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Introduction

The bootstrap method is not always the best one. One main reason is that
the bootstrap samples are generated from F̂ and not from F . Can we find
samples/resamples exactly generated from F?

If we look for samples of size n, then the answer is no!

If we look for samples of size m (m < n), then we can indeed find
(re)samples of size m exactly generated from F simply by looking at
different subsets of our original sample x!

Looking at different subsets of our original sample amounts to sampling
without replacement from observations x1, · · · , xn to get (re)samples (now
called subsamples) of size m. This leads us to subsampling and the
jackknife.
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Jackknife

The jackknife has been proposed by Quenouille in mid 1950’s.

In fact, the jackknife predates the bootstrap.

The jackknife (with m = n − 1) is less computer-intensive than the
bootstrap.

Jackknife describes a swiss penknife, easy to carry around. By
analogy, Tukey (1958) coined the term in statistics as a general
approach for testing hypotheses and calculating confidence intervals.
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Jackknife samples

Definition

The Jackknife samples are computed by leaving out one observation xi

from x = (x1, x2, · · · , xn) at a time:

x(i) = (x1, x2, · · · , xi−1, xi+1, · · · , xn)

The dimension of the jackknife sample x(i) is m = n − 1

n different Jackknife samples : {x(i)}i=1···n.

No sampling method needed to compute the n jackknife samples.

Available BOOTSTRAP MATLAB TOOLBOX, by Abdelhak M. Zoubir and D. Robert Iskander,
http://www.csp.curtin.edu.au/downloads/bootstrap toolbox.html
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Jackknife replications

Definition

The ith jackknife replication θ̂(i) of the statistic θ̂ = s(x) is:

θ̂(i) = s(x(i)), ∀i = 1, · · · , n

Jackknife replication of the mean

s(x(i)) = 1
n−1

∑
j 6=i xj

= (nx−xi )
n−1

= x (i)
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Jackknife estimation of the standard error

1 Compute the n jackknife subsamples x(1), · · · , x(n) from x.

2 Evaluate the n jackknife replications θ̂(i) = s(x(i)).

3 The jackknife estimate of the standard error is defined by:

ŝejack =

[
n − 1

n

n∑
i=1

(θ̂(·) − θ̂(i))
2

]1/2

where θ̂(·) = 1
n

∑n
i=1 θ̂(i).
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Jackknife estimation of the standard error of the mean

For θ̂ = x , it is easy to show that:
x (i) = nx−xi

n−1

x(·) = 1
n

∑n
i=1 x (i) = x

Therefore:

ŝejack =
{∑n

i=1
(xi−x)2

(n−1)n

}1/2

= σ√
n

where σ is the unbiased variance.
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Jackknife estimation of the standard error

The factor n−1
n is much larger than 1

B−1 used in bootstrap.

Intuitively this inflation factor is needed because jackknife deviation
(θ̂(i) − θ̂(·))

2 tend to be smaller than the bootstrap (θ̂∗(b)− θ̂∗(·))2
(the jackknife sample is more similar to the original data x than the
bootstrap).

In fact, the factor n−1
n is derived by considering the special case θ̂ = x

(somewhat arbitrary convention).
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Comparison of Jackknife and Bootstrap on an example

Example A: θ̂ = x

F (x) = 0.2 N (µ=1,σ=2) + 0.8 N (µ=6,σ=1)  x = (x1, · · · , x100).

Bootstrap standard error and bias w.r.t. the number B of bootstrap
samples:

B 10 20 50 100 500 1000 10000

ŝeB 0.1386 0.2188 0.2245 0.2142 0.2248 0.2212 0.2187

B̂iasB 0.0617 -0.0419 0.0274 -0.0087 -0.0025 0.0064 0.0025

Jackknife: ŝejack = 0.2207 and B̂iasjack = 0

Using textbook formulas: seF̂ = σ̂√
n

= 0.2196 ( σ√
n

= 0.2207).

R. Dahyot (TCD) 453 Modern statistical methods 2005 9 / 22



Jackknife estimation of the bias

1 Compute the n jackknife subsamples x(1), · · · , x(n) from x.

2 Evaluate the n jackknife replications θ̂(i) = s(x(i)).

3 The jackknife estimation of the bias is defined as:

B̂iasjack = (n − 1)(θ̂(·) − θ̂)

where θ̂(·) = 1
n

∑n
i=1 θ̂(i).
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Jackknife estimation of the bias

Note the inflation factor (n − 1) (compared to the bootstrap bias
estimate).

θ̂ = x is unbiased so the correspondence is done considering the

plug-in estimate of the variance σ̂2 =
∑n

i=1(xi−x)2

n .

The jackknife estimate of the bias for the plug-in estimate of the
variance is then:

B̂iasjack =
−σ2

n
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Histogram of the replications

Example A
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Figure: Histograms of the bootstrap replications {θ̂∗(b)}b∈{1,··· ,B=1000} (left),

and the jackknife replications {θ̂(i)}i∈{1,··· ,n=100} (right).
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Histogram of the replications

Example A
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Figure: Histograms of the bootstrap replications {θ̂∗(b)}b∈{1,··· ,B=1000} (left),

and the inflated jackknife replications {
√

n − 1(θ̂(i) − θ̂(·)) + θ̂(·)}i∈{1,··· ,n=100}
(right).
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Relationship between jackknife and bootstrap

When n is small, it is easier (faster) to compute the n jackknife
replications.

However the jackknife uses less information (less samples) than the
bootstrap.

In fact, the jackknife is an approximation to the bootstrap!
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Relationship between jackknife and bootstrap

Considering a linear statistic :

θ̂ = s(x) = µ + 1
n

∑n
i=1 α(xi )

= µ + 1
n

∑n
i=1 αi

Mean θ̂ = x

The mean is linear µ = 0 and α(xi ) = αi = xi , ∀i ∈ {1, ·, n}.

There is no loss of information in using the jackknife to compute the
standard error (compared to the bootstrap) for a linear statistic.
Indeed the knowledge of the n jackknife replications {θ̂(i)}, gives the

value of θ̂ for any bootstrap data set.

For non-linear statistics, the jackknife makes a linear approximation to
the bootstrap for the standard error.
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Relationship between jackknife and bootstrap

Considering a quadratic statistic

θ̂ = s(x) = µ + 1
n

∑n
i=1 α(xi ) + 1

n2 β(xi , xj)

Variance θ̂ = σ̂2

σ̂2 = 1
n

∑n
i=1(xi − x)2 is a quadratic statistic.

Again the knowledge of the n jackknife replications {s(θ̂(i))}, gives

the value of θ̂ for any bootstrap data set. The jackknife and
bootstrap estimates of the bias agree for quadratic statistics.
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Relationship between jackknife and bootstrap

The Law school example: θ̂ = ĉorr(x, y).

The correlation is a non linear statistic.

From B=3200 bootstrap replications, ŝeB=3200 = 0.132.

From n = 15 jackknife replications, ŝejack = 0.1425.

Textbook formula: seF̂ = (1− ĉorr2)/
√

n − 3 = 0.1147
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Failure of the jackknife

The jackknife can fail if the estimate θ̂ is not smooth (i.e. a small change
in the data can cause a large change in the statistic). A simple
non-smooth statistic is the median.

On the mouse data

Compute the jackknife replications of the median
xCont = (10, 27, 31, 40, 46, 50, 52, 104, 146) (Control group data).

You should find 48,48,48,48,45,43,43,43,43 a.

Three different values appears as a consequence of a lack of
smoothness of the medianb.

aThe median of an even number of data points is the average of the middle 2 values.
bthe median is not a differentiable function of x .

R. Dahyot (TCD) 453 Modern statistical methods 2005 18 / 22



Delete-d Jackknife samples

Definition

The delete-d Jackknife subsamples are computed by leaving out d
observations from x at a time.

The dimension of the subsample is n − d .

The number of possible subsamples now rises

(
n
d

)
= n!

d!(n−d)! .

Choice:
√

n < d < n − 1
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Delete-d jackknife

1 Compute all

(
n
d

)
d-jackknife subsamples x(1), · · · , x(n) from x.

2 Evaluate the jackknife replications θ̂(i) = s(x(i)).

3 Estimation of the standard error (when n = r · d):

ŝed−jack =


r(
n
d

) ∑
i

(θ̂(i) − θ̂(·))2


1/2

where θ̂(·) =
∑

i θ̂(i) n
d

 .
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Concluding remarks

The inconsistency of the jackknife subsamples with non-smooth
statistics can be fixed using delete-d jackknife subsamples.

The subsamples (jackknife or delete-d jackknife) are actually samples
(of smaller size) from the true distribution F whereas resamples
(bootstrap) are samples from F̂ .
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Summary

Bias and standard error estimates have been introduced using
jackknife replications.

The Jackknife standard error estimate is a linear approximation of the
bootstrap standard error.

The Jackknife bias estimate is a quadratic approximation of the
bootstrap bias.

Using smaller subsamples (delete-d jackknife) can improve for
non-smooth statistics such as the median.
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