan Taiwan 

1970-1979 66 72 98 96 65 86 98 98 

1975-1984 66 75 95 97 65 81 97 98 

1980-1989 66 75 95 96 65 77 98 98 

1985-1994 66 66 98 95 65 67 98 98 

1990-1999 66 66 69 98 65 69 68 98 

1995-2004 66 66 66 98 65 69 65 98 
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Table 4. AIC results for all models 

Country Model Male Female 

U.S. 

LC -2442.39 -2710.06 

CBD -2900.39 -2901.45 

LC + Logistic -2137.96 -2298.65 

LC + CK -2770.56 -2909.07 

LC + Gompertz -2627.22 -2960.20 

CBD + Gompertz -3170.57 -2962.67 

CBD + Logistic -2505.06 -2616.81 

CBD + CK -2976.2 -2874.85 

U.K. 

LC -2188.61 -2485.58 

CBD -2832.27 -3054.74 

LC + Logistic -2006.08 -2238.35 

LC + CK -2340.22 -2735.48 

LC + Gompertz -2502.70 -2699.24 

CBD + Gompertz -2871.12 -3032.61 

CBD + Logistic -2358.40 -2598.59 

CBD + CK -2877.96 -3033.13 

Japan 

LC -2287.47 -2511.17 

CBD -2894.01 -3106.61 

LC + Logistic -2162.06 -2387.90 

LC + CK -2563.81 -2850.71 

LC + Gompertz -2711.83 -2844.52 

CBD + Gompertz -2602.32 -2683.34 

CBD + Logistic -2511.96 -2740.09 

CBD + CK -2897.29 -3078.81 

Taiwan 

LC -2292.74 -2391.17 

CBD -2357.67 -2584.49 

LC + Logistic -2141.92 -2502.43 

LC + CK -2351.51 -2479.17 

LC + Gompertz -2265.03 -2415.86 

CBD + Gompertz -2353.67 -2580.49 

CBD + Logistic -2318.17 -2703.30 

CBD + CK -2348.34 -2575.16 

Note: The numbers with shadow are the best among all models.  
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Table 5. Fitting Out-performance Scores of all models 

Model 
RMSE MAPE 

Total 
65~84 85~99 65~84 85~99 

LC 9 1 15 2 27 

CBD 9 5 4 7 25 

LC + Logistic 1 2 2 2 7 

LC + CK 0 8 4 5 17 

LC + Gompertz 4 7 9 5 25 

CBD + Gompertz 13 8 8 11 40 

CBD + Logistic 2 3 0 3 8 

CBD + CK 10 14 6 13 43 

Total score 48 48 48 48 192 

Note: The numbers with shadow are the best among all models. 
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Table 6. Forecasting Out-performance Scores of all models 

Model 
RMSE MAPE 

Total 
65~84 85~99 65~84 85~99 

LC 4 0 5 2 11 

CBD 9 4 9 6 28 

LC + Logistic 7 4 8 4 23 

LC + CK 0 2 1 1 4 

LC + Gompertz 2 10 5 11 28 

CBD + Gompertz 9 10 12 10 41 

CBD + Logistic 9 6 2 2 19 

CBD + CK 8 12 6 12 38 

Total Score 48 48 48 48 192 

Note: The numbers with shadow are the best among all models. 
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Appendix A: Bootstrap Confidence Intervals of U.S., U.K., Japan, and Taiwan 
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Appendix B: Empirical Results of Mortality Models 

Table B-1. Fitting Errors for ages 65~84 

Country Model 
Male Female 

RMSE(10-3) MAPE(%) RMSE(10-3) MAPE(%) 

U.S. 

LC 3.3560 3.1277 1.4594 2.1621 

CBD 2.1185 2.5550 1.8546 4.0348 

LC + Logistic 3.5496 3.2161 1.7389 3.4426 

LC + CK 4.6253 3.4927 2.4752 2.7939 

LC + Gompertz 3.9362 3.2945 1.7601 2.2613 

CBD + Gompertz 1.9626 2.3263 1.6819 3.6132 

CBD + Logistic 2.3927 2.9576 2.1067 4.5994 

CBD + CK 2.0941 2.4997 1.7936 3.8961 

U.K. 

LC 4.9721 3.8591 2.1960 2.6960 

CBD 2.4688 2.3131 1.8309 3.1763 

LC + Logistic 4.6858 3.7752 2.2085 2.7896 

LC + CK 5.8437 4.3659 2.8245 3.0330 

LC + Gompertz 5.2510 4.3488 2.6865 2.9121 

CBD + Gompertz 2.4403 2.3125 1.7862 3.0816 

CBD + Logistic 2.6401 2.5159 2.0874 3.7577 

CBD + CK 2.4272 2.2817 1.8207 3.1184 

Japan 

LC 3.5715 3.0268 1.7504 2.1575 

CBD 2.1805 2.7498 1.6379 3.7064 

LC + Logistic 4.1610 3.5400 2.4842 3.7494 

LC + CK 4.3507 3.3342 2.5940 2.6477 

LC + Gompertz 4.3719 3.2891 2.5311 2.5368 

CBD + Gompertz 2.1934 2.6369 1.6582 3.4820 

CBD + Logistic 2.2652 3.0344 1.6669 4.0903 

CBD + CK 2.2044 2.7541 1.6462 3.7030 

Taiwan 

LC 5.8133 4.5638 3.9634 4.1601 

CBD 6.8117 5.7656 4.4357 5.1083 

LC + Logistic 7.8068 6.1683 4.9867 5.3945 

LC + CK 6.9567 5.1280 4.6875 4.6720 

LC + Gompertz 6.4367 4.7221 4.1599 4.2192 

CBD + Gompertz 6.8117 5.7656 4.4357 5.1083 

CBD + Logistic 6.6875 5.7677 4.4041 5.1468 

CBD + CK 6.8117 5.7656 4.4357 5.1083 

Note: The numbers with shadow are the best among all models.  
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Table B-2. Fitting Errors for ages 85~99 

Country Model 
Male Female 

RMSE(10-3) MAPE(%) RMSE(10-3) MAPE(%) 

U.S. 

LC 37.4976 11.3087 25.5738 9.0608 

CBD 24.1130 6.6857 24.2132 8.4894 

LC + Logistic 55.4611 16.6398 44.2728 16.0002 

LC + CK 19.7779 7.7307 16.8179 7.3884 

LC + Gompertz 24.6415 8.7118 15.4925 6.9827 

CBD + Gompertz 13.3335 3.8946 17.7827 6.4567 

CBD + Logistic 39.9940 10.4867 34.0051 11.1086 

CBD + CK 17.7228 5.3219 20.6657 7.6032 

U.K. 

LC 53.8685 13.1828 35.3625 10.6348 

CBD 24.8964 4.7524 18.2539 5.5562 

LC + Logistic 66.3180 15.4857 47.6979 14.6451 

LC + CK 35.8483 9.6428 20.8625 7.8345 

LC + Gompertz 27.8738 7.1356 21.7907 8.1852 

CBD + Gompertz 20.6717 4.2787 16.2918 4.5904 

CBD + Logistic 47.8889 9.1208 33.8142 9.1015 

CBD + CK 19.8658 3.8724 15.4734 4.9204 

Japan 

LC 47.3160 12.2084 35.0886 10.2843 

CBD 23.1915 5.7631 17.1989 5.6509 

LC+Logistic 52.6172 14.1613 38.1043 13.0589 

LC+CK 28.1403 8.3231 18.0771 6.6864 

LC+Gompertz 22.8317 7.0423 18.7452 6.3077 

CBD+Gompertz 35.8247 8.1371 32.9483 8.0402 

CBD + Logistic 38.1077 8.6331 26.763 8.2957 

CBD + CK 21.6431 5.3908 16.8237 5.4409 

Taiwan 

LC 44.5132 12.4697 38.6652 10.8262 

CBD 57.7218 20.0147 37.3526 10.9785 

LC + Logistic 51.8190 16.1094 30.8100 8.8296 

LC + CK 38.1068 11.5223 31.9804 9.5293 

LC + Gompertz 42.0679 12.6552 32.4046 9.8854 

CBD + Gompertz 57.7218 20.0147 37.3526 10.9785 

CBD + Logistic 50.7823 16.6938 28.6391 8.1733 

CBD + CK 57.7215 20.0147 37.3525 10.9785 

Note: The numbers with shadow are the best among all models.  
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Table B-3. Forecasting Errors for ages 65~84 

Country Model 

Male Female 

RMSE(10-3

) 
MAPE(%) RMSE(10-3) MAPE(%) 

U.S. 

LC 3.3740 3.9212 2.0057 3.8829 

CBD 2.8898 3.9629 2.6157 5.6883 

LC + Logistic 3.7241 4.1513 2.4206 5.1069 

LC + CK 4.6562 4.4027 3.0765 4.7087 

LC + Gompertz 3.8357 4.0913 2.1757 3.9097 

CBD + Gompertz 2.7170 3.6410 2.4714 5.2919 

CBD + Logistic 3.1676 4.4455 2.8240 6.2341 

CBD + CK 2.8342 3.8672 2.5631 5.5667 

U.K. 

LC 4.0196 4.2840 2.2153 4.4132 

CBD 3.0639 3.8845 2.2554 4.5885 

LC + Logistic 3.8397 3.9780 2.2655 4.2714 

LC + CK 4.9212 5.0706 2.4642 4.4244 

LC + Gompertz 4.2132 4.3535 2.3816 4.1642 

CBD + Gompertz 2.8290 3.7237 2.0652 4.4468 

CBD + Logistic 3.5034 4.3308 2.6572 5.2325 

CBD + CK 2.9109 3.8051 2.1679 4.5415 

Japan 

LC 4.0920 6.1659 1.8233 4.8791 

CBD 2.6074 4.5133 1.5196 4.4374 

LC + Logistic 4.6493 6.1616 2.3510 5.4622 

LC + CK 4.7505 6.4669 2.3772 5.1434 

LC + Gompertz 4.7055 6.3933 2.3313 5.1169 

CBD + Gompertz 2.6725 4.5106 1.5464 4.2312 

CBD + Logistic 2.5333 4.5737 1.5036 4.7498 

CBD + CK 2.6360 4.5406 1.5280 4.4394 

Taiwan 

LC 7.3002 8.2912 5.3172 7.7119 

CBD 5.9859 6.1255 4.2835 5.9536 

LC + Logistic 5.8909 6.0399 4.0245 5.2832 

LC + CK 7.4214 8.1515 5.2624 7.4556 

LC + Gompertz 7.1015 8.1854 5.1306 7.6294 

CBD + Gompertz 5.9859 6.1255 4.2835 5.9536 

CBD + Logistic 5.9436 6.2005 4.3752 6.1213 

CBD + CK 5.9859 6.1255 4.2835 5.9536 

Note: The numbers with shadow are the best among all models.  
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Table B-4. Forecasting Errors for ages 85~99 

Country Model 
Male Female 

RMSE(10-3) MAPE(%) RMSE(10-3) MAPE(%) 

U.S. 

LC 39.4826 11.5883 27.6544 9.9862 

CBD 29.7181 8.0761 30.3576 10.7362 

LC + Logistic 62.4814 18.1527 50.6321 17.8374 

LC + CK 22.2683 8.1030 21.6274 9.1569 

LC + Gompertz 26.1881 9.0437 18.5894 8.2137 

CBD + Gompertz 16.6971 5.0162 21.5568 8.4009 

CBD + Logistic 46.0261 11.7647 39.9645 13.1683 

CBD + CK 22.2178 6.5447 25.6593 9.6790 

U.K. 

LC 51.9006 12.8568 34.7497 10.6434 

CBD 22.6302 5.0615 19.2496 6.0992 

LC + Logistic 61.9280 15.0403 48.4727 14.9654 

LC + CK 52.0008 11.9610 23.1984 8.6991 

LC + Gompertz 27.7059 7.5214 26.6892 9.6011 

CBD + Gompertz 20.2961 4.8595 16.0250 5.1120 

CBD + Logistic 42.6221 8.7252 33.1332 9.3357 

CBD + CK 18.3238 4.3022 16.9487 5.5190 

Japan 

LC 45.2495 12.9741 31.2740 10.4128 

CBD 24.9037 7.4609 18.5358 7.7907 

LC + Logistic 51.7791 15.7953 36.8234 14.5451 

LC + CK 30.0134 9.6770 23.1293 8.9763 

LC + Gompertz 22.3085 8.0699 18.1496 7.1200 

CBD + Gompertz 30.9035 8.0922 26.5387 8.5839 

CBD + Logistic 38.4739 10.5045 28.0938 10.5815 

CBD + CK 22.7956 7.0297 17.3811 7.5203 

Taiwan 

LC 47.9116 12.6169 41.1403 11.4193 

CBD 45.2508 14.9925 35.6224 12.2041 

LC + Logistic 40.1348 12.6390 27.9482 9.2390 

LC + CK 44.5323 12.7162 38.2318 11.2188 

LC + Gompertz 40.9803 11.2288 31.7637 9.9403 

CBD + Gompertz 45.2508 14.9925 35.6224 12.2041 

CBD + Logistic 39.9630 12.8570 27.8872 9.9199 

CBD + CK 45.2506 14.9925 35.6231 12.2042 

Note: The numbers with shadow are the best among all models.  
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Appendix C.  

Table C-1. Single premium of 10-year pure annuity paying $1 each year - U.S. 

Model 
Male Female 

70 80 90 70 80 90 

Actual Cost 

of Annuity 
5.8109 4.4646 2.3788 6.1381 5.0381 2.9376 

LC 5.7842 4.4748 2.6695 6.1014 5.0846 3.2451 

-0.46% 0.23% 12.22% -0.60% 0.92% 10.47% 

CBD 5.7420 4.4193 2.6552 6.0971 5.0165 3.2645 

-1.19% -1.01% 11.62% -0.67% -0.43% 11.13% 

LC + Log 5.7526 4.5020 2.8967 6.0812 5.0576 3.4755 

-1.00% 0.84% 21.77% -0.93% 0.39% 18.31% 

LC + CK 5.7816 4.5371 2.5336 6.0998 5.1172 3.2039 

-0.50% 1.63% 6.51% -0.62% 1.57% 9.06% 

LC + G 5.7825 4.5059 2.6051 6.1013 5.0917 3.2441 

-0.49% 0.93% 9.51% -0.60% 1.07% 10.43% 

CBD + G 5.7462 4.4259 2.5790 6.0992 5.0265 3.2149 

-1.11% -0.86% 8.42% -0.63% -0.23% 9.44% 

CBD + Log 5.7369 4.4083 2.7410 6.0946 5.0031 3.3172 

-1.27% -1.26% 15.23% -0.71% -0.69% 12.92% 

CBD + CK 5.7418 4.4279 2.6255 6.0964 5.0244 3.2481 

-1.19% -0.82% 10.37% -0.68% -0.27% 10.57% 
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 Table C-2. Single premium of 10-year pure annuity paying $1 each year - U.K. 

Model 
Male Female 

70 80 90 70 80 90 

Actual Cost 

of Annuity 
5.7830 4.2021 2.2652 6.1471 4.8601 2.7991 

LC 5.6945 4.3331 2.4933 6.0703 4.9700 3.0157 

-1.53% 3.12% 10.07% -1.25% 2.26% 7.74% 

CBD 5.6866 4.2074 2.3276 6.0856 4.8734 2.9406 

-1.67% 0.13% 2.76% -1.00% 0.27% 5.05% 

LC + Log 5.6955 4.3147 2.6242 6.0648 4.9259 3.1992 

-1.51% 2.68% 15.85% -1.34% 1.35% 14.29% 

LC + CK 5.6867 4.3849 2.4093 6.0615 5.0144 2.9784 

-1.67% 4.35% 6.36% -1.39% 3.17% 6.41% 

LC + G 5.7057 4.3335 2.4500 6.0696 4.9565 3.1023 

-1.34% 3.13% 8.16% -1.26% 1.98% 10.83% 

CBD + G 5.6842 4.2217 2.2783 6.0832 4.8867 2.9111 

-1.71% 0.47% 0.58% -1.04% 0.55% 4.00% 

CBD + Log 5.6800 4.1927 2.4322 6.0826 4.8542 3.0042 

-1.78% -0.22% 7.37% -1.05% -0.12% 7.33% 

CBD + CK 5.6865 4.2188 2.2901 6.0847 4.8844 2.9200 

-1.67% 0.40% 1.10% -1.02% 0.50% 4.32% 
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Table C-3. Single premium of 10-year pure annuity paying $1 each year – Japan 

Model 
Male Female 

70 80 90 70 80 90 

Actual Cost 

of Annuity 
5.9874 4.6890 2.6888 6.4584 5.5623 3.4986 

LC 5.9883 4.6916 2.7974 6.4627 5.5616 3.5392 

0.02% 0.05% 4.04% 0.07% -0.01% 1.16% 

CBD 5.9441 4.7565 2.9710 6.4428 5.6021 3.7805 

-0.72% 1.44% 10.49% -0.24% 0.72% 8.06% 

LC + Log 5.9421 4.7436 3.0383 6.4376 5.5649 3.7626 

-0.76% 1.16% 13.00% -0.32% 0.05% 7.55% 

LC + CK 5.9854 4.7224 2.7465 6.4619 5.5728 3.5220 

-0.03% 0.71% 2.15% 0.05% 0.19% 0.67% 

LC + G 5.9872 4.7147 2.7255 6.4624 5.5722 3.4956 

0.00% 0.55% 1.36% 0.06% 0.18% -0.09% 

CBD + G 5.9441 4.7565 2.9711 6.4428 5.6021 3.7807 

-0.72% 1.44% 10.50% -0.24% 0.72% 8.06% 

CBD + Log 5.9404 4.7483 3.0495 6.4417 5.5937 3.8292 

-0.78% 1.26% 13.41% -0.26% 0.56% 9.45% 

CBD + CK 5.9441 4.7565 2.9710 6.4428 5.6021 3.7805 

-0.72% 1.44% 10.49% -0.24% 0.72% 8.06% 
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Table C-4. Single premium of 10-year pure annuity paying $1 each year – Taiwan 

Model 
Male Female 

70 80 90 70 80 90 

Actual Cost of 

Annuity 
5.7768 4.4971 2.5655 5.7768 4.4971 2.5655 

LC 5.8175 4.3359 2.6022 5.8175 4.3359 2.6022 

0.70% -3.59% 1.43% 0.70% -3.59% 1.43% 

CBD 5.7461 4.4618 2.7092 5.7461 4.4618 2.7092 

-0.53% -0.78% 5.60% -0.53% -0.78% 5.60% 

LC + Log 5.7500 4.4972 2.8797 5.7500 4.4972 2.8797 

-0.46% 0.00% 12.25% -0.46% 0.00% 12.25% 

LC + CK 5.8175 4.3359 2.6022 5.8175 4.3359 2.6022 

0.70% -3.59% 1.43% 0.70% -3.59% 1.43% 

LC + G 5.8115 4.4286 2.4247 5.8115 4.4286 2.4247 

0.60% -1.52% -5.49% 0.60% -1.52% -5.49% 

CBD + G 5.7461 4.4618 2.7092 5.7461 4.4618 2.7092 

-0.53% -0.78% 5.60% -0.53% -0.78% 5.60% 

CBD + Log 5.7422 4.4588 2.8066 5.7422 4.4588 2.8066 

-0.60% -0.85% 9.40% -0.60% -0.85% 9.40% 

CBD + CK 5.7461 4.4618 2.7092 5.7461 4.4618 2.7092 

-0.53% -0.78% 5.60% -0.53% -0.78% 5.60% 
 

 

 


