Bootstrap, Jackknife and other resampling methods Part IV: Jackknife

Rozenn Dahyot

Room 128, Department of Statistics Trinity College Dublin, Ireland dahyot@mee.tcd.ie

2005

Introduction

The bootstrap method is not always the best one. One main reason is that the bootstrap samples are generated from \hat{F} and not from F. Can we find samples/resamples exactly generated from F?

- If we look for samples of size *n*, then the answer is no!
- If we look for samples of size m (m < n), then we can indeed find (re)samples of size m exactly generated from F simply by looking at different subsets of our original sample x!

Looking at different subsets of our original sample amounts to sampling without replacement from observations x_1, \dots, x_n to get (re)samples (now called subsamples) of size m. This leads us to subsampling and the jackknife.

Jackknife

- The jackknife has been proposed by Quenouille in mid 1950's.
- In fact, the jackknife predates the bootstrap.
- The jackknife (with *m* = *n*−1) is less computer-intensive than the bootstrap.
- Jackknife describes a swiss penknife, easy to carry around. By analogy, Tukey (1958) coined the term in statistics as a general approach for testing hypotheses and calculating confidence intervals.

Jackknife samples

Definition

The Jackknife samples are computed by leaving out one observation x_i from $\mathbf{x} = (x_1, x_2, \dots, x_n)$ at a time:

$$\mathbf{x}_{(i)} = (x_1, x_2, \cdots, x_{i-1}, x_{i+1}, \cdots, x_n)$$

- The dimension of the jackknife sample $\mathbf{x}_{(i)}$ is m = n 1
- *n* different Jackknife samples : {**x**_(i)}_{i=1...n}.
- No sampling method needed to compute the *n* jackknife samples.

Available BOOTSTRAP MATLAB TOOLBOX, by Abdelhak M. Zoubir and D. Robert Iskander, http://www.csp.curtin.edu.au/downloads/bootstrap_toolbox.html

Jackknife replications

Definition

The ith jackknife replication $\hat{\theta}_{(i)}$ of the statistic $\hat{\theta} = s(\mathbf{x})$ is:

$$\hat{\theta}_{(i)} = s(\mathbf{x}_{(i)}), \quad \forall i = 1, \cdots, n$$

Jackknife replication of the mean

$$\mathbf{s}(\mathbf{x}_{(i)}) = \frac{1}{n-1} \sum_{j \neq i} x_j$$

$$=\frac{(n\overline{x}-x_i)}{n-1}$$

$$=\overline{x}_{(i)}$$

Jackknife estimation of the standard error

• Compute the *n* jackknife subsamples $\mathbf{x}_{(1)}, \dots, \mathbf{x}_{(n)}$ from **x**.

- 2 Evaluate the *n* jackknife replications $\hat{\theta}_{(i)} = s(\mathbf{x}_{(i)})$.
- The jackknife estimate of the standard error is defined by:

$$\hat{\operatorname{se}}_{\mathsf{jack}} = \left[\frac{n-1}{n}\sum_{i=1}^{n}(\hat{\theta}_{(\cdot)} - \hat{\theta}_{(i)})^{2}\right]^{1/2}$$

where $\hat{\theta}_{(\cdot)} = \frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{(i)}$.

Jackknife estimation of the standard error of the mean

For $\hat{\theta} = \overline{x}$, it is easy to show that:

$$\begin{cases} \overline{x}_{(i)} = \frac{n\overline{x} - x_i}{n-1} \\ \overline{x}(\cdot) = \frac{1}{n} \sum_{i=1}^{n} \overline{x}_{(i)} = \overline{x} \end{cases}$$

Therefore:

$$\widehat{\operatorname{se}}_{jack} = \left\{ \sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{(n-1)n} \right\}^{1/2}$$
$$= \frac{\overline{\sigma}}{\sqrt{n}}$$

where $\overline{\sigma}$ is the unbiased variance.

Jackknife estimation of the standard error

- The factor $\frac{n-1}{n}$ is much larger than $\frac{1}{B-1}$ used in bootstrap.
- Intuitively this inflation factor is needed because jackknife deviation $(\hat{\theta}_{(i)} \hat{\theta}_{(\cdot)})^2$ tend to be smaller than the bootstrap $(\hat{\theta}^*(b) \hat{\theta}^*(\cdot))^2$ (the jackknife sample is more similar to the original data **x** than the bootstrap).
- In fact, the factor $\frac{n-1}{n}$ is derived by considering the special case $\hat{\theta} = \overline{x}$ (somewhat arbitrary convention).

Comparison of Jackknife and Bootstrap on an example

Example A: $\hat{\theta} = \overline{x}$

$$F(x) = 0.2 \mathcal{N}(\mu=1,\sigma=2) + 0.8 \mathcal{N}(\mu=6,\sigma=1) \rightsquigarrow \mathbf{x} = (x_1,\cdots,x_{100}).$$

• Bootstrap standard error and bias w.r.t. the number *B* of bootstrap samples:

В	10	20	50	100	500	1000	10000
\widehat{se}_B	0.1386	0.2188	0.2245	0.2142	0.2248	0.2212	0.2187
$\widehat{\operatorname{Bias}}_B$	0.0617	-0.0419	0.0274	-0.0087	-0.0025	0.0064	0.0025

• Jackknife:
$$\widehat{se}_{jack} = 0.2207$$
 and $\widehat{Bias}_{jack} = 0$

• Using textbook formulas:
$$\operatorname{se}_{\hat{F}} = \frac{\hat{\sigma}}{\sqrt{n}} = 0.2196 \ (\frac{\overline{\sigma}}{\sqrt{n}} = 0.2207).$$

Jackknife estimation of the bias

• Compute the *n* jackknife subsamples $\mathbf{x}_{(1)}, \dots, \mathbf{x}_{(n)}$ from **x**.

2 Evaluate the *n* jackknife replications $\hat{\theta}_{(i)} = s(\mathbf{x}_{(i)})$.

The jackknife estimation of the bias is defined as:

$$\widehat{\operatorname{Bias}}_{jack} = (n-1)(\hat{\theta}_{(\cdot)} - \hat{\theta})$$

where $\hat{\theta}_{(\cdot)} = \frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{(i)}$.

Jackknife estimation of the bias

- Note the inflation factor (n − 1) (compared to the bootstrap bias estimate).
- $\hat{\theta} = \overline{x}$ is unbiased so the correspondence is done considering the plug-in estimate of the variance $\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (x_i \overline{x})^2}{n}$.
- The jackknife estimate of the bias for the plug-in estimate of the variance is then:

$$\widehat{\text{Bias}}_{jack} = \frac{\overline{-\sigma^2}}{n}$$

Histogram of the replications

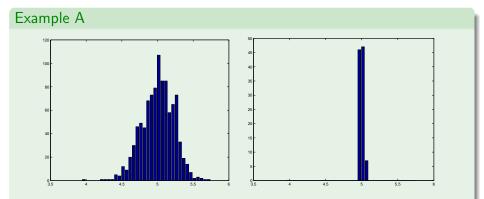


Figure: Histograms of the bootstrap replications $\{\hat{\theta}^*(b)\}_{b \in \{1, \dots, B=1000\}}$ (left), and the jackknife replications $\{\hat{\theta}_i(i)\}_{i \in \{1, \dots, n=100\}}$ (right).

Histogram of the replications

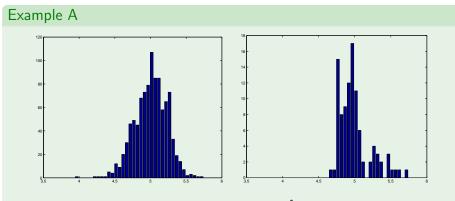


Figure: Histograms of the bootstrap replications $\{\hat{\theta}^*(b)\}_{b \in \{1, \dots, B=1000\}}$ (left), and the inflated jackknife replications $\{\sqrt{n-1}(\hat{\theta}_{(i)} - \hat{\theta}_{(\cdot)}) + \hat{\theta}_{(\cdot)}\}_{i \in \{1, \dots, n=100\}}$ (right).

- When *n* is small, it is easier (faster) to compute the *n* jackknife replications.
- However the jackknife uses less information (less samples) than the bootstrap.
- In fact, the jackknife is an approximation to the bootstrap!

• Considering a linear statistic :

$$\hat{\theta} = \mathbf{s}(\mathbf{x}) = \mu + \frac{1}{n} \sum_{i=1}^{n} \alpha(x_i)$$
$$= \mu + \frac{1}{n} \sum_{i=1}^{n} \alpha_i$$

Mean $\hat{\theta} = \overline{x}$

The mean is linear $\mu = 0$ and $\alpha(x_i) = \alpha_i = x_i, \quad \forall i \in \{1, \cdot, n\}.$

- There is no loss of information in using the jackknife to compute the standard error (compared to the bootstrap) for a linear statistic. Indeed the knowledge of the *n* jackknife replications {θ̂_(i)}, gives the value of θ̂ for any bootstrap data set.
- For non-linear statistics, the jackknife makes a linear approximation to the bootstrap for the standard error.

• Considering a quadratic statistic

$$\hat{\theta} = s(\mathbf{x}) = \mu + \frac{1}{n} \sum_{i=1}^{n} \alpha(x_i) + \frac{1}{n^2} \beta(x_i, x_j)$$

Variance
$$\hat{\theta} = \hat{\sigma}^2$$

 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$ is a quadratic statistic.

 Again the knowledge of the n jackknife replications {s(θ̂_(i))}, gives the value of θ̂ for any bootstrap data set. The jackknife and bootstrap estimates of the bias agree for quadratic statistics.

The Law school example: $\hat{\theta} = \widehat{\text{corr}}(\mathbf{x}, \mathbf{y})$.

The correlation is a non linear statistic.

- From B=3200 bootstrap replications, $\hat{se}_{B=3200} = 0.132$.
- From n = 15 jackknife replications, $\hat{se}_{jack} = 0.1425$.
- Textbook formula: $\operatorname{se}_{\hat{F}} = (1 \widehat{\operatorname{corr}}^2)/\sqrt{n-3} = 0.1147$

Failure of the jackknife

The jackknife can fail if the estimate $\hat{\theta}$ is not smooth (i.e. a small change in the data can cause a large change in the statistic). A simple non-smooth statistic is the median.

On the mouse data

Compute the jackknife replications of the median $\mathbf{x}_{Cont} = (10, 27, 31, 40, 46, 50, 52, 104, 146)$ (Control group data).

- You should find 48,48,48,48,45,43,43,43,43 a.
- Three different values appears as a consequence of a lack of smoothness of the median^b.

^aThe median of an even number of data points is the average of the middle 2 values. ^bthe median is not a differentiable function of x.

Delete-d Jackknife samples

Definition

The delete-d Jackknife subsamples are computed by leaving out d observations from \mathbf{x} at a time.

- The dimension of the subsample is n d.
- The number of possible subsamples now rises (

$$\begin{pmatrix} n \\ d \end{pmatrix} = \frac{n!}{d!(n-d)!}.$$

• Choice: $\sqrt{n} < d < n-1$

Delete-d jackknife

• Compute all $\begin{pmatrix} n \\ d \end{pmatrix}$ d-jackknife subsamples $\mathbf{x}_{(1)}, \cdots, \mathbf{x}_{(n)}$ from \mathbf{x} .

2 Evaluate the jackknife replications $\hat{\theta}_{(i)} = s(\mathbf{x}_{(i)})$.

3 Estimation of the standard error (when $n = r \cdot d$):

$$\widehat{\operatorname{se}}_{d-jack} = \left\{ \frac{r}{\binom{n}{d}} \sum_{i} (\widehat{\theta}_{(i)} - \widehat{\theta}(\cdot))^2 \right\}^{1/2}$$

where
$$\hat{\theta}(\cdot) = \frac{\sum_{i} \hat{\theta}_{(i)}}{\begin{pmatrix} n \\ d \end{pmatrix}}$$
.

Concluding remarks

- The inconsistency of the jackknife subsamples with non-smooth statistics can be fixed using delete-d jackknife subsamples.
- The subsamples (jackknife or delete-d jackknife) are actually samples (of smaller size) from the true distribution F whereas resamples (bootstrap) are samples from F.

Summary

- Bias and standard error estimates have been introduced using jackknife replications.
- The Jackknife standard error estimate is a linear approximation of the bootstrap standard error.
- The Jackknife bias estimate is a quadratic approximation of the bootstrap bias.
- Using smaller subsamples (delete-d jackknife) can improve for non-smooth statistics such as the median.