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Introduction

The bootstrap method is not always the best one. One main reason is that
the bootstrap samples are generated from F and not from F. Can we find

samples/resamples exactly generated from F?
o If we look for samples of size n, then the answer is no!

o If we look for samples of size m (m < n), then we can indeed find
(re)samples of size m exactly generated from F simply by looking at

different subsets of our original sample x!

Looking at different subsets of our original sample amounts to sampling
without replacement from observations xi, - - , x, to get (re)samples (now
called subsamples) of size m. This leads us to subsampling and the

jackknife.
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Jackknife

@ The jackknife has been proposed by Quenouille in mid 1950's.
@ In fact, the jackknife predates the bootstrap.

@ The jackknife (with m = n — 1) is less computer-intensive than the
bootstrap.

o Jackknife describes a swiss penknife, easy to carry around. By
analogy, Tukey (1958) coined the term in statistics as a general
approach for testing hypotheses and calculating confidence intervals.
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Jackknife samples

Definition
The Jackknife samples are computed by leaving out one observation x;
from x = (x1, %2, -+ ,Xp) at a time:

X(i) = (X1, %2, 5 Xi—1, Xi41,°** , Xn)

@ The dimension of the jackknife sample x(;y is m=n—1
o n different Jackknife samples : {x(,-)},-zl...,,.

@ No sampling method needed to compute the n jackknife samples.

Available BOOTSTRAP MATLAB TOOLBOX, by Abdelhak M. Zoubir and D. Robert Iskander,
http://www.csp.curtin.edu.au/downloads/bootstrap_toolbox.html J
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Jackknife replications

Definition
The ith jackknife replication é(,-) of the statistic 6 = s(x) is:

é\(,) :S(X(,-)), Wi = 1,--- , n

Jackknife replication of the mean

s(x() = 521 i X
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Jackknife estimation of the standard error

@ Compute the n jackknife subsamples x(1), - -+, x(,) from x.
@ Evaluate the n jackknife replications é(,-) = s(x(j))-

© The jackknife estimate of the standard error is defined by:

Lo 1/2
. n— PSS
jack = [—— >0y — »)?

i=1

where é() =1 27:1 é(,)

n
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Jackknife estimation of the standard error of the mean

For § =X, it is easy to show that:

nxX—X;
n—1

X(i) =

Therefore:

where 7 is the unbiased variance.
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Jackknife estimation of the standard error

@ The factor ”;nl is much larger than ﬁ used in bootstrap.

@ Intuitively this inflation factor is needed because jackknife deviation
Oy — 0(.))2 tend to be smaller than the bootstrap (6*(b) — 0*(-))?
(the jackknife sample is more similar to the original data x than the
bootstrap).

@ In fact, the factor ”%1 is derived by considering the special case 6=x
(somewhat arbitrary convention).

R. Dahyot (TCD) 2005 822



Comparison of Jackknife and Bootstrap on an example

Example A: 0=x

F(x) = 0.2 N(p=1,0=2) 4+ 0.8 N(u=6,0=1) ~» x = (X1, , X100)-

@ Bootstrap standard error and bias w.r.t. the number B of bootstrap

samples:
B 10 20 50 100 500 1000 | 10000
seg 0.1386 | 0.2188 | 0.2245 | 0.2142 | 0.2248 | 0.2212 | 0.2187
Biasg | 0.0617 | -0.0419 | 0.0274 | -0.0087 | -0.0025 | 0.0064 | 0.0025
o Jackknife: /e, = 0.2207 and Biasjack = 0
o Using textbook formulas: sep = 7 = 0.2196 (% = 0.2207). |
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Jackknife estimation of the bias

@ Compute the n jackknife subsamples X(1)s " » X(n) from x.
@ Evaluate the n jackknife replications QA(,-) = s(x(j))-

© The jackknife estimation of the bias is defined as:

B/i;Sjack = (n — 1)(@() - é\)

where é(.) = %27:1 QA(,-).
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Jackknife estimation of the bias

@ Note the inflation factor (n — 1) (compared to the bootstrap bias
estimate).

e 0 =X is unbiased so the correspondence is done considering the
2 _ Z;’:l(x,_y)2.

plug-in estimate of the variance & m

@ The jackknife estimate of the bias for the plug-in estimate of the
variance is then:
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Histogram of the replications

Example A

35 4 45 3 55 6

Figure: Histograms of the bootstrap replications {9*(b)}b€{17.,. .8=1000} (left),
and the jackknife replications {é(i)},-e{l,“. ,n=100} (right).
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Histogram of the replications

Example A

o
35 4 45 5 55 6

Figure: Histograms of the bootstrap replications {é*(b)}be{l’... .B=1000} (left),

and the inflated jackknife replications {v/n — 1(0iy — 0(y) + 00y Yicq1.— =100}
(right).
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Relationship between jackknife and bootstrap

@ When n is small, it is easier (faster) to compute the n jackknife
replications.

o However the jackknife uses less information (less samples) than the
bootstrap.

@ In fact, the jackknife is an approximation to the bootstrap!
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Relationship between jackknife and bootstrap

o Considering a linear statistic :
0 =s(x)=p+130, ax)
=p+ g i

Mean 6 = %

The mean is linear 4 =0 and a(x;) = aj = x;, Vi€ {1,-,n}. J

@ There is no loss of information in using the jackknife to compute the
standard error (compared to the bootstrap) for a linear statistic.
Indeed the knowledge of the n jackknife replications {GA(,-)}, gives the
value of 8 for any bootstrap data set.

@ For non-linear statistics, the jackknife makes a linear approximation to
the bootstrap for the standard error.
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Relationship between jackknife and bootstrap

o Considering a quadratic statistic

0 =s(x)=pu+ IS alx) + ,,%ﬁ(xiaxj)

Variance 6 = 52

62 = 13" (x —x)? is a quadratic statistic.

@ Again the knowledge of the n jackknife replications {s(é(,-))}, gives

the value of 6 for any bootstrap data set. The jackknife and
bootstrap estimates of the bias agree for quadratic statistics.
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Relationship between jackknife and bootstrap

The Law school example: 6 = corr(x,y).
The correlation is a non linear statistic.

@ From B=3200 bootstrap replications, seg—32090 = 0.132.
@ From n = 15 jackknife replications, s¢j,cx = 0.1425.

o Textbook formula: sep = (1 — cori?)/v/n— 3 = 0.1147
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Failure of the jackknife

The jackknife can fail if the estimate 0 is not smooth (i.e. a small change
in the data can cause a large change in the statistic). A simple
non-smooth statistic is the median.
On the mouse data
Compute the jackknife replications of the median
xcont = (10,27,31,40,46,50,52,104,146) (Control group data).

@ You should find 48,48,48,48,45,43,43,43,43 °.

@ Three different values appears as a consequence of a lack of
smoothness of the median®.

“The median of an even number of data points is the average of the middle 2 values.
bthe median is not a differentiable function of x.

v
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Delete-d Jackknife samples

Definition
The delete-d Jackknife subsamples are computed by leaving out d
observations from x at a time.

@ The dimension of the subsample is n — d.

@ The number of possible subsamples now rises ( Z, ) = Wid)!'

e Choice: /n<d<n-—1
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Delete-d jackknife

n

@ Compute all ( d

@ Evaluate the jackknife replications é(;) = s(x(j))-

© Estimation of the standard error (when n=r - d):

1/2

1

—> > By - 6())

where 0(-)

) d-jackknife subsamples x(y), -, X(5) from x.

v
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Concluding remarks

@ The inconsistency of the jackknife subsamples with non-smooth
statistics can be fixed using delete-d jackknife subsamples.

@ The subsamples (jackknife or delete-d jackknife) are actually samples
(of smaller size) from the true distribution F whereas resamples
(bootstrap) are samples from F.
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Summary

@ Bias and standard error estimates have been introduced using
jackknife replications.

@ The Jackknife standard error estimate is a linear approximation of the
bootstrap standard error.

@ The Jackknife bias estimate is a quadratic approximation of the
bootstrap bias.

@ Using smaller subsamples (delete-d jackknife) can improve for
non-smooth statistics such as the median.
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