
Multivariate Analysis





 

Table Of Contents 
Multivariate Analysis .............................................................................................................................................................. 1 

Overview........................................................................................................................................................................... 1 
Principal Components ...................................................................................................................................................... 2 
Factor Analysis ................................................................................................................................................................. 5 
Cluster Observations ...................................................................................................................................................... 12 
Cluster Variables ............................................................................................................................................................ 17 
Cluster K-Means............................................................................................................................................................. 20 
Discriminant Analysis ..................................................................................................................................................... 23 
Simple Correspondence Analysis .................................................................................................................................. 27 
Multiple Correspondence Analysis ................................................................................................................................. 34 

Index .................................................................................................................................................................................... 39 

 2003 Minitab Inc.  i 





 

Multivariate Analysis 
Overview 
Multivariate Analysis Overview 
Use Minitab's multivariate analysis procedures to analyze your data when you have made multiple measurements on 
items or subjects. You can choose to: 

•    Analyze the data covariance structure to understand it or to reduce the data dimension 

•    Assign observations to groups 

•    Explore relationships among categorical variables 
Because Minitab does not compare tests of significance for multivariate procedures, interpreting the results is somewhat 
subjective. However, you can make informed conclusions if you are familiar with your data. 

Analysis of the data structure 
Minitab offers two procedures for analyzing the data covariance structure: 

•    Principal Components helps you to understand the covariance structure in the original variables and/or to create a 
smaller number of variables using this structure. 

•    Factor Analysis, like principal components, summarizes the data covariance structure in a smaller number of 
dimensions. The emphasis in factor analysis is the identification of underlying "factors" that might explain the 
dimensions associated with large data variability. 

Grouping observations 
Minitab offers three cluster analysis methods and discriminant analysis for grouping observations: 

•    Cluster Observations groups or clusters observations that are "close" to each other when the groups are initially 
unknown. This method is a good choice when no outside information about grouping exists. The choice of final 
grouping is usually made according to what makes sense for your data after viewing clustering statistics. 

•    Cluster Variables groups or clusters variables that are "close" to each other when the groups are initially unknown. 
The procedure is similar to clustering of observations. You may want to cluster variables to reduce their number.  

•    Cluster K-Means, like clustering of observations, groups observations that are "close" to each other. K-means 
clustering works best when sufficient information is available to make good starting cluster designations. 

•    Discriminant Analysis classifies observations into two or more groups if you have a sample with known groups. You 
can use discriminant analysis to investigate how the predictors contribute to the groupings. 

Correspondence Analysis 
Minitab offers two methods of correspondence analysis to explore the relationships among categorical variables: 

•    Simple Correspondence Analysis explores relationships in a 2-way classification. You can use this procedure with 3-
way and 4-way tables because Minitab can collapse them into 2-way tables. Simple correspondence analysis 
decomposes a contingency table similar to how principal components analysis decomposes multivariate continuous 
data. Simple correspondence analysis performs an eigen analysis of data, breaks down variability into underlying 
dimensions, and associates variability with rows and/or columns. 

•    Multiple Correspondence Analysis extends simple correspondence analysis to the case of 3 or more categorical 
variables. Multiple correspondence analysis performs a simple correspondence analysis on an indicator variables 
matrix in which each column  corresponds to a level of a categorical variable. Rather than a 2-way table, the multi-way 
table is collapsed into 1 dimension. 

 

Multivariate 
Stat > Multivariate 
Allows you to perform a principal components analysis, factor analysis, cluster analysis, discriminant analysis, and 
correspondence analysis. 
Select one of the following options: 

Principal Components − performs principal components analysis 

Factor Analysis − performs factor analysis 

Cluster Observations − performs agglomerative hierarchical clustering of observations 

Cluster Variables − performs agglomerative hierarchical clustering of variables 
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Cluster K-Means − performs K-means non-hierarchical clustering of observations 

Discriminant Analysis − performs linear and quadratic discriminant analysis 

Simple Correspondence Analysis − performs simple correspondence analysis on a two-way contingency table 

Multiple Correspondence Analysis − performs multiple correspondence analysis on three or more categorical variables 

Minitab offers the following additional multivariate analysis options: 
Balanced MANOVA  
General MANOVA  
Multivariate control charts 
 

Examples of Multivariate Analysis 
                                                                                          
The following examples illustrate how to use the various multivariate analysis techniques available. Choose an example 
below: 
Principal Components Analysis  
Factor Analysis 
Cluster Observations 
Cluster Variables 
Cluster K-Means 
Discriminant Analysis  
Simple Correspondence Analysis 
Multiple Correspondence Analysis 
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Principal Components 
Principal Components Analysis 
Stat > Multivariate > Principal Components 
Use principal component analysis to help you to understand the underlying data structure and/or form a smaller number of 
uncorrelated variables (for example, to avoid multicollinearity in regression). 
An overview of principal component analysis can be found in most books on multivariate analysis, such as [5]. 
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Dialog box items 
Variables: Choose the columns containing the variables to be included in the analysis. 
Number of components to compute: Enter the number of principal components to be extracted. If you do not specify 
the number of components and there are p variables selected, then p principal components will be extracted. If p is large, 
you may want just the first few. 
Type of Matrix 

Correlation: Choose to calculate the principal components using the correlation matrix. Use the correlation matrix if it 
makes sense to standardize variables (the usual choice when variables are measured by different scales). 
Covariance: Choose to calculate the principal components using the covariance matrix. Use the covariance matrix if 
you do not wish to standardize variables. 

<Graphs> 
<Storage> 
 

Data − principal components analysis 
Set up your worksheet so that each row contains measurements on a single item or subject. You must have two or more 
numeric columns, with each column representing a different measurement (response). If a missing value exists in any 
column, Minitab ignores the whole row. Missing values are excluded from the calculation of the correlation or covariance 
matrix.  
 

To perform Principal Component Analysis 
1    Choose Stat > Multivariate > Principal Components. 
2    In Variables, enter the columns containing the measurement data. 
3    If you like, use any dialog box options, then click OK. 
 

Nonuniqueness of Coefficients 
The coefficients are unique (except for a change in sign) if the eigenvalues are distinct and not zero. If an eigenvalue is 
repeated, then the "space spanned" by all the principal component vectors corresponding to the same eigenvalue is 
unique, but the individual vectors are not. Therefore, the coefficients that Minitab prints and those in a book or another 
program may not agree, though the eigenvalues (variances) will always be the same. 
If the covariance matrix has rank r < p, where p is the number of variables, then there will be p - r eigenvalues equal to 
zero. Eigenvectors corresponding to these eigenvalues may not be unique. This can happen if the number of observations 
is less than p or if there is multicollinearity. 
 

Principal Components Analysis − Graphs 
Stat > Multivariate > Principal Components> Graphs 
Displays plots for judging the importance of the different principal components and for examining the scores of the first 
two principal components. 

Dialog box items 
Scree plot: Check to display a Scree plot (eigenvalue profile plot). Minitab plots the eigenvalue associated with a principal 
component versus the number of the component. Use this plot to judge the relative magnitude of eigenvalues. 
Score plot for first 2 components: Check to plot the scores for the second principal component (y-axis) versus the 
scores for the first principal component (x-axis). To create plots for other components, store the scores and use Graph > 
Scatterplot. 
Loading plot for first 2 components: Check to plot the loadings for the second component (y-axis) versus the loadings 
for the first component (x-axis). A line is drawn from each loading to the (0, 0) point. 
 

Principal Components Analysis − Storage 
Stat > Multivariate > Principal Components > Storage  
Stores the coefficients and scores. 

Dialog box items 
Coefficients: Enter the storage columns for the coefficients of the principal components. The number of columns 
specified must be less than or equal to the number of principal components calculated.  
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Scores: Enter the storage columns for the principal components scores. Scores are linear combinations of your data 
using the coefficients. The number of columns specified must be less than or equal to the number of principal components 
calculated. 
 

Example of Principal Components Analysis 
You record the following characteristics for 14 census tracts: total population (Pop), median years of schooling (School), 
total employment (Employ), employment in health services (Health), and median home value (Home). The data were 
obtained from [6], Table 8.2. 
You perform principal components analysis to understand the underlying data structure. You use the correlation matrix to 
standardize the measurements because they are not measured with the same scale. 
1    Open the worksheet EXH_MVAR.MTW. 
2    Choose Stat > Multivariate > Principal Components. 
3    In Variables, enter Pop-Home. 
4    Under Type of Matrix, choose Correlation. 
5    Click Graphs and check Scree plot.  
6    Click OK in each dialog box. 

Session window output 

Principal Component Analysis: Pop, School, Employ, Health, Home
 
 
Eigenanalysis of the Correlation Matrix 
 
Eigenvalue  3.0289  1.2911  0.5725  0.0954  0.0121 
Proportion   0.606   0.258   0.114   0.019   0.002 
Cumulative   0.606   0.864   0.978   0.998   1.000 
 
 
Variable     PC1     PC2     PC3     PC4     PC5 
Pop       -0.558  -0.131   0.008   0.551  -0.606 
School    -0.313  -0.629  -0.549  -0.453   0.007 
Employ    -0.568  -0.004   0.117   0.268   0.769 
Health    -0.487   0.310   0.455  -0.648  -0.201 
Home       0.174  -0.701   0.691   0.015   0.014 
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Graph window output   

 

 
Interpreting the results 
The first principal component has variance (eigenvalue) 3.0289 and accounts for 60.6% of the total variance. The 
coefficients listed under PC1 show how to calculate the principal component scores: 

PC1 = −.558 Pop − .313 School − .568 Employ − .487 Health + .174 Home 
It should be noted that the interpretation of the principal components is subjective, however, obvious patterns emerge 
quite often. For instance, one could think of the first principal component as representing an overall population size, level 
of schooling, employment level, and employment in health services effect, because the coefficients of these terms have 
the same sign and are not close to zero. 
The second principal component has variance 1.2911 and accounts for 25.8% of the data variability. It is calculated from 
the original data using the coefficients listed under PC2. This component could be thought of as contrasting level of 
schooling and home value with health employment to some extent. 
Together, the first two and the first three principal components represent 86.4% and 97.8%, respectfully, of the total 
variability. Thus, most of the data structure can be captured in two or three underlying dimensions. The remaining 
principal components account for a very small proportion of the variability and are probably unimportant. The Scree plot 
provides this information visually. 
 

Factor Analysis 
Factor Analysis 
Stat > Multivariate > Factor Analysis 
Use factor analysis, like principal components analysis, to summarize the data covariance structure in a few dimensions 
of the data. However, the emphasis in factor analysis is the identification of underlying "factors" that might explain the 
dimensions associated with large data variability.  

Dialog box items 
Variables: Choose the columns containing the variables you want to use in the analysis. If you want to use a stored 
correlation or covariance matrix, or the loadings from a previous analysis instead of the raw data, click <Options>. 
Number of factors to extract: Enter number of factors to extract (required if you use maximum likelihood as your method 
of extraction). If you don't specify a number with a principal components extraction, Minitab sets it equal to the number of 
variables in the data set. If you choose too many factors, Minitab will issue a warning in the Session window. 
Method of Extraction: 

Principal components: Choose to use the principal components method of factor extraction. 
Maximum likelihood: Choose to use maximum likelihood for the initial solution.  

Type of Rotation: Controls orthogonal rotations.  
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None: Choose not to rotate the initial solution. 
Equimax: Choose to perform an equimax rotation of the initial solution (gamma = number of factors / 2). 
Varimax: Choose to perform a varimax rotation of the initial solution (gamma = 1). 
Quartimax: Choose to perform a quartimax rotation of the initial solution (gamma = 0). 
Orthomax with gamma: Choose to perform an orthomax rotation of the initial solution, then enter value for gamma 
between 0 and 1. 

<Options>  
<Graphs> 
<Storage>  
<Results> 
 

Data − Factor Analysis 
You can have three types of input data: 

•    Columns of raw data 

•    A matrix of correlations or covariances 

•    Columns containing factor loadings 
The typical case is to use raw data. Set up your worksheet so that a row contains measurements on a single item or 
subject. You must have two or more numeric columns, with each column representing a different measurement 
(response). Minitab automatically omits rows with missing data from the analysis. 
Usually the factor analysis procedure calculates the correlation or covariance matrix from which the loadings are 
calculated. However, you can enter a matrix as input data. You can also enter both raw data and a matrix of correlations 
or covariances. If you do, Minitab uses the matrix to calculate the loadings. Minitab then uses these loadings and the raw 
data to calculate storage values and generate graphs. See To perform factor analysis with a correlation or covariance 
matrix. 
If you store initial factor loadings, you can later input these initial loadings to examine the effect of different rotations. You 
can also use stored loadings to predict factor scores of new data. See To perform factor analysis with stored loadings. 
 

To perform factor analysis with a correlation or covariance matrix 
You can choose to calculate the factor loadings and coefficients from a stored correlation or covariance matrix rather than 
the raw data. In this case, the raw data will be ignored. (Please note that this means scores can not be calculated.) 
If it makes sense to standardize variables (usual choice when variables are measured by different scales), enter a 
correlation matrix; if you do not wish to standardize, enter a covariance matrix. 
1    Choose Stat > Multivariate > Factor Analysis. 
2    Click Options. 
3    Under Matrix to Factor, choose Correlation or Covariance. 
4    Under Source of Matrix, choose Use matrix and enter the matrix. Click OK. 
 

To perform factor analysis with raw data 
There are three ways that you might carry out a factor analysis in Minitab. The usual way, described below, is to enter 
columns containing your measurement variables, but you can also use a matrix as input (See To perform factor analysis 
with a correlation or covariance matrix) or use stored loadings as input (See To perform factor analysis with stored 
loadings).  
1    Choose Stat > Multivariate > Factor Analysis. 
2    In Variables, enter the columns containing the measurement data. 
3    If you like, use any dialog box options, then click OK. 
 

To perform factor analysis with stored loadings 
If you store initial factor loadings from an earlier analysis, you can input these initial loadings to examine the effect of 
different rotations. You can also use stored loadings to predict factor scores of new data. 
1   Cick Options in the Factor Analysis dialog box. 
2    Under Loadings for Initial Solution, choose Use loadings. Enter the columns containing the loadings. Click OK. 
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3    Do one of the following, and then click OK: 

•    To examine the effect of a different rotation method, choose an option under Type of Rotation. See Rotating the 
factor loadings for a discussion of the various rotations>Main. 

•    To predict factor scores with new data, in Variables, enter the columns containing the new data. 
 

Factor analysis in practice 
The goal of factor analysis is to find a small number of factors, or unobservable variables, that explains most of the data 
variability and yet makes contextual sense. You need to decide how many factors to use, and find loadings that make the 
most sense for your data. 

Number of factors 
The choice of the number of factors is often based upon the proportion of variance explained by the factors, subject 
matter knowledge, and reasonableness of the solution [6]. Initially, try using the principal components extraction method 
without specifying the number of components. Examine the proportion of variability explained by different factors and 
narrow down your choice of how many factors to use. A Scree plot may be useful here in visually assessing the 
importance of factors. Once you have narrowed this choice, examine the fits of the different factor analyses. Communality 
values, the proportion of variability of each variable explained by the factors, may be especially useful in comparing fits. 
You may decide to add a factor if it contributes to the fit of certain variables. Try the maximum likelihood method of 
extraction as well. 

Rotation 
Once you have selected the number of factors, you will probably want to try different rotations. Johnson and Wichern [6] 
suggest the varimax rotation. A similar result from different methods can lend credence to the solution you have selected. 
At this point you may wish to interpret the factors using your knowledge of the data. For more information see Rotating the 
factor loadings. 
 

Rotating the factor loadings 
There are four methods to orthogonally rotate the initial factor loadings found by either principal components or maximum 
likelihood extraction. An orthogonal rotation simply rotates the axes to give you a different perspective. The methods are 
equimax, varimax, quartimax, and orthomax. Minitab rotates the loadings in order to minimize a simplicity criterion [5]. A 
parameter, gamma, within this criterion is determined by the rotation method. If you use a method with a low value of 
gamma, the rotation will tend to simplify the rows of the loadings; if you use a method with a high value of gamma, the 
rotation will tend to simplify the columns of the loadings. The table below summarizes the rotation methods. 

Rotation  
method         Goal is ...                                                                             Gamma 

equimax to rotate the loadings so that a variable  
loads high on one factor but low on others 

number of factors / 2 

varimax to maximize the variance of the squared loadings 1 
quartimax simple loadings 0 
orthomax user determined, based on the given value of gamma 0-1 

 

Factor Analysis − Options 
Stat > Multivariate > Factor Analysis > Options 
Allows you to specify the matrix type and source, and the loadings to use for the initial extraction. 

Dialog box items 
Matrix to Factor 

Correlation: Choose to calculate the factors using the correlation matrix. Use the correlation matrix if it makes sense to 
standardize variables (the usual choice when variables are measured by different scales). 
Covariance: Choose to calculate the factors using the covariance matrix. Use the covariance matrix if you do not wish 
to standardize variables. The covariance matrix cannot be used with a maximum likelihood estimation. 

Source of Matrix:  
Compute from variables: Choose to use the correlation or covariance matrix of the measurement data. 
Use matrix: Choose to use a stored matrix for calculating the loadings and coefficients. (Note: Scores can not be 
calculated if this option is chosen.) See To perform factor analysis with a correlation or covariance matrix. 

 2003 Minitab Inc.  7 



Multivariate Analysis 

Loadings for Initial Solution 
Compute from variables: Choose to compute loadings from the raw data. 
Use loadings: Choose to use loadings which were previously calculated, then specify the columns containing the 
loadings. You must specify one column for each factor calculated. See To perform factor analysis with stored loadings. 

Maximum Likelihood Extraction  
Use initial communality estimates in: Choose the column containing data to be used as the initial values for the 
communalities. The column should contain one value for each variable. 
Max iterations: Enter the maximum number of iterations allowed for a solution (default is 25). 
Convergence: Enter the criterion for convergence (occurs when the uniqueness values do not change very much). 
This number is the size of the smallest change (default is 0.005). 

 

Factor Analysis − Graphs 
Stat > Multivariate > Factor Analysis > Graphs 
Displays a Scree plot, and score and loading plots for the first two factors. 
To create simple loading plots for other factors, store the loadings and use Graph > Scatterplot. If you want to connect the 
loading point to the zero point, add a zero to the bottom of each column of loadings in the Data window, then add lines 
connecting the loading points to the zero point with the graph editor. See graph editing overview.  

Dialog box items 
Scree plot: Check to display a Scree plot (eigenvalue profile plot). Minitab plots the eigenvalue associated with a factor 
versus the number of the factor. 
Score plot for first 2 factors: Check to plot the scores for the second factor (y-axis) versus the scores for the first factor 
(x-axis). Scores are linear combinations of your data using the coefficients. To create plots for other factors, store the 
scores and use Graph > Scatterplot. (Note: Scores must be calculated from raw data, therefore this graph can not be 
generated if the Use matrix option is selected. See <Options>.) 
Loading plot for first 2 factors: Check to plot the loadings for the second factor (y-axis) versus the loadings for the first 
factor (x-axis). A line is drawn from each loading to the (0, 0) point. 
 

Factor Analysis − Storage 
Stat > Multivariate > Factor Analysis > Storage 
Allows you to store factor loadings, factor score coefficients, factor or standard scores, rotation matrix, residual matrix, 
eigenvalues, and eigenvectors. You can then use this information for further analysis.  

Dialog box items 
Storage 

Loadings: Enter storage columns for the factor loadings. You must enter one column for each factor. If a rotation was 
specified, Minitab stores the values for the rotated factor loadings These can be input using <Options> and specifying 
the columns under Loadings for initial solutions.  
Coefficients: Enter storage columns for the factor score coefficients. You must enter one column for each factor. 
Scores: Enter storage columns for the scores. You must enter one column for each factor. Minitab calculates factor 
scores by multiplying factor score coefficients and your data after they have been centered by subtracting means. 
(Note: Scores must be calculated from raw data, therefore the Use matrix option must not be selected. See 
<Options>.) 

Rotation matrix: Enter a location to store the matrix used to rotate the initial loadings. You may enter a matrix name or 
number (for example, M3). The rotation matrix is the matrix used to rotate the initial loadings. If L is the matrix of initial 
loadings and M is the rotation matrix, LM is the matrix of rotated loadings. 
Residual matrix: Enter a location to store the residual matrix. The residual matrix for the initial and rotated solutions are 
the same. You may enter a matrix name or number (for example, M3). The residual matrix is (A-LL'), where A is the 
correlation or covariance matrix and L is a matrix of loadings. The residual matrix is the same for initial or rotated 
solutions. 
Eigenvalues: Enter a column to store the eigenvalues of the matrix that was factored. The eigenvalues are stored in 
numerical order from largest to smallest. To store eigenvalues, you must do the initial extraction using principal 
components. You can plot the eigenvalues to obtain a Scree plot. 

Eigenvector matrix: Enter a matrix to store the eigenvectors of the matrix that was factored. Each vector is stored as a 
column of the matrix, in the same order as the eigenvalues.  
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Factor analysis storage 
To store loadings, factor score coefficients, or factor scores, enter a column name or column number for each factor that 
has been extracted. The number of storage columns specified must be equal in number to the number of factors 
calculated. If a rotation was specified, Minitab stores the values for the rotated solution. Minitab calculates factor scores 
by multiplying factor score coefficients and your data after they have been centered by subtracting means. 
You can also store the rotation matrix and residual matrix. Enter a matrix name or matrix number. The rotation matrix is 
the matrix used to rotate the initial loadings. If L is the matrix of initial loadings and M is the rotation matrix that you store, 
LM is the matrix of rotated loadings. The residual matrix is (A-LL), where A is the correlation or covariance matrix and L is 
a matrix of loadings. The residual matrix is the same for initial and rotated solutions. 
You can also store the eigenvalues and eigenvectors of the correlation or covariance matrix (depending on which is 
factored) if you chose the initial factor extraction via principal components. Enter a single column name or number for 
storing eigenvalues, which are stored from largest to smallest. Enter a matrix name or number to store the eigenvectors in 
an order corresponding to the sorted eigenvalues. 
 

Factor Analysis − Results 
Stat > Multivariate > Factor Analysis > Results 
Controls the display of Session window results. 

Dialog box items 
Display of Results:  

Do not display: Choose to suppress the display of results. All requested storage is done. 
Loadings only: Choose to display loadings (and sorted loadings if requested) for the final solution. 
Loadings and factor score coefficients: Choose to display factor loadings and scores. 
All and MLE iterations: Choose to display the factor loadings, factor scores and information on the iterations if a 
maximum likelihood estimation was used. 

Sort loading: Check to sort the loadings in the Session window (within a factor if the maximum absolute loading occurs 
there). 
Zero loading less than: Check to enter a value. Loadings less than this value will be displayed as zero.  
 

Example of Factor Analysis, Using Maximum Likelihood and a Rotation 
Two factors were chosen as the number to represent the census tract data of the Example of Factor Analysis Using 
Principal Components. You perform a maximum likelihood extraction and varimax rotation to interpret the factors.  
1    Open the worksheet EXH_MVAR.MTW. 
2    Choose Stat > Multivariate > Factor Analysis. 
3    In Variables, enter Pop-Home. 
4    In Number of factors to extract, enter 2. 
5    Under Method of Extraction, choose Maximum likelihood. 
6    Under Type of Rotation, choose Varimax. 
7    Click Graphs and check Loading plot for first 2 factors.  
8    Click Results and check Sort loadings. Click OK in each dialog box. 

Session window output   

Factor Analysis: Pop, School, Employ, Health, Home 
 
 
Maximum Likelihood Factor Analysis of the Correlation Matrix
 
* NOTE * Heywood case 
 
Unrotated Factor Loadings and Communalities 
 
Variable  Factor1  Factor2  Communality 
Pop         0.971    0.160        0.968 
School      0.494    0.833        0.938 
Employ      1.000    0.000        1.000 
Health      0.848   -0.395        0.875 
Home       -0.249    0.375        0.202 
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Variance   2.9678   1.0159       3.9837 
% Var       0.594    0.203        0.797 
 
 
Rotated Factor Loadings and Communalities 
Varimax Rotation 
 
Variable  Factor1  Factor2  Communality 
Pop         0.718    0.673        0.968 
School     -0.052    0.967        0.938 
Employ      0.831    0.556        1.000 
Health      0.924    0.143        0.875 
Home       -0.415    0.173        0.202 
 
Variance   2.2354   1.7483       3.9837 
% Var       0.447    0.350        0.797 
 
 
Sorted Rotated Factor Loadings and Communalities 
 
Variable  Factor1  Factor2  Communality 
Health      0.924    0.143        0.875 
Employ      0.831    0.556        1.000 
Pop         0.718    0.673        0.968 
Home       -0.415    0.173        0.202 
School     -0.052    0.967        0.938 
 
Variance   2.2354   1.7483       3.9837 
% Var       0.447    0.350        0.797 
 
 
Factor Score Coefficients 
 
 
Variable  Factor1  Factor2 
Pop        -0.165    0.246 
School     -0.528    0.789 
Employ      1.150    0.080 
Health      0.116   -0.173 
Home       -0.018    0.027 

Graph window output 
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Interpreting the results 
The results indicates that this is a Heywood case. There are three tables of loadings and communalities: unrotated, 
rotated, and sorted and rotated. The unrotated factors explain 79.7% of the data variability (see last line under 
Communality) and the communality values indicate that all variables but Home are well represented by these two factors 
(communalities are 0.202 for Home, 0.875-1.0 for other variables). The percent of total variability represented by the 
factors does not change with rotation, but after rotating, these factors are more evenly balanced in the percent of 
variability that they represent, being 44.7% and 35.0%, respectfully. 
Sorting is done by the maximum absolute loading for any factor. Variables that have their highest absolute loading on 
factor 1 are printed first, in sorted order. Variables with their highest absolute loadings on factor 2 are printed next, in 
sorted order, and so on. Factor 1 has large positive loadings on Health (0.924), Employ (0.831), and Pop (0.718), and a -
0.415 loading on Home while the loading on School is small. Factor 2 has a large positive loading on School of 0.967 and 
loadings of 0.556 and 0.673, respectively, on Employ and Pop, and small loadings on Health and Home.  
You can view the rotated loadings graphically in the loadings plot. What stands out for factor 1 are the high loadings on 
the variables Pop, Employ, and Health and the negative loading on Home. School has a high positive loading for factor 2 
and somewhat lower values for Pop and Employ. 
Let's give a possible interpretation to the factors. The first factor positively loads on population size and on two variables, 
Employ and Health, that generally increase with population size. It negatively loads on home value, but this may be 
largely influenced by one point. We might consider factor 1 to be a "health care - population size" factor. The second 
factor might be considered to be a "education - population size" factor. Both Health and School are correlated with Pop 
and Employ, but not much with each other. 
In addition, Minitab displays a table of factor score coefficients. These show you how the factors are calculated. Minitab 
calculates factor scores by multiplying factor score coefficients and your data after they have been centered by 
subtracting means. 
You might repeat this factor analysis with three factors to see if it makes more sense for your data. 
 

Example of Factor Analysis, Using Principal Components 
You record the following characteristics of 14 census tracts: total population (Pop), median years of schooling (School), 
total employment (Employ), employment in health services (Health), and median home value (Home) (data from [6], Table 
8.2). You would like to investigate what "factors" might explain most of the variability. As the first step in your factor 
analysis, you use the principal components extraction method and examine an eigenvalues (scree) plot in order to help 
you to decide upon the number of factors. 
1    Open the worksheet EXH_MVAR.MTW. 
2    Choose Stat > Multivariate > Factor Analysis. 
3    In Variables, enter Pop-Home. 
4    Click Graphs and check Scree plot. Click OK in each dialog box. 

Session window output 

Factor Analysis: Pop, School, Employ, Health, Home 
 
 
Principal Component Factor Analysis of the Correlation Matrix 
 
 
Unrotated Factor Loadings and Communalities 
 
Variable  Factor1  Factor2  Factor3  Factor4  Factor5  Communality
Pop        -0.972   -0.149    0.006    0.170   -0.067        1.000
School     -0.545   -0.715   -0.415   -0.140    0.001        1.000
Employ     -0.989   -0.005    0.089    0.083    0.085        1.000
Health     -0.847    0.352    0.344   -0.200   -0.022        1.000
Home        0.303   -0.797    0.523    0.005    0.002        1.000
 
Variance   3.0289   1.2911   0.5725   0.0954   0.0121       5.0000
% Var       0.606    0.258    0.114    0.019    0.002        1.000
 
 
Sorted Unrotated Factor Loadings and Communalities 
 
Variable  Factor1  Factor2  Factor3  Factor4  Factor5  Communality
Employ     -0.989   -0.005    0.089    0.083    0.085        1.000
Pop        -0.972   -0.149    0.006    0.170   -0.067        1.000
Health     -0.847    0.352    0.344   -0.200   -0.022        1.000
Home        0.303   -0.797    0.523    0.005    0.002        1.000
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School     -0.545   -0.715   -0.415   -0.140    0.001        1.000
 
Variance   3.0289   1.2911   0.5725   0.0954   0.0121       5.0000
% Var       0.606    0.258    0.114    0.019    0.002        1.000
 
 
Factor Score Coefficients 
 
Variable  Factor1  Factor2  Factor3  Factor4  Factor5 
Pop        -0.321   -0.116    0.011    1.782   -5.511 
School     -0.180   -0.553   -0.726   -1.466    0.060 
Employ     -0.327   -0.004    0.155    0.868    6.988 
Health     -0.280    0.272    0.601   -2.098   -1.829 
Home        0.100   -0.617    0.914    0.049    0.129 

Graph window output 

 
 

Interpreting the results 
Five factors describe these data perfectly, but the goal is to reduce the number of factors needed to explain the variability 
in the data. Examine the Session window results line of % Var or the eigenvalues plot. The proportion of variability 
explained by the last two factors is minimal (0.019 and 0.002, respectively) and they can be eliminated as being important. 
The first two factors together represent 86% of the variability while three factors explain 98% of the variability. The 
question is whether to use two or three factors. The next step might be to perform separate factor analyses with two and 
three factors and examine the communalities to see how individual variables are represented. If there were one or more 
variables not well represented by the more parsimonious two factor model, you might select a model with three or more 
factors. 
See the example below for a rotation of loadings extracted by the maximum likelihood method with a selection of two 
factors. 
 

Cluster Observations 
Cluster Observations 
Stat > Multivariate > Cluster Observations 
Use clustering of observations to classify observations into groups when the groups are initially not known. 
This procedure uses an agglomerative hierarchical method that begins with all observations being separate, each forming 
its own cluster. In the first step, the two observations closest together are joined. In the next step, either a third 
observation joins the first two, or two other observations join together into a different cluster. This process will continue 
until all clusters are joined into one, however this single cluster is not useful for classification purposes. Therefore you 
must decide how many groups are logical for your data and classify accordingly. See Determining the final cluster 
grouping for more information. 
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Dialog box items 
Variables or distance matrix: Enter either the columns containing measurement data or a stored distance matrix on 
which to perform the hierarchical clustering of observations. 
Linkage Method: Choose the linkage method that will determine how the distance between two clusters is defined. 
Distance Measure: Choose the distance measure to use if you selected columns as input variables.  
Standardize variables: Check to standardize all variables by subtracting the means and dividing by the standard 
deviation before the distance matrix is calculated−a good idea if variables are in different units and you wish to minimize 
the effect of scale differences. If you standardize, cluster centroids and distance measures are in standardized variable 
space. 
Specify Final Partition by 

Number of Clusters: Choose to determine the final partition by a specified number of clusters. Enter this number in the 
box. See Determining the final cluster grouping. 
Similarity Level: Choose to determine the final partition by the specified level of similarity. Enter this value in the box. 
See Determining the final cluster grouping. 

Show Dendrogram: Check to display the dendrogram or tree diagram, showing the amalgamation steps. Use 
<Customize> to change the default display of the dendrogram.  
<Customize> 
<Storage> 
 

Data − Cluster Observations 
You can have two types of input data: columns of raw data or a matrix of distances. 
Typically, you would use raw data. Each row contains measurements on a single item or subject. You must have two or 
more numeric columns, with each column representing a different measurement. You must delete rows with missing data 
from the worksheet before using this procedure. 
If you store an n x n distance matrix, where n is the number of observations, you can use this matrix as input data. The (i, 
j) entry in this matrix is the distance between observations i and j. If you use the distance matrix as input, statistics on the 
final partition are not available. 
 

To perform clustering of observations 
1    Choose Stat > Multivariate > Cluster Observations. 
2    In Variables or distance matrix, enter either columns containing the raw (measurement) data or a matrix of 

distances. 
3    If you like, use any dialog box options, then click OK. 
 

Cluster Observations − Dendrogram − Customize 
Stat > Multivariate > Cluster Observations > Show Dendrogram > Customize 
Allows you to add a title and control y-axis labeling and displaying for the dendrogram.  
Double-click the dendrogram after you create it to specify the line type, color, and size for the cluster groups. See Graph 
Editing Overview. 

Dialog box items 
Title: To display a title above the dendrogram, type the desired text in this box. 
Case labels: Enter a column of case labels. This column must be the same length as the data column.  
Label Y Axis with  

Similarity: Choose to display similarities on the y-axis.  
Distance: Choose to display distances on the y-axis.  

Show Dendrogram in   
One graph: Choose to display the dendrogram in a single graph window. 
Maximum number of observations per graph (without splitting a group): Choose to display a specified number of 
observation per graph and enter an integer greater than or equal to 1. 
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Deciding Which Distance Measures and Linkage Methods to Use − Cluster 
Observations 
Distance Measures 
If you do not supply a distance matrix, Minitab's first step is to calculate an n x n distance matrix, D, where n is the number 
of observations. The matrix entries, d(i, j), in row i and column j, is the distance between observations i and j. 
Minitab provides five different methods to measure distance. You might choose the distance measure according to 
properties of your data. 

•    The Euclidean method is a standard mathematical measure of distance (square root of the sum of squared 
differences).  

•    The Pearson method is a square root of the sum of square distances divided by variances. This method is for 
standardizing.  

•    Manhattan distance is the sum of absolute distances, so that outliers receive less weight than they would if the 
Euclidean method were used.  

•    The squared Euclidean and squared Pearson methods use the square of the Euclidean and Pearson methods, 
respectfully. Therefore, the distances that are large under the Euclidean and Pearson methods will be even larger 
under the squared Euclidean and squared Pearson methods.  

Tip If you choose Average, Centroid, Median, or Ward as the linkage method, it is generally recommended [9] that 
you use one of the squared distance measures. 

Linkage methods 
The linkage method that you choose determines how the distance between two clusters is defined. At each amalgamation 
stage, the two closest clusters are joined. At the beginning, when each observation constitutes a cluster, the distance 
between clusters is simply the inter-observation distance. Subsequently, after observations are joined together, a linkage 
rule is necessary for calculating inter-cluster distances when there are multiple observations in a cluster. 
You may wish to try several linkage methods and compare results. Depending on the characteristics of your data, some 
methods may provide "better" results than others. 

•    With single linkage, or "nearest neighbor," the distance between two clusters is the minimum distance between an 
observation in one cluster and an observation in the other cluster. Single linkage is a good choice when clusters are 
clearly separated. When observations lie close together, single linkage tends to identify long chain-like clusters that 
can have a relatively large distance separating observations at either end of the chain [6]. 

•    With average linkage, the distance between two clusters is the mean distance between an observation in one cluster 
and an observation in the other cluster. Whereas the single or complete linkage methods group clusters based upon 
single pair distances, average linkage uses a more central measure of location. 

•    With centroid linkage, the distance between two clusters is the distance between the cluster centroids or means. Like 
average linkage, this method is another averaging technique. 

•    With complete linkage, or "furthest neighbor," the distance between two clusters is the maximum distance between an 
observation in one cluster and an observation in the other cluster. This method ensures that all observations in a 
cluster are within a maximum distance and tends to produce clusters with similar diameters. The results can be 
sensitive to outliers [10]. 

•    With median linkage, the distance between two clusters is the median distance between an observation in one cluster 
and an observation in the other cluster. This is another averaging technique, but uses the median rather than the 
mean, thus downweighting the influence of outliers. 

•    With McQuitty's linkage, when two clusters are be joined, the distance of the new cluster to any other cluster is 
calculated as the average of the distances of the soon to be joined clusters to that other cluster. For example, if 
clusters 1 and 3 are to be joined into a new cluster, say 1*, then the distance from 1* to cluster 4 is the average of the 
distances from 1 to 4 and 3 to 4. Here, distance depends on a combination of clusters rather than individual 
observations in the clusters. 

•    With Ward's linkage, the distance between two clusters is the sum of squared deviations from points to centroids. The 
objective of Ward's linkage is to minimize the within-cluster sum of squares. It tends to produce clusters with similar 
numbers of observations, but it is sensitive to outliers [10]. In Ward's linkage, it is possible for the distance between 
two clusters to be larger than dmax, the maximum value in the original distance matrix. If this happens, the similarity 
will be negative. 

 

Determining the Final Grouping of Clusters 
The final grouping of clusters (also called the final partition) is the grouping of clusters which will, hopefully, identify groups 
whose observations or variables share common characteristics. The decision about final grouping is also called cutting 
the dendrogram. The complete dendrogram (tree diagram) is a graphical depiction of the amalgamation of observations or 
variables into one cluster. Cutting the dendrogram is akin to drawing a line across the dendrogram to specify the final 
grouping. 
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How do you know where to cut the dendrogram? You might first execute cluster analysis without specifying a final 
partition. Examine the similarity and distance levels in the Session window results and in the dendrogram. You can view 
the similarity levels by placing your mouse pointer over a horizontal line in the dendrogram. The similarity level at any step 
is the percent of the minimum distance at that step relative to the maximum inter-observation distance in the data. The 
pattern of how similarity or distance values change from step to step can help you to choose the final grouping. The step 
where the values change abruptly may identify a good point for cutting the dendrogram, if this makes sense for your data. 
After choosing where you wish to make your partition, rerun the clustering procedure, using either Number of clusters or 
Similarity level to give you either a set number of groups or a similarity level for cutting the dendrogram. Examine the 
resulting clusters in the final partition to see if the grouping seems logical. Looking at dendrograms for different final 
groupings can also help you to decide which one makes the most sense for your data. 

Note For some data sets, average, centroid, median and Ward's methods may not produce a hierarchical 
dendrogram. That is, the amalgamation distances do not always increase with each step. In the dendrogram, 
such a step will produce a join that goes downward rather than upward. 

 

Cluster Observations − Storage 
Stat > Multivariate > Cluster Observations > Storage 
Allows you to store cluster membership for each observation, the distance between each observation and each cluster 
centroid, and the distance matrix. 

Dialog box items 
Cluster membership column: Enter a single column to store for cluster membership for each observation. This column 
can then be used as a categorical variable in other Minitab commands. 
Distance between observations and cluster centroids (Give a column for each cluster group): Enter storage 
column(s) for the distance between each observation and each cluster centroid. The number of columns specified must 
equal the number of cluster in the final partition. The distances stored are always Euclidean distances.  
Distance matrix: Enter a storage matrix (M) for the N x N distance matrix, where N is the number of observations. The 
stored distance matrix can then be used in subsequent commands. 
 

Example of Cluster Observations 
You make measurements on five nutritional characteristics (protein, carbohydrate, and fat content, calories, and percent 
of the daily allowance of Vitamin A) of 12 breakfast cereal brands. The example and data are from p. 623 of [6]. The goal 
is to group cereal brands with similar characteristics. You use clustering of observations with the complete linkage 
method, squared Euclidean distance, and you choose standardization because the variables have different units. You 
also request a dendrogram and assign different line types and colors to each cluster. 
1    Open the worksheet CEREAL.MTW. 
2    Choose Stat > Multivariate > Cluster Observations. 
3    In Variables or distance matrix, enter Protein-VitaminA.  
4    From Linkage Method, choose Complete and from Distance Measure choose Squared Euclidean.  
5    Check Standardize variables.  
6    Under Specify Final Partition by, choose Number of clusters and enter 4. 
7    Check Show dendrogram. 
8    Click Customize. In Title, enter Dendrogram for Cereal Data.  
9    Click OK in each dialog box. 

Session window output 

Cluster Analysis of Observations: Protein, Carbo, Fat, Calories, VitaminA 
 
 
Standardized Variables, Squared Euclidean Distance, Complete Linkage
Amalgamation Steps 
 
 
                                                          Number 
        Number                                           of obs. 
            of  Similarity  Distance  Clusters      New   in new 
Step  clusters       level     level   joined   cluster  cluster 
   1        11     100.000    0.0000  5     12        5        2 
   2        10      99.822    0.0640  3      5        3        3 
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   3         9      98.792    0.4347  3     11        3        4 
   4         8      94.684    1.9131  6      8        6        2 
   5         7      93.406    2.3730  2      3        2        5 
   6         6      87.329    4.5597  7      9        7        2 
   7         5      86.189    4.9701  1      4        1        2 
   8         4      80.601    6.9810  2      6        2        7 
   9         3      68.079   11.4873  2      7        2        9 
  10         2      41.409   21.0850  1      2        1       11 
  11         1       0.000   35.9870  1     10        1       12 
 
 
Final Partition 
Number of clusters: 4 
 
 
                         Within   Average   Maximum 
                        cluster  distance  distance 
             Number of   sum of      from      from 
          observations  squares  centroid  centroid 
Cluster1             2  2.48505   1.11469   1.11469 
Cluster2             7  8.99868   1.04259   1.76922 
Cluster3             2  2.27987   1.06768   1.06768 
Cluster4             1  0.00000   0.00000   0.00000 
 
 
Cluster Centroids 
 
Variable  Cluster1   Cluster2  Cluster3  Cluster4  Grand centroid 
Protein    1.92825  -0.333458  -0.20297  -1.11636       0.0000000 
Carbo     -0.75867   0.541908   0.12645  -2.52890       0.0000000 
Fat        0.33850  -0.096715   0.33850  -0.67700       0.0000000 
Calories   0.28031   0.280306   0.28031  -3.08337      -0.0000000 
VitaminA  -0.63971  -0.255883   2.04707  -1.02353      -0.0000000 
 
 
Distances Between Cluster Centroids 
 
          Cluster1  Cluster2  Cluster3  Cluster4 
Cluster1   0.00000   2.67275   3.54180   4.98961 
 
Cluster2   2.67275   0.00000   2.38382   4.72050 
Cluster3   3.54180   2.38382   0.00000   5.44603 
Cluster4   4.98961   4.72050   5.44603   0.00000 

Graph window output 
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Interpreting the results 
Minitab displays the amalgamation steps in the Session window. At each step, two clusters are joined. The table shows 
which clusters were joined, the distance between them, the corresponding similarity level, the identification number of the 
new cluster (this number is always the smaller of the two numbers of the clusters joined), the number of observations in 
the new cluster, and the number of clusters. Amalgamation continues until there is just one cluster. 
The amalgamation steps show that the similarity level decreases by increments of about 6 or less until it decreases by 
about 13 at the step from four clusters to three. This indicates that four clusters are reasonably sufficient for the final 
partition. If this grouping makes intuitive sense for the data, then it is probably a good choice. 
When you specify the final partition, Minitab displays three additional tables. The first table summarizes each cluster by 
the number of observations, the within cluster sum of squares, the average distance from observation to the cluster 
centroid, and the maximum distance of observation to the cluster centroid. In general, a cluster with a small sum of 
squares is more compact than one with a large sum of squares. The centroid is the vector of variable means for the 
observations in that cluster and is used as a cluster midpoint. The second table displays the centroids for the individual 
clusters while the third table gives distances between cluster centroids. 
The dendrogram displays the information in the amalgamation table in the form of a tree diagram. In our example, cereals 
1 and 4 make up the first cluster; cereals 2, 3, 5, 12, 11, 6, and 8 make up the second; cereals 7 and 9 make up the third; 
cereal 10 makes up the fourth. 
 
 

Cluster Variables 
Cluster Variables 
Stat > Multivariate > Cluster Variables 
Use Clustering of Variables to classify variables into groups when the groups are initially not known. One reason to cluster 
variables may be to reduce their number. This technique may give new variables that are more intuitively understood than 
those found using principal components. 
This procedure is an agglomerative hierarchical method that begins with all variables separate, each forming its own 
cluster. In the first step, the two variables closest together are joined. In the next step, either a third variable joins the first 
two, or two other variables join together into a different cluster. This process will continue until all clusters are joined into 
one, but you must decide how many groups are logical for your data. See Determining the final grouping.  

Dialog box items 
Variables or distance matrix: Enter either the columns containing measurement data or a distance matrix on which to 
perform the hierarchical clustering of variables.  
Linkage Method: Choose the linkage method that will determine how the distance between two clusters is defined.  
Distance Measure: If you selected columns as input variables, choose the desired distance measure. 

Correlation: Choose to use the correlation distance measure. 
Absolute correlation: Choose to use the absolute correlation distance measure. 

Specify Final Partition by 
Number of clusters: Choose to determine the final partition by a specified number of clusters. Enter this number in the 
box.  
Similarity level: Choose to determine the final partition by the specified level of similarity. Enter a value between 0 and 
100 in the box.  

Show dendrogram: Check to display the dendrogram (tree diagram), showing the amalgamation steps. Use 
<Customize> to change the default display of the dendrogram.  
<Customize> 
<Storage>  
 

Data − Cluster Variables 
You can have two types of input data to cluster variables: columns of raw data or a matrix of distances. 
Typically, you use raw data. Each row contains measurements on a single item or subject. You must have two or more 
numeric columns, with each column representing a different measurement. Delete rows with missing data from the 
worksheet before using this procedure. 
If you store a p x p distance matrix, where p is the number of variables, you can use the matrix as input data. The (i, j) 
entry in the matrix is the distance between observations i and j. If you use the distance matrix as input, final partition 
statistics are not available. 
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To perform clustering of variables 
1    Choose Stat > Multivariate > Cluster Variables. 
2    In Variables or distance matrix, enter either columns containing the raw (measurement) data or a matrix of 

distances. 
3    If you like, use any dialog box options, then click OK. 
 

Clustering variables in practice 
You must make similar decisions to cluster variables as you would to cluster observations. Follow the guidelines in 
Determining the final grouping to help you determine groupings. However, if the purpose behind clustering of variables is 
data reduction, you may decide to use your knowledge of the data to a greater degree in determining the final clusters of 
variables.  
 

Deciding Which Distance Measures and Linkage Methods to Use − Cluster 
Variables 
Distance Measures 
You can use correlations or absolute correlations for distance measures. With the correlation method, the (i,j) entry of the 
distance matrix is dij = 1 - ρij and for the absolute correlation method, dij = 1 - |ρij|, where ρij is the (Pearson product 
moment) correlation between variables i and j. Thus, the correlation method will give distances between 0 and 1 for 
positive correlations, and between 1 and 2 for negative correlations. The absolute correlation method will always give 
distances between 0 and 1. 

•    If it makes sense to consider negatively correlated data to be farther apart than positively correlated data, then use the 
correlation method. 

•    If you think that the strength of the relationship is important in considering distance and not the sign, then use the 
absolute correlation method. 

Linkage methods 
The linkage method that you choose determines how the distance between two clusters is defined. At each amalgamation 
stage, the two closest clusters are joined. At the beginning, when each variables constitutes a cluster, the distance 
between clusters is simply the inter-variables distance. Subsequently, after observations are joined together, a linkage 
rule is necessary for calculating inter-cluster distances when there are multiple variables in a cluster. 
You may wish to try several linkage methods and compare results. Depending on the characteristics of your data, some 
methods may provide "better" results than others. 

•    With single linkage, or "nearest neighbor," the distance between two clusters is the minimum distance between a 
variable in one cluster and a variable in the other cluster. Single linkage is a good choice when clusters are clearly 
separated. When variables lie close together, single linkage tends to identify long chain-like clusters that can have a 
relatively large distance separating variables at either end of the chain [6]. 

•    With average linkage, the distance between two clusters is the mean distance between a variable in one cluster and a 
variable in the other cluster. Whereas the single or complete linkage methods group clusters based upon single pair 
distances, average linkage uses a more central measure of location. 

•    With centroid linkage, the distance between two clusters is the distance between the cluster centroids or means. Like 
average linkage, this method is another averaging technique. 

•    With complete linkage, or "furthest neighbor," the distance between two clusters is the maximum distance between a 
variable in one cluster and a variable in the other cluster. This method ensures that all variables in a cluster are within 
a maximum distance and tends to produce clusters with similar diameters. The results can be sensitive to outliers [10]. 

•    With median linkage, the distance between two clusters is the median distance between a variable in one cluster and 
a variable in the other cluster. This is another averaging technique, but uses the median rather than the mean, thus 
downweighting the influence of outliers. 

•    With McQuitty's linkage, when two clusters are be joined, the distance of the new cluster to any other cluster is 
calculated as the average of the distances of the soon to be joined clusters to that other cluster. For example, if 
clusters 1 and 3 are to be joined into a new cluster, say 1*, then the distance from 1* to cluster 4 is the average of the 
distances from 1 to 4 and 3 to 4. Here, distance depends on a combination of clusters rather than individual variables 
in the clusters. 

•    With Ward's linkage, the distance between two clusters is the sum of squared deviations from points to centroids. The 
objective of Ward's linkage is to minimize the within-cluster sum of squares. It tends to produce clusters with similar 
numbers of variables, but it is sensitive to outliers [10]. In Ward's linkage, it is possible for the distance between two 
clusters to be larger than dmax, the maximum value in the original distance matrix. If this happens, the similarity will 
be negative. 

18   2003 Minitab Inc. 



Multivariate Analysis 

 

Cluster Variables − Dendrogram − Customize 
Stat > Multivariate > Cluster Variables > Show Dendrogram > Customize 
Allows you to add a title and control y-axis labeling and displaying for the dendrogram. 
Double-click the dendrogram after you create it to specify the line type, color, and size for the cluster groups. See Graph 
Editing Overview. 

Dialog box items 
Title: To display a title above the dendrogram, type the desired text in this box. 
Label Y Axis with  

Similarity: Choose to display similarities on the y-axis.  
Distance: Choose to display distances on the y-axis.  

Show Dendrogram in  
One graph: Choose to display the dendrogram in a single graph window. 
Maximum number of variables per graph (without splitting a group): Choose to display a specified number of 
variables per graph and enter an integer greater than or equal to 1. 

 

Cluster Variables − Storage 
Stat > Multivariate > Cluster Variables > Storage 
Allows you to store the distance matrix. 

Dialog box items 
Distance matrix: Specify a storage matrix (M) for the P x P distance matrix (D), where P is the number of variables. The 
stored distance matrix can then be used in subsequent commands. 
 

Example of Cluster Variables 
You conduct a study to determine the long-term effect of a change in environment on blood pressure. The subjects are 39 
Peruvian males over 21 years of age who had migrated from the Andes mountains to larger towns at lower elevations. 
You recorded their age (Age), years since migration (Years), weight in kg (Weight), height in mm (Height), skin fold of the 
chin, forearm, and calf in mm (Chin, Forearm, Calf), pulse rate in beats per minute (Pulse), and systolic and diastolic 
blood pressure (Systol, Diastol). 
Your goal is to reduce the number of variables by combining variables with similar characteristics. You use clustering of 
variables with the default correlation distance measure, average linkage and a dendrogram.  
1    Open the worksheet PERU.MTW. 
2    Choose Stat > Multivariate > Cluster Variables. 
3    In Variables or distance matrix, enter Age-Diastol. 
4    For Linkage Method, choose Average. 
5    Check Show dendrogram. Click OK. 

Session window output 

Cluster Analysis of Variables: Age, Years, Weight, Height, Chin, Forearm, ...
 
 
Correlation Coefficient Distance, Average Linkage 
Amalgamation Steps 
 
 
                                                          Number 
        Number                                           of obs. 
            of  Similarity  Distance  Clusters      New   in new 
Step  clusters       level     level   joined   cluster  cluster 
   1         9     86.7763  0.264474  6      7        6        2 
   2         8     79.4106  0.411787  1      2        1        2 
   3         7     78.8470  0.423059  5      6        5        3 
   4         6     76.0682  0.478636  3      9        3        2 
   5         5     71.7422  0.565156  3     10        3        3 
   6         4     65.5459  0.689082  3      5        3        6 
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   7         3     61.3391  0.773218  3      8        3        7 
   8         2     56.5958  0.868085  1      3        1        9 
   9         1     55.4390  0.891221  1      4        1       10 

Graph window output 
 

 
  
Interpreting the results 
Minitab displays the amalgamation steps in the Session window. At each step, two clusters are joined. The table shows 
which clusters were joined, the distance between them, the corresponding similarity level, the identification number of the 
new cluster (this is always the smaller of the two numbers of the clusters joined), the number of variables in the new 
cluster and the number of clusters. Amalgamation continues until there is just one cluster. 
If you had requested a final partition you would also receive a list of which variables are in each cluster.  
The dendrogram displays the information printed in the amalgamation table in the form of a tree diagram. Dendrogram 
suggest variables which might be combined, perhaps by averaging or totaling. In this example, the chin, forearm, and calf 
skin fold measurements are similar and you decide to combine those. The age and year since migration variables are 
similar, but you will investigate this relationship. If subjects tend to migrate at a certain age, then these variables could 
contain similar information and be combined. Weight and the two blood pressure measurements are similar. You decide 
to keep weight as a separate variable but you will combine the blood pressure measurements into one.  
 

Cluster K-Means 
Cluster K-Means 
Stat > Multivariate > Cluster K-Means  
Use K-means clustering of observations, like clustering of observations, to classify observations into groups when the 
groups are initially unknown. This procedure uses non-hierarchical clustering of observations according to MacQueen's 
algorithm [6]. K-means clustering works best when sufficient information is available to make good starting cluster 
designations.  

Dialog box items 
Variables: Enter the columns containing measurement data on which to perform the K-means non-hierarchical clustering 
of observations. 
Specify Partition by: Allows you to specify the initial partition for the K-means algorithm.  

Number of clusters: Choose to specify the number of clusters to form. If you enter the number 5, for example, Minitab 
uses the first 5 observations as initial cluster centroids. Each observation is assigned to the cluster whose centroid it is 
closest to. Minitab recalculates the cluster centroids each time a cluster gains or loses an observation.  
Initial partition column: Choose to specify a column containing cluster membership to begin the partition process.  
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Standardize variables: Check to standardize all variables by subtracting the means and dividing by the standard 
deviation before the distance matrix is calculated. This is a good idea if the variables are in different units and you wish to 
minimize the effect of scale differences. If you standardize, cluster centroids and distance measures are in standardized 
variable space before the distance matrix is calculated. 
<Storage> 
 

Data − Cluster K Means 
You must use raw data as input to K-means clustering of observations. Each row contains measurements on a single item 
or subject. You must have two or more numeric columns, with each column representing a different measurement. You 
must delete rows with missing data from the worksheet before using this procedure. 
To initialize the clustering process using a data column, you must have a column that contains a cluster membership 
value for each observation. The initialization column must contain positive, consecutive integers or zeros (it should not 
contain all zeros). Initially, each observation is assigned to the cluster identified by the corresponding value in this column. 
An initialization of zero means that an observation is initially unassigned to a group. The number of distinct positive 
integers in the initial partition column equals the number of clusters in the final partition. 
 

To perform K-means clustering of observations 
1    Choose Stat > Multivariate > Cluster K-Means. 
2    In Variables, enter the columns containing the measurement data. 
3    If you like, use any dialog box options, then click OK. 
 

Initializing Cluster K-Means Process 
K-means clustering begins with a grouping of observations into a predefined number of clusters. 
1    Minitab evaluates each observation, moving it into the nearest cluster. The nearest cluster is the one which has the 

smallest Euclidean distance between the observation and the centroid of the cluster. 
2    When a cluster changes, by losing or gaining an observation, Minitab recalculates the cluster centroid. 
3    This process is repeated until no more observations can be moved into a different cluster. At this point, all 

observations are in their nearest cluster according to the criterion listed above. 
Unlike hierarchical clustering of observations, it is possible for two observations to be split into separate clusters after they 
are joined together. 
K-means procedures work best when you provide good starting points for clusters [10]. There are two ways to initialize the 
clustering process: specifying a number of clusters or supplying an initial partition column that contains group codes. 
You may be able to initialize the process when you do not have complete information to initially partition the data. 
Suppose you know that the final partition should consist of three groups, and that observations 2, 5, and 9 belong in each 
of those groups, respectively. Proceeding from here depends upon whether you specify the number of clusters or supply 
an initial partition column.  

•    If you specify the number of clusters, you must rearrange your data in the Data window to move observations 2, 5 and 
9 to the top of the worksheet, and then specify 3 for Number of clusters. 

•    If you enter an initial partition column, you do not need to rearrange your data in the Data window. In the initial partition 
worksheet column, enter group numbers 1, 2, and 3, for observations 2, 5, and 9, respectively, and enter 0 for the 
other observations. 

The final partition will depend to some extent on the initial partition that Minitab uses. You might try different initial 
partitions. According to Milligan [10], K-means procedures may not perform as well when the initializations are done 
arbitrarily. However, if you provide good starting points, K-means clustering may be quite robust. 
 

To initialize the process by specifying the number of clusters 
1    Choose Stat > Multivariate > Cluster K-Means. 
2    In Variables, enter the columns containing the measurement data. 
3    Under Specify Partition by, choose Number of clusters and enter a number, k, in the box. Minitab will use the first k 

observations as initial cluster seeds, or starting locations.  
4    Click OK. 
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To initialize the process using a data column 
1    Choose Stat > Multivariate > Cluster K-Means. 
2    In Variables, enter the columns containing the measurement data. 
3    Under Specify Partition by, choose Initial partition column. Enter the column containing the initial cluster 

membership for each observation.  
4    Click OK. 
 

Cluster K-Means − Storage 
Stat > Multivariate > Cluster K-Means > Storage 
Allows cluster membership for each observation and the distance between each observation and each cluster centroid. 

Dialog box items 
Cluster membership column: Enter a single storage column for final cluster membership for each observation. This 
column can then be used as a categorical variable in other Minitab commands, such as Discriminant Analysis or Plot. 
Distance between observations and cluster centroids (Give a column for each cluster group): Enter storage 
columns for the distance between each observation and each cluster centroid. The number of columns specified must 
equal the number of clusters specified for the initial partition. The distances stored are Euclidean distances.  
 

Example of Cluster K-Means 
You live-trap, anesthetize, and measure one hundred forty-three black bears. The measurements are total length and 
head length (Length, Head.L), total weight and head weight (Weight, Weight.H), and neck girth and chest girth (Neck.G, 
Chest.G). You wish to classify these 143 bears as small, medium-sized, or large bears. You know that the second, 
seventy-eighth, and fifteenth bears in the sample are typical of the three respective categories. First, you create an initial 
partition column with the three seed bears designated as 1 = small, 2 = medium-sized, 3 = large, and with the remaining 
bears as 0 (unknown) to indicate initial cluster membership. Then you perform K-means clustering and store the cluster 
membership in a column named BearSize. 
1    Open the worksheet BEARS.MTW.  
2    To create the initial partition column, choose Calc > Make Patterned Data > Simple Set of Numbers.  
3    In Store patterned data in, enter Initial for the storage column name. 
4    In both From first value and From last value, enter 0.  
5    In List each value, type 143. Click OK.  
6    Go to the Data window and type 1, 2, and 3 in the second, seventy-eighth, and fifteenth rows, respectively, of the 

column named Initial. 
7    Choose Stat > Multivariate > Cluster K-Means. 

8    In Variables, enter 'Head.L'−Weight. 
9    Under Specify Partition by, choose Initial partition column and enter Initial. 
10  Check Standardize variables. 
11  Click Storage. In Cluster membership column, enter BearSize.  
12  Click OK in each dialog box. 

Session window output 

K-means Cluster Analysis: Head.L, Head.W, Neck.G, Length, Chest.G, Weight 
 
 
Standardized Variables 
 
 
Final Partition 
 
 
Number of clusters: 3 
 
 
                         Within   Average   Maximum 
                        cluster  distance  distance 
             Number of   sum of      from      from 
          observations  squares  centroid  centroid 
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Cluster1            41   63.075     1.125     2.488 
Cluster2            67   78.947     0.997     2.048 
Cluster3            35   65.149     1.311     2.449 
 
 
Cluster Centroids 
 
                                           Grand 
Variable  Cluster1  Cluster2  Cluster3  centroid 
Head.L     -1.0673    0.0126    1.2261   -0.0000 
Head.W     -0.9943   -0.0155    1.1943    0.0000 
Neck.G     -1.0244   -0.1293    1.4476   -0.0000 
Length     -1.1399    0.0614    1.2177    0.0000 
Chest.G    -1.0570   -0.0810    1.3932   -0.0000 
Weight     -0.9460   -0.2033    1.4974   -0.0000 
 
 
Distances Between Cluster Centroids 
 
          Cluster1  Cluster2  Cluster3 
Cluster1    0.0000    2.4233    5.8045 
Cluster2    2.4233    0.0000    3.4388 
Cluster3    5.8045    3.4388    0.0000 

Interpreting the results 
K-means clustering classified the 143 bears as 41 small bears, 67 medium-size bears, and 35 large bears. Minitab 
displays, in the first table, the number of observations in each cluster, the within cluster sum of squares, the average 
distance from observation to the cluster centroid, and the maximum distance of observation to the cluster centroid. In 
general, a cluster with a small sum of squares is more compact than one with a large sum of squares. The centroid is the 
vector of variable means for the observations in that cluster and is used as a cluster midpoint. 
The centroids for the individual clusters are displayed in the second table while the third table gives distances between 
cluster centroids. 
The column BearSize contains the cluster designations. 
 

Discriminant Analysis 
Discriminant Analysis 
Stat > Multivariate > Discriminant Analysis 
Use discriminant analysis to classify observations into two or more groups if you have a sample with known groups. 
Discriminant analysis can also used to investigate how variables contribute to group separation. 
Minitab offers both linear and quadratic discriminant analysis. With linear discriminant analysis, all groups are assumed to 
have the same covariance matrix. Quadratic discrimination does not make this assumption but its properties are not as 
well understood. 
In the case of classifying new observations into one of two categories, logistic regression may be superior to discriminant 
analysis [3], [11]. 

Dialog box items 
Groups: Choose the column containing the group codes. There may be up to 20 groups. 
Predictors: Choose the column(s) containing the measurement variables or predictors. 
Discriminant Function  

Linear: Choose to perform linear discriminant analysis. All groups are assumed to have the same covariance matrix. 
Quadratic: Choose to perform quadratic discriminant analysis. No assumption is made about the covariance matrix; its 
properties are not as well understood.  

Use cross validation: Check to perform the discrimination using cross-validation. This technique is used to compensate 
for an optimistic apparent error rate. 
Storage  

Linear discriminant function: Enter storage columns for the coefficients from the linear discriminant function, using 
one column for each group. The constant is stored at the top of each column. 
Fits: Check to store the fitted values. The fitted value for an observation is the group into which it is classified. 
Fits from cross validation: Check to store the fitted values if discrimination was done using cross-validation. 

<Options>  
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Data − Discriminant Analysis 
Set up your worksheet so that a row of data contains information about a single item or subject. You must have one or 
more numeric columns containing measurement data, or predictors, and a single grouping column containing up to 20 
groups. The column of group codes may be numeric, text, or date/time. If you wish to change the order in which text 
groups are processed from their default alphabetized order, you can define your own order. (See Ordering Text 
Categories). Minitab automatically omits observations with missing measurements or group codes from the calculations. 
If a high degree of multicollinearity exists (i.e., if one or more predictors is highly correlated with another) or one or more of 
the predictors is essential constant, discriminant analysis calculations cannot be done and Minitab displays a message to 
that effect. 
 

To perform linear discriminant analysis 
1    Choose Stat > Multivariate > Discriminant Analysis. 
2    In Groups, enter the column containing the group codes. 
3    In Predictors, enter the column or columns containing the measurement data. 
4    If you like, use any dialog box options, then click OK. 
 

Linear discriminant analysis 
An observation is classified into a group if the squared distance (also called the Mahalanobis distance) of observation to 
the group center (mean) is the minimum. An assumption is made that covariance matrices are equal for all groups. There 
is a unique part of the squared distance formula for each group and that is called the linear discriminant function for that 
group. For any observation, the group with the smallest squared distance has the largest linear discriminant function and 
the observation is then classified into this group. 
Linear discriminant analysis has the property of symmetric squared distance: the linear discriminant function of group i 
evaluated with the mean of group j is equal to the linear discriminant function of group j evaluated with the mean of group 
i. 
We have described the simplest case, no priors and equal covariance matrices. If you consider Mahalanobis distance a 
reasonable way to measure the distance of an observation to a group, then you do not need to make any assumptions 
about the underlying distribution of your data. 
See Prior Probabilities for more information. 
 

Quadratic discriminant analysis 
There is no assumption with quadratic discriminant analysis that the groups have equal covariance matrices. As with 
linear discriminant analysis, an observation is classified into the group that has the smallest squared distance. However, 
the squared distance does not simplify into a linear function, hence the name quadratic discriminant analysis. 
Unlike linear distance, quadratic distance is not symmetric. In other words, the quadratic discriminant function of group i 
evaluated with the mean of group j is not equal to the quadratic discriminant function of group j evaluated with the mean of 
group i. On the results, quadratic distance is called the generalized squared distance. If the determinant of the sample 
group covariance matrix is less than one, the generalized squared distance can be negative. 
 

Cross-Validation  
Cross-validation is one technique that is used to compensate for an optimistic apparent error rate. The apparent error rate 
is the percent of misclassified observations. This number tends to be optimistic because the data being classified are the 
same data used to build the classification function. 
The cross-validation routine works by omitting each observation one at a time, recalculating the classification function 
using the remaining data, and then classifying the omitted observation. The computation time takes approximately four 
times longer with this procedure. When cross-validation is performed, Minitab displays an additional summary table. 
Another technique that you can use to calculate a more realistic error rate is to split your data into two parts. Use one part 
to create the discriminant function, and the other part as a validation set. Predict group membership for the validation set 
and calculate the error rate as the percent of these data that are misclassified. 
 

Prior Probabilities 
Sometimes items or subjects from different groups are encountered according to different probabilities. If you know or can 
estimate these probabilities a priori, discriminant analysis can use these so-called prior probabilities in calculating the 
posterior probabilities, or probabilities of assigning observations to groups given the data. With the assumption that the 
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data have a normal distribution, the linear discriminant function is increased by ln(pi), where pi is the prior probability of 
group i. Because observations are assigned to groups according to the smallest generalized distance, or equivalently the 
largest linear discriminant function, the effect is to increase the posterior probabilities for a group with a high prior 
probability. 
Now suppose we have priors and suppose fi(x) is the joint density for the data in group i (with the population parameters 
replaced by the sample estimates).  
The posterior probability is the probability of group i given the data and is calculated by 

 

The largest posterior probability is equivalent to the largest value of . 
If fi(x) is the normal distribution, then 

- (a constant) 

The term in square brackets is called the generalized squared distance of x to group i and is denoted by . Notice,  

 
The term in square brackets is the linear discriminant function. The only difference from the non-prior case is a change in 
the constant term. Notice, the largest posterior is equivalent to the smallest generalized distance, which is equivalent to 
the largest linear discriminant function. 
 

Predicting group membership for new observations  
Generally, discriminant analysis is used to calculate the discriminant functions from observations with known groups. 
When new observations are made, you can use the discriminant function to predict which group that they belong to. You 
can do this by either calculating (using Calc > Calculator) the values of the discriminant function for the observation(s) 
and then assigning it to the group with the highest function value or by using Minitab's discriminant procedure. See To 
predict group membership for new observations.  
 

To predict group membership for new observations  
1    Choose Stat > Multivariate > Discriminant Analysis. 
2    In Groups, enter the column containing the group codes from the original sample. 
3    In Predictors, enter the column(s) containing the measurement data of the original sample.  
4    Click Options. In Predict group membership for, enter constants or columns representing one or more 

observations. The number of constants or columns must be equivalent to the number of predictors. 
5    If you like, use any dialog box options, and click OK.  
 

Discriminant Analysis − Options 
Stat > Multivariate > Discriminant Analysis > Options 
Allows you to specify prior probabilities, predict group membership for new observations, and control the display of 
Session window output. 

Dialog box items 
Prior probabilities: Enter prior probabilities. You may type in the probabilities or specify constants (K) that contain stored 
values. There should be one value for each group. The first value will be assigned to the group with the smallest code, the 
second to the group with the second smallest code, etc. If the probabilities do not sum to one, Minitab normalizes them. 
See Prior Probabilities. 
Predict group membership for: Enter values for predicting group membership for new observations.  
Display of Results:  

Do not display: Choose to suppress all results. Requested storage is done. 
Classification matrix: Choose to display only the classification matrix. 
Above plus ldf, distances, and misclassification summary: Choose to display the classification matrix, the squared 
distance between group centers, linear discriminant function, and a summary of misclassified observations.  
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Above plus mean, std. dev., and covariance summary: Choose to display the classification matrix, the squared 
distance between group centers, linear discriminant function, a summary of misclassified observations, means, 
standard deviations, and covariance matrices, for each group and pooled. 
Above plus complete classification summary: Choose to display the classification matrix, the squared distance 
between group centers, linear discriminant function, a summary of misclassified observations, means, standard 
deviations, covariance matrices, for each group and pooled, and a summary of how all observations were classified. 
Minitab notes misclassified observations with two asterisks beside the observation number. 

 

Example of Discriminant Analysis 
In order to regulate catches of salmon stocks, it is desirable to identify fish as being of Alaskan or Canadian origin. Fifty 
fish from each place of origin were caught and growth ring diameters of scales were measured for the time when they 
lived in freshwater and for the subsequent time when they lived in saltwater. The goal is to be able to identify newly-
caught fish as being from Alaskan or Canadian stocks. The example and data are from [6], page 519-520.  
1    Open the worksheet EXH_MVAR.MTW. 
2    Choose Stat > Multivariate > Discriminant Analysis. 
3    In Groups, enter SalmonOrigin.  
4    In Predictors, enter Freshwater Marine. Click OK. 

Session window output 

Discriminant Analysis: SalmonOrigin versus Freshwater, Marine 
 
 
Linear Method for Response: SalmonOrigin 
 
 
Predictors: Freshwater, Marine 
 
 
Group    Alaska    Canada 
Count        50        50 
 
 
Summary of classification 
 
                  True Group 
Put into Group  Alaska  Canada 
Alaska              44       1 
Canada               6      49 
Total N             50      50 
N correct           44      49 
Proportion       0.880   0.980 
 
N = 100           N Correct = 93           Proportion Correct = 0.930
 
 
Squared Distance Between Groups 
 
         Alaska   Canada 
Alaska  0.00000  8.29187 
Canada  8.29187  0.00000 
 
 
Linear Discriminant Function for Groups 
 
             Alaska  Canada 
Constant    -100.68  -95.14 
Freshwater     0.37    0.50 
Marine         0.38    0.33 
 
 
Summary of Misclassified Observations 
 
                                                Squared 
Observation    True Group  Pred Group   Group  Distance  Probability 
          1**      Alaska      Canada  Alaska     3.544        0.428 
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                                       Canada     2.960        0.572 
          2**      Alaska      Canada  Alaska    8.1131        0.019 
                                       Canada    0.2729        0.981 
 
         12**      Alaska      Canada  Alaska    4.7470        0.118 
                                       Canada    0.7270        0.882 
         13**      Alaska      Canada  Alaska    4.7470        0.118 
                                       Canada    0.7270        0.882 
         30**      Alaska      Canada  Alaska     3.230        0.289 
                                       Canada     1.429        0.711 
         32**      Alaska      Canada  Alaska     2.271        0.464 
                                       Canada     1.985        0.536 
         71**      Canada      Alaska  Alaska     2.045        0.948 
                                       Canada     7.849        0.052 
 

Interpreting the results 
As shown in the Summary of Classification table, the discriminant analysis correctly identified 93 of 100 fish, though the 
probability of correctly classifying an Alaskan fish was lower (44/50 or 88%) than was the probability of correctly 
classifying a Canadian fish (49/50 or 98%). To identify newly-caught fish, you could compute the linear discriminant 
functions associated with Alaskan and Canadian fish and identify the new fish as being of a particular origin depending 
upon which discriminant function value is higher. You can either do this by using Calc > Calculator using stored or output 
values, or performing discriminant analysis again and predicting group membership for new observations. 
The Summary of Misclassified Observations table shows the squared distances from each misclassified point to group 
centroids and the posterior probabilities. The squared distance value is that value from observation to the group centroid, 
or mean vector. The probability value is the posterior probability. Observations are assigned to the group with the highest 
posterior probability. 
 

Simple Correspondence Analysis 
Simple Correspondence Analysis 
Stat > Multivariate > Simple Correspondence Analysis 
Simple correspondence analysis helps you to explore relationships in a two-way classification. Simple correspondence 
analysis can also operate on three-way and four-way tables because they can be collapsed into two-way tables. This 
procedure decomposes a contingency table in a manner similar to how principal components analysis decomposes 
multivariate continuous data. An eigen analysis of the data is performed, and the variability is broken down into underlying 
dimensions and associated with rows and/or columns. 

Dialog box items 
Input Data  

Categorical variables: Choose to enter the data as categorical variables. If you do not use the Combine subdialog 
box, enter two worksheet columns. The first is for the row categories; the second is for the column categories. Minitab 
then forms a contingency table from the input data.  
Columns of a contingency table: Choose to enter the data as columns of a contingency table. Each worksheet 
column you enter will be used as one column of the contingency table. All values in the contingency columns must be 
positive integers or zero. 

Row names: Enter a column that contains names for the rows of the contingency table. The name column must be a text 
column whose length matches the number of rows in the contingency table. Minitab prints the first 8 characters of the 
names in tables, but prints the full name on graphs. If you do not enter names here, the rows will be named Row1, Row2, 
etc.  
Column names: Enter a column that contains names for the columns of the contingency table. The name column must 
be a text column whose length matches the number of columns in the contingency table. Minitab prints the first 8 
characters of the names in tables, but prints the full name on graphs. If you do not enter names here, the columns will be 
named Column1, Column2, etc.  
Number of components: Enter the number of components to calculate. The minimum number of components is one. 
The maximum number of components for a contingency table with r rows and c columns is the smaller of (r-1) or (c-1), 
which is equivalent to the dimension of the subspace onto which you project the profiles. The default number of 
components is 2. 
<Combine> 
<Supp Data> 
<Results> 
<Graphs> 
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<Storage> 
 

Data − Simple Correspondence Analysis 
Worksheet data may be arranged in two ways: raw or contingency table form. See Arrangement of Input Data. Worksheet 
data arrangement determines acceptable data values. 

•    If your data are in raw form, you can have two, three, or four classification columns with each row representing one 
observation. All columns must be the same length. The data represent categories and may be numeric, text, or 
date/time. If the categories in a column are text data, the levels are used in the order of first occurrence, i.e., the first 
level becomes the first row (column) of the table, the next distinct level becomes the second row (column) of the table, 
and so on. If you wish to change the order in which text categories are processed from their default alphabetized 
order, you can define your own order. See Ordering Text Categories. You must delete missing data before using this 
procedure. Because simple correspondence analysis works with a two-way classification, the standard approach is to 
use two worksheet columns. However, you can obtain a two-way classification with three or four variables by crossing 
variables within the simple correspondence analysis procedure. See Crossing variables to create a two-way table. 

•    If your data are in contingency table form, worksheet columns must contain integer frequencies of your category 
combinations. You must delete any rows or columns with missing data or combine them with other rows or columns. 
Unlike the χ  test for association procedure, there is no set limit on the number of contingency table columns. You 
could use simple correspondence analysis to obtain χ  statistics for large tables. 

Supplementary data 
When performing a simple correspondence analysis, you have a main classification set of data on which you perform your 
analysis. However, you may also have additional or supplementary data in the same form as the main set, because you 
can see how these supplementary data are "scored" using the results from the main set. These supplementary data may 
be further information from the same study, information from other studies, or target profiles [4]. Minitab does not include 
these data when calculating the components, but you can obtain a profile and display supplementary data in graphs. 
You can have row supplementary data or column supplementary data. Row supplementary data constitutes an additional 
row(s) of the contingency table, while column supplementary data constitutes an additional column(s) of the contingency 
table. Supplementary data must be entered in contingency table form. Therefore, each worksheet column of these data 
must contain c entries (where c is the number of contingency table columns) or r entries (where r is the number of 
contingency table rows). 
 

To perform a simple correspondence analysis 
1    Choose Stat > Multivariate > Simple Correspondence Analysis. 
2    How you enter your data depends on the form of the data and the number of categorical variables.  

•    If you have two categorical variables, do one of the following: 
−    For raw data, enter the columns containing the raw data in Categorical variables. 

−    For contingency table data, enter the columns containing the data in Columns of a contingency table. 
•    If you have three or four categorical variables, you must cross some variables before entering data as shown 

above. See Crossing variables to create a two-way table. 
3    If you like, use any dialog box options, then click OK. 
 

Crossing variables to create a two-way table 
Crossing variables allows you to use simple correspondence analysis to analyze three-way and four-way contingency 
tables. You can cross the first two variables to form rows and/or the last two variables to form columns. You must enter 
three categorical variables to perform one cross, and four categorical variables to perform two crosses. 
The following example illustrates row crossing. Column crossing is similar. Suppose you have two variables. The row 
variable, Sex, has two levels: male and female; the column variable, Age, has three levels; young, middle aged, old.  
Crossing Sex with Age will create 2 x 3 = 6 rows, ordered as follows: 

male / young 
male / middle aged  
male / old  
female / young  
female / middle aged 
female / old  

 

Simple Correspondence Analysis − Combine 
Stat > Multivariate > Simple Correspondence Analysis > Combine 
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Crossing variables allows you to use simple correspondence analysis to analyze three-way and four-way contingency 
tables. You can cross the first two variables to form rows and/or the last two variables to form columns. You must enter 
three categorical variables to perform one cross, and four categorical variables to perform two crosses. 
In order to cross columns, you must choose Categorical variables for Input Data rather than Columns of a 
contingency table in the main dialog box. If you want to cross for either just the rows or for just the columns of the 
contingency table, you must enter three worksheet columns in the Categorical variables text box. If you want to cross 
both the rows and the columns of the table, you must specify four worksheet columns in this text box. 

Dialog box items 
Define Rows of the Contingency Table Using: 

First variable: Choose to use the first input column to form the rows of the contingency table. Thus, the rows of the 
contingency table are not formed by crossing variables. 
First 2 variables crossed: Choose to cross the categories in the first two input columns to form the rows of the 
contingency table. For example, if the first variable is Sex (with 2 levels, male and female) and the second variable is 
Age (with 3 levels, young, middle aged, old), then there will be 2 x 3 = 6 rows, ordered as follows:  
males / young 
males / middle aged  
males / old  
females / young  
females / middle aged 
females / old  

Define Columns of Contingency Table Using: 
Last variable: Choose to use the last input column to form the columns of the contingency table. 
Last 2 variables crossed: Choose to cross the categories in the last two input columns to form the columns of the 
contingency table.  

 

Simple Correspondence Analysis − Supplementary Data 
Stat > Multivariate > Simple Correspondence Analysis > Supp Data 
When performing a simple correspondence analysis, you have a main classification set of data on which you perform your 
analysis. However, you may also have additional or supplementary data in the same form as the main set, because you 
can see how these supplementary data are "scored" using the results from the main set. See What are Supplementary 
Data? 

Dialog box items 
Supplementary Rows: Enter one or more columns containing additional rows of the contingency table. 
Supplementary Columns: Enter one or more columns containing additional columns of the contingency table. 
Row names: Enter a column containing text names for the supplementary rows. 
Column names: Enter a column containing text names for the supplementary columns. 
 

What are Supplementary Data? 
When performing a simple correspondence analysis, you have a main classification set of data on which you perform your 
analysis. However, you may also have additional or supplementary data in the same form as the main set, because you 
can see how these supplementary data are "scored" using the results from the main set. These supplementary data may 
be further information from the same study, information from other studies, or target profiles [4]. Minitab does not include 
these data when calculating the components, but you can obtain a profile and display supplementary data in graphs.  
You can have row supplementary data or column supplementary data. Row supplementary data constitutes an additional 
row(s) of the contingency table, while column supplementary data constitutes an additional column(s) of the contingency 
table. Supplementary data must be entered in contingency table form. Therefore, each worksheet column of these data 
must contain c entries (where c is the number of contingency table columns) or r entries (where r is the number of 
contingency table rows). 
 

Simple Correspondence Analysis − Results 
Stat > Multivariate > Simple Correspondence Analysis > Results 
Allows you to control displayed output. 

Dialog box items 
Contingency table: Check to display the contingency table.  
Row profiles: Check to display a table of row profiles and row masses. 
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Columns profiles: Check to display a table of column profiles and column masses. 
Expected frequencies: Check to display a table of the expected frequency in each cell of the contingency table. 
Observed - expected frequencies: Check to display a table of the observed minus the expected frequency in each cell 
of the contingency table. 

Chi-square values: Check to display a table of the χ  value in each cell of the contingency table. 
Inertias: Check to display the table of the relative inertia in each cell of the contingency table. 
 

Simple Correspondence Analysis − Graphs 
Stat > Multivariate > Simple Correspondence Analysis > Graphs 
Allows you display various plots to complement your analysis. See Simple correspondence analysis graphs. 
In all plots, row points are plotted with red circles--solid circles for regular points, and open circles for supplementary 
points. Column points are plotted with blue squares--solid squares for regular points, and open squares for supplementary 
points. 
The aspect ratio of the plots is one-to-one so that a unit on the x-axis is equal to a unit on the y-axis.  

Dialog box items 
Axis pairs for all plots (Y then X): Enter between 1 and 15 axis pairs for each requested plot. The axes you list must be 
axes in the subspace you defined in the main dialog box. For example, if you entered 4 in number of components, you 
can only list axes 1, 2, 3, and 4. 
The first axis in a pair will be the Y or vertical axis of the plot; the second axis will be the X or horizontal axis of the plot. 
For example, if you enter 2 1 3 1 plots component 2 versus component 1, and component 3 versus component 1.  
Show supplementary points in all plots: Check to display supplementary points on all plots.  
Plots: 

Symmetric plot showing rows only: Check to display a plot that shows the row principal coordinates. 
Symmetric plot showing columns only: Check to display a plot that shows the column principal coordinates. 
Symmetric plot showing rows and columns: Check to display a symmetric plot that shows both row principal 
coordinates and column principal coordinates overlaid in a joint display. 
Asymmetric row plot showing rows and columns: Check to display an asymmetric row plot. 
Asymmetric column plot showing rows and columns: Check to display an asymmetric column plot. 

 

To display simple correspondence analysis plots 
1    Perform steps 1−2 of To perform a simple correspondence analysis. 

2    Click Graphs and check all of the plots that you would like to display. 

3    If you like, you can specify the component pairs and their axes for plotting. Enter between 1 and 15 component pairs 
in Axis pairs for all plots (Y then X). Minitab plots the first component in each pair on the vertical or y-axis of the 
plot; the second component in the pair on the horizontal or x-axis of the plot.  

4    If you have supplementary data and would like to include this data in the plot(s), check Show supplementary points 
in all plots. Click OK in each dialog box. 

In all plots, row points are plotted with red circles−solid circles for regular points, and open circles for supplementary 
points. Column points are plotted with blue squares−blue squares for regular points, and open squares for supplementary 
points. 
 

Choosing a simple correspondence analysis graph 
You can display the following simple correspondence-analysis plots:  

•    A row plot or a column plot 

•    A symmetric plot  

•    An asymmetric row plot or an asymmetric column plot  
A row plot is a plot of row principal coordinates. A column plot is a plot of column principal coordinates.  
A symmetric plot is a plot of row and column principal coordinates in a joint display. An advantage of this plot is that the 
profiles are spread out for better viewing of distances between them. The row-to-row and column-to-column distances are 
approximate χ  distances between the respective profiles. However, this same interpretation cannot be made for row-to-
column distances. Because these distances are two different mappings, you must interpret these plots carefully [4]. 
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An asymmetric row plot is a plot of row principal coordinates and of column standardized coordinates in the same plot. 
Distances between row points are approximate χ  distances between the row profiles. Choose the asymmetric row plot 
over the asymmetric column plot if rows are of primary interest.  
An asymmetric column plot is a plot of column principal coordinates and row standardized coordinates. Distances 
between column points are approximate χ  distances between the column profiles. Choose an asymmetric column plot 
over an asymmetric row plot if columns are of primary interest.  
An advantage of asymmetric plots is that there can be an intuitive interpretation of the distances between row points and 
column points, especially if the two displayed components represent a large proportion of the total inertia [4]. Suppose you 
have an asymmetric row plot, as shown in Example of simple correspondence analysis. This graph plots both the row 
profiles and the column vertices for components 1 and 2. The closer a row profile is to a column vertex, the higher the row 
profile is with respect to the column category. In this example, of the row points, Biochemistry is closest to column 
category E, implying that biochemistry as a discipline has the highest percentage of unfunded researchers in this study. A 
disadvantage of asymmetric plots is that the profiles of interest are often bunched in the middle of the graph [4], as 
happens with the asymmetric plot of this example. 
 

Simple Correspondence Analysis − Storage 
Stat > Multivariate > Simple Correspondence Analysis > Storage 
Allows you to store results. In the four cases that store coordinates, the coordinate for the first component is stored in the 
first column, the coordinate for the second component in the second column, and so on. If there are supplementary points, 
their coordinates are stored at the ends of the columns.  

Dialog box items 
Columns of the contingency table: Enter one worksheet column for each column of the contingency table. Minitab does 
not store supplementary rows and columns. 
Row principal coordinates: Check to store the row principal coordinates. Minitab stores the coordinate for the first 
component in a column named RPC1, the coordinate for the second component in a column that named RPC2, etc. If 
there are supplementary points, their coordinates are stored at the ends of the columns. 
Row standardized coordinates: Check to store the row standardized coordinates. Minitab stores the coordinate for the 
first component in a column named RSC1, the coordinate for the second component in a column that named RSC2, etc. If 
there are supplementary points, their coordinates are stored at the ends of the columns. 
Column principal coordinates: Check to store the column principal coordinates. Minitab stores the coordinate for the 
first component in a column named CPC1, the coordinate for the second component in a column that named CPC2, etc. If 
there are supplementary points, their coordinates are stored at the ends of the columns. 
Column standardized coordinates: Check to store the column standardized coordinates. Minitab stores the coordinate 
for the first component in a column named CSC1, the coordinate for the second component in a column that named 
CSC2, etc. If there are supplementary points, their coordinates are stored at the ends of the columns. 
 

Example of Simple Correspondence Analysis 
The following example is from Correspondence Analysis in Practice, by M. J. Greenacre, p.75. Seven hundred ninety-six 
researchers were cross-classified into ten academic disciplines and five funding categories, where A is the highest 
funding category, D is the lowest, and category E is unfunded. Here, disciplines are rows and funding categories are 
columns. You wish to see how the disciplines compare to each other relative to the funding categories so you perform 
correspondence analysis from a row orientation. Supplementary data include: a row for museum researchers not included 
in the study and a row for mathematical sciences, which is the sum of Mathematics and Statistics. 
1    Open the worksheet EXH_TABL.MTW. 
2    Choose Stat > Multivariate > Simple Correspondence Analysis. 
3    Choose Columns of a contingency table, and enter CT1-CT5. In Row names, enter RowNames. In Column 

names, enter ColNames. 
4    Click Results and check Row profiles. Click OK.  
5    Click Supp Data. In Supplementary Rows, enter RowSupp1 RowSupp2. In Row names, enter RSNames. Click OK. 
6    Click Graphs. Check Show supplementary points in all plots. Check Symmetric plot showing rows only and 

Asymmetric row plot showing rows and columns.  
7    Click OK in each dialog box. 
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Session window output 

Simple Correspondence Analysis: CT1, CT2, CT3, CT4, CT5 
 
 
Row Profiles 
 
                  A      B      C      D      E   Mass 
Geology       0.035  0.224  0.459  0.165  0.118  0.107 
Biochemistry  0.034  0.069  0.448  0.034  0.414  0.036 
Chemistry     0.046  0.192  0.377  0.162  0.223  0.163 
Zoology       0.025  0.125  0.342  0.292  0.217  0.151 
Physics       0.088  0.193  0.412  0.079  0.228  0.143 
Engineering   0.034  0.125  0.284  0.170  0.386  0.111 
Microbiology  0.027  0.162  0.378  0.135  0.297  0.046 
Botany        0.000  0.140  0.395  0.198  0.267  0.108 
Statistics    0.069  0.172  0.379  0.138  0.241  0.036 
Mathematics   0.026  0.141  0.474  0.103  0.256  0.098 
Mass          0.039  0.161  0.389  0.162  0.249 
 
 
Analysis of Contingency Table 
 
 Axis  Inertia  Proportion  Cumulative  Histogram 
    1   0.0391      0.4720      0.4720  ****************************** 
    2   0.0304      0.3666      0.8385  *********************** 
    3   0.0109      0.1311      0.9697  ******** 
    4   0.0025      0.0303      1.0000  * 
Total   0.0829 
 
 
Row Contributions 
 
                                           Component  1 
ID  Name           Qual   Mass  Inert   Coord   Corr  Contr 
 1  Geology       0.916  0.107  0.137  -0.076  0.055  0.016 
 2  Biochemistry  0.881  0.036  0.119  -0.180  0.119  0.030 
 3  Chemistry     0.644  0.163  0.021  -0.038  0.134  0.006 
 4  Zoology       0.929  0.151  0.230   0.327  0.846  0.413 
 5  Physics       0.886  0.143  0.196  -0.316  0.880  0.365 
 6  Engineering   0.870  0.111  0.152   0.117  0.121  0.039 
 7  Microbiology  0.680  0.046  0.010  -0.013  0.009  0.000 
 8  Botany        0.654  0.108  0.067   0.179  0.625  0.088 
 9  Statistics    0.561  0.036  0.012  -0.125  0.554  0.014 
10  Mathematics   0.319  0.098  0.056  -0.107  0.240  0.029 
 
                      Component  2 
ID  Name           Coord   Corr  Contr 
 1  Geology       -0.303  0.861  0.322 
 2  Biochemistry   0.455  0.762  0.248 
 3  Chemistry     -0.073  0.510  0.029 
 
 4  Zoology       -0.102  0.083  0.052 
 5  Physics       -0.027  0.006  0.003 
 6  Engineering    0.292  0.749  0.310 
 7  Microbiology   0.110  0.671  0.018 
 8  Botany         0.039  0.029  0.005 
 9  Statistics    -0.014  0.007  0.000 
10  Mathematics    0.061  0.079  0.012 
 
 
Supplementary Rows 
 
                                      Component  1          Component  2 
ID  Name      Qual   Mass  Inert   Coord   Corr  Contr   Coord   Corr  Contr 
 1  Museums  0.556  0.067  0.353   0.314  0.225  0.168  -0.381  0.331  0.318 
 2  MathSci  0.559  0.134  0.041  -0.112  0.493  0.043   0.041  0.066  0.007 
 
 
Column Contributions 
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                                   Component  1          Component  2 
ID  Name   Qual   Mass  Inert   Coord   Corr  Contr   Coord   Corr  Contr 
 1  A     0.587  0.039  0.187  -0.478  0.574  0.228  -0.072  0.013  0.007 
 2  B     0.816  0.161  0.110  -0.127  0.286  0.067  -0.173  0.531  0.159 
 3  C     0.465  0.389  0.094  -0.083  0.341  0.068  -0.050  0.124  0.032 
 4  D     0.968  0.162  0.347   0.390  0.859  0.632  -0.139  0.109  0.103 
 5  E     0.990  0.249  0.262   0.032  0.012  0.006   0.292  0.978  0.699 

Graph window output 

 

Graph window output 

 
 

Interpreting the results 
Row Profiles. The first table gives the proportions of each row category by column. Thus, of the class Geology, 3.5% are 
in column A, 22.4% are column B, etc. The mass of the Geology row, 0.107, is the proportion of all Geology subjects in 
the data set. 
Analysis of Contingency Table. The second table shows the decomposition of the total inertia. For this example, the 
table gives a summary of the decomposition of the 10 x 5 contingency table into 4 components. The column labeled 
Inertia contains the χ squared / n value accounted for by each component. Of the total inertia, 65.972 / 796 or 0.0829, 
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47.2% is accounted for by the first component, 36.66% by the second component, and so on. Here, 65.972 is the χ 
squared statistic you would obtain if you performed a χ squared test of association with this contingency table. 
Row Contributions. You can use the third table to interpret the different components. Since the number of components 
was not specified, Minitab calculates 2 components.  

•    The column labeled Qual, or quality, is the proportion of the row inertia represented by the two components. The rows 
Zoology and Geology, with quality = 0.928 and 0.916, respectively, are best represented among the rows by the two 
component breakdown, while Math has the poorest representation, with a quality value of 0.319.  

•    The column labeled Mass has the same meaning as in the Row Profiles table− the proportion of the class in the whole 
data set.  

•    The column labeled Inert is the proportion of the total inertia contributed by each row. Thus, Geology contributes 
13.7% to the total χ squared statistic.  

Next, Minitab displays information for each of the two components (axes).  

•    The column labeled Coord gives the principal coordinates of the rows.  

•    The column labeled Corr represents the contribution of the component to the inertia of the row. Thus, Component 1 
accounts for most of the inertia of Zoology and Physics (Coor = 0.846 and 0.880, respectively), but explains little of 
the inertia of Microbiology (Coor = 0.009).  

•    Contr, the contribution of each row to the axis inertia, shows that Zoology and Physics contribute the most, with 
Botany contributing to a smaller degree, to Component 1. Geology, Biochemistry, and Engineering contribute the most 
to Component 2. 

Supplementary rows. You can interpret this table in a similar fashion as the row contributions table. 
Column Contributions. The fifth table shows that two components explain most of the variability in funding categories B, 
D, and E. The funded categories A, B, C, and D contribute most to component 1, while the unfunded category, E, 
contributes most to component 2. 
Row Plot. This plot displays the row principal coordinates. Component 1, which best explains Zoology and Physics, 
shows these two classes well removed from the origin, but with opposite sign. Component 1 might be thought of as 
contrasting the biological sciences Zoology and Botany with Physics. Component 2 might be thought of as contrasting 
Biochemistry and Engineering with Geology.  
Asymmetric Row Plot. Here, the rows are scaled in principal coordinates and the columns are scaled in standard 
coordinates. Among funding classes, Component 1 contrasts levels of funding, while Component 2 contrasts being funded 
(A to D) with not being funded (E). Among the disciplines, Physics tends to have the highest funding level and Zoology 
has the lowest. Biochemistry tends to be in the middle of the funding level, but highest among unfunded researchers. 
Museums tend to be funded, but at a lower level than academic researchers 
 

Multiple Correspondence Analysis 
Multiple Correspondence Analysis 
Stat > Multivariate > Multiple Correspondence Analysis 
Multiple correspondence analysis extends simple correspondence analysis to the case of three or more categorical 
variables. Multiple correspondence analysis performs a simple correspondence analysis on a matrix of indicator variables 
where each column of the matrix corresponds to a level of categorical variable. Rather than having the two-way table of 
simple correspondence analysis, here the multi-way table is collapsed into one dimension. By moving from the simple to 
multiple procedure, you gain information on a potentially larger number of variables, but you may lose information on how 
rows and columns relate to each other. 

Dialog box items 
Input Data  

Categorical variables: Choose If your data are in raw form and then enter the columns containing the categorical 
variables. 
Indicator variables: Choose if your data are arranged as indicator variables and then enter the columns containing the 
indicator in the text box. The entries in all columns must be either the integers 0 and 1. 

Category names: Enter the column that contains the category names if you want to assign category names. The name 
column must be a text column whose length matches the number of categories on all categorical variables.  
For example, suppose there are 3 categorical variables: Sex (male, female), Hair color (blond, brown, black), and Age 
(under 20, from 20 to 50, over 50), and no supplementary variables. You would assign 2 + 3 + 3 = 8 category names, so 
the name column would contain 8 rows.  
Minitab only uses the first 8 characters of the names in printed tables, but uses all characters on graphs. 
Number of components: Enter the number of components to calculate. The default number of components is 2. 
<Supp Data> 
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<Results> 
<Graphs> 
<Storage> 
 

Data − Multiple Correspondence Analysis 
Worksheet data may be arranged in two ways: raw or indicator variable form. See Arrangement of Input Data. Worksheet 
data arrangement determines acceptable data values. 

•    If your data are in raw form, you can have one or more classification columns with each row representing one 
observation. The data represent categories and may be numeric, text, or date/time. If you wish to change the order in 
which text categories are processed from their default alphabetized order, you can define your own order. See 
Ordering Text Categories. You must delete missing data before using this procedure. 

•    If your data are in indicator variable form, each row will also represent one observation. There will be one indicator 
column for each category level. You can use Calc > Make Indicator Variables to create indicator variables from raw 
data. You must delete missing data before using this procedure. 

Supplementary data 
When performing a multiple correspondence analysis, you have a main classification set of data on which you perform 
your analysis. However, you may also have additional or supplementary data in the same form as the main set, and you 
might want to see how this supplementary data are "scored" using the results from the main set. These supplementary 
data are typically a classification of your variables that can help you to interpret the results. Minitab does not include these 
data when calculating the components, but you can obtain a profile and display supplementary data in graphs. 
Set up your supplementary data in your worksheet using the same form, either raw data or indicator variables, as you did 
for the input data. Because your supplementary data will provide additional information about your observations, your 
supplementary data column(s) must be the same length as your input data. 
 

To perform a multiple correspondence analysis 
1    Choose Stat > Multivariate > Multiple Correspondence Analysis. 
2    To enter your data, do one of the following: 

•    For raw data, enter the columns containing the raw data in Categorical variables. 
•    For indicator variable data, enter the columns containing the indicator variable data in Indicator variables. 

3    If you like, use any dialog box options, then click OK. 
 

Multiple Correspondence Analysis − Supplementary Data 
Stat > Multivariate > Multiple Correspondence Analysis > Supp Data 
Dialog box items 
Supplementary data (in same form as input data): Enter one or more columns containing supplementary column data. 
See What are Supplementary Data? 
Category names: Enter a column containing a text name for each category of all the supplementary data, arranged by 
numerical order of the corresponding categories by variable. 
 

What are Supplementary Data? 
When performing a simple correspondence analysis, you have a main classification set of data on which you perform your 
analysis. However, you may also have additional or supplementary data in the same form as the main set, because you 
can see how these supplementary data are "scored" using the results from the main set. These supplementary data may 
be further information from the same study, information from other studies, or target profiles [4]. Minitab does not include 
these data when calculating the components, but you can obtain a profile and display supplementary data in graphs.  
You can have row supplementary data or column supplementary data. Row supplementary data constitutes an additional 
row(s) of the contingency table, while column supplementary data constitutes an additional column(s) of the contingency 
table. Supplementary data must be entered in contingency table form. Therefore, each worksheet column of these data 
must contain c entries (where c is the number of contingency table columns) or r entries (where r is the number of 
contingency table rows). 
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Multiple Correspondence Analysis − Results 
Stat > Multivariate > Multiple Correspondence Analysis > Results 
Allows you to control displayed output. 

Dialog box items 
Indicator table: Check to display a table of indicator variables.  
Burt table: Check to display the Burt table.  
 

Multiple Correspondence Analysis − Graphs 
Stat > Multivariate > Multiple Correspondence Analysis > Graphs 
Allows you display column plots. 
Points are plotted with blue squares--solid squares for regular points, and open squares for supplementary points. 
The aspect ratio of the plots is one-to-one so that a unit on the x-axis is equal to a unit on the y-axis.  

Dialog box items 
Axis pairs for plots (Y then X): Enter one to 15 axis pairs to use for the column plots. The axes you list must be axes in 
the subspace you defined in the main dialog box. For example, if you entered 4 in number of components, you can only 
list axes 1, 2, 3, and 4. 
The first axis in a pair will be the Y or vertical axis of the plot; the second axis will be the X or horizontal axis of the plot. 
For example, if you enter 2 1 3 1 plots component 2 versus component 1, and component 3 versus component 1.  
Show supplementary points in all plots: Check to display supplementary points on all plots.  
Display column plot: Check to display a plot that shows the column coordinates. 
 

Multiple Correspondence Analysis − Storage 
Stat > Multivariate > Multiple Correspondence Analysis > Storage 
Allows you to store the column coordinates.  

Dialog box item 
Coordinates for the components: Check to store the column coordinates. Minitab stores the coordinate for the first 
component in the first listed column, the coordinate for the second component in the second listed column, etc. If there 
are supplementary points, their coordinates are stored at the ends of the columns.  
 

Example of Multiple Correspondence Analysis 
Automobile accidents are classified [8] (data from [3]) according to the type of accident (collision or rollover), severity of 
accident (not severe or severe), whether or not the driver was ejected, and the size of the car (small or standard). Multiple 
correspondence analysis was used to examine how the categories in this four-way table are related to each other. 
1    Open the worksheet EXH_TABL.MTW. 
2    Choose Stat > Multivariate > Multiple Correspondence Analysis. 
3    Choose Categorical variables, and enter CarWt DrEject AccType AccSever.  
4    In Category names, enter AccNames. 
5    Click Graphs. Check Display column plot.  
6    Click OK in each dialog box. 

Session window output 

Multiple Correspondence Analysis: CarWt, DrEject, AccType, AccSever 
 
 
Analysis of Indicator Matrix 
 
 Axis  Inertia  Proportion  Cumulative  Histogram 
    1   0.4032      0.4032      0.4032  ****************************** 
    2   0.2520      0.2520      0.6552  ****************** 
    3   0.1899      0.1899      0.8451  ************** 
    4   0.1549      0.1549      1.0000  *********** 
Total   1.0000 
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Column Contributions 
 
                                       Component  1          Component  2 
ID  Name       Qual   Mass  Inert   Coord   Corr  Contr   Coord   Corr  Contr 
 1  Small     0.965  0.042  0.208   0.381  0.030  0.015  -2.139  0.936  0.771 
 2  Standard  0.965  0.208  0.042  -0.078  0.030  0.003   0.437  0.936  0.158 
 3  NoEject   0.474  0.213  0.037  -0.284  0.472  0.043  -0.020  0.002  0.000 
 4  Eject     0.474  0.037  0.213   1.659  0.472  0.250   0.115  0.002  0.002 
 5  Collis    0.613  0.193  0.057  -0.426  0.610  0.087   0.034  0.004  0.001 
 6  Rollover  0.613  0.057  0.193   1.429  0.610  0.291  -0.113  0.004  0.003 
 7  NoSevere  0.568  0.135  0.115  -0.652  0.502  0.143  -0.237  0.066  0.030 
 8  Severe    0.568  0.115  0.135   0.769  0.502  0.168   0.280  0.066  0.036 

Graph window output 

 
 

Interpreting the results 
Analysis of Indicator Matrix. This table gives a summary of the decomposition of variables. The column labeled Inertia 
is the χ squared / n value accounted for by each component. Of the total inertia of 1, 40.3%, 25.2%, 19.0%, and, 15.5% 
are accounted for by the first through fourth components, respectively. 
Column Contributions. Use the column contributions to interpret the different components. Since we did not specify the 
number of components, Minitab calculates 2 components.  

•    The column labeled Qual, or quality, is the proportion of the column inertia represented by the all calculated 
components. The car-size categories (Small, Standard) are best represented by the two component breakdown with 
Qual = 0.965, while the ejection categories are the least represented with Qual = 0.474. When there are only two 
categories for each class, each is represented equally well by any component, but this rule would not necessarily be 
true for more than two categories.  

•    The column labeled Mass is the proportion of the class in the whole data set. In this example, the CarWt, DrEject, 
AccType, and AccSever classes combine for a proportion of 0.25.  

•    The column labeled Inert is the proportion of inertia contributed by each column. The categories small cars, ejections, 
and collisions have the highest inertia, summing 61.4%, which indicates that these categories are more dissociated 
from the others. 

Next, Minitab displays information for each of the two components (axes).  

•    The column labeled Coord gives the column coordinates. Eject and Rollover have the largest absolute coordinates for 
component 1 and Small has the largest absolute coordinate for component 2. The sign and relative size of the 
coordinates are useful in interpreting components.  

•    The column labeled Corr represents the contribution of the respective component to the inertia of the row. Here, 
Component 1 accounts for 47 to 61% of the inertia of the ejection, collision type, and accident severity categories, but 
explains only 3.0% of the inertia of car size.  
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•    Contr, the contribution of the row to the axis inertia, shows Eject and Rollover contributing the most to Component 1 
(Contr = 0.250 and 0.291, respectively). Component 2, on the other hand accounts for 93.6% of the inertia of the car 
size categories, with Small contributing 77.1% of the axis inertia. 

Column Plot. As the contribution values for Component 1 indicate, Eject and Rollover are most distant from the origin. 
This component contrasts Eject and Rollover and to some extent Severe with NoSevere. Component 2 separates Small 
with the other categories. Two components may not adequately explain the variability of these data, however. 
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