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Posterior sampling

∫

dθ g(θ)p(θ|D) ≈ 1

n

∑

θi∼p(θ|D)

g(θi ) + O(n−1/2)

When p(θ) is a posterior distribution, drawing samples from it is
called posterior sampling (or simulation from the posterior):

• One set of samples can be used for many different calculations
(so long as they don’t depend on low-probability events)

• This is the most promising and general approach for Bayesian
computation in high dimensions—though with a twist
(MCMC!)

Challenge: How to build a RNG that samples from a posterior?
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Accept-Reject Algorithm

1 Choose a tractable density h(θ) and a constant C so Ch

bounds q

2 Draw a candidate parameter value θ′ ∼ h

3 Draw a uniform random number, u

4 If q(θ′) < Ch(θ′), record θ′ as a sample

5 Goto 2, repeating as necessary to get the desired number of
samples.

Efficiency = ratio of volumes, Z/C .

In problems of realistic complexity, the efficiency is intolerably low
for parameter spaces of more than several dimensions.

Take-away idea: Propose candidates that may be accepted or

rejected
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Markov Chain Monte Carlo∗

Accept/Reject aims to produce independent samples—each new θ
is chosen irrespective of previous draws.

To enable exploration of complex pdfs, let’s introduce dependence:
Choose new θ points in a way that

• Tends to move toward regions with higher probability than
current

• Tends to avoid lower probability regions

The simplest possibility is a Markov chain:

p(next location|current and previous locations)

= p(next location|current location)

A Markov chain “has no memory.”

∗Chib & Greenberg (1995): “Understanding the Metropolis-Hastings Algorithm”
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Markov chain

π(θ)L(θ) contours

θ1

θ2

Initial θ
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Equilibrium Distributions
Start with some (possibly random) point θ0; produce a sequence of
points labeled in order by a “time” index, θt .

Ideally we’d like to have p(θt) = q(θt)/Z for each t. Can we do
this with a Markov chain?

To simplify discussion, discretize parameter space into a countable
number of states, which we’ll label by x or y (i.e., cell numbers). If
θt is in cell x , we say state St = x .

Focus on homogeneous Markov chains:

p(St = y |St−1 = x) = T (y |x), transition probability (matrix)

Note that T (y |x) is a probability distribution over y , and does not
depend on t.

Aside: There is no standard notation for any of this—including the order
of arguments in T !
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What is the probability for being in state y at time t?

p(St = y) = p(stay at y) + p(move to y)− p(move from y)

= p(St−1 = y)

+
∑

x 6=y

p(St−1 = x)T (y |x) −
∑

x 6=y

p(St−1 = y)T (x |y)

= p(St−1 = y)

+
∑

x 6=y

[p(St−1 = x)T (y |x)− p(St−1 = y)T (x |y)]

If the sum vanishes, then there is an equilibrium distribution:

p(St = y) = p(St−1 = y) ≡ peq(y)

If we start in a state drawn from peq, every subsequent sample will
be a (dependent) draw from peq.
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Reversibility/Detailed Balance

A sufficient (but not necessary!) condition for there to be an
equilibrium distribution is for each term of the sum to vanish:

peq(x)T (y |x) = peq(y)T (x |y) or

T (y |x)
T (x |y) =

peq(y)

peq(x)

the detailed balance or reversibility condition

If we set peq = q/Z , and we build a reversible transition
distribution for this choice, then the equilibrim distribution will be

the posterior distribution
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Convergence

Problem: What about p(S0 = x)?

If we start the chain with a draw from the posterior, every
subsequent draw will be from the posterior. But we can’t do this!

Convergence

If the chain produced by T (y |x) satisifies two conditions:

• It is irreducible: From any x , we can reach any y with
finite probability in a finite # of steps

• It is aperiodic : The transitions never get trapped in cycles

then p(St = s) → peq(x)

Early samples will show evidence of whatever procedure was
used to generate the starting point → discard samples in an
initial “burn-in” period
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Designing Reversible Transitions
Set peq(x) = q(x)/Z ; how can we build a T (y |x) with this as its
EQ dist’n?

Steal an idea from accept/reject: Start with a proposal or
candidate distribution, k(y |x). Devise an accept/reject criterion
that leads to a reversible T (y |x) for q/Z .

Using any k(y |x) as T will not guarantee reversibility. E.g., from a
particular x , the transition rate to a particular y may be too large:

q(x)k(y |x) > q(y)k(x |y) Note: Z dropped out!

When this is true, we should use rejections to reduce the rate to y .

Acceptance probability : Accept y with probability α(y |x); reject it
with probability 1− α(y |x) and stay at x :

T (y |x) = k(y |x)α(y |x) + [1− α(y |x)]δy ,x
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The detailed balance condition is a requirement for y 6= x

transitions, for which δy ,x = 0; it gives a condition for α:

q(x)k(y |x)α(y |x) = q(y)k(x |y)α(x |y)

Suppose q(x)k(y |x) > q(y)k(x |y); then we want to suppress
x → y transitions, but we want to maximize y → x transitions. So
we should set α(x |y) = 1, and the condition becomes:

α(y |x) = q(y)k(x |y)
q(x)k(y |x)

If instead q(x)k(y |x) < q(y)k(x |y), the situation is reversed: we
want α(y |x) = 1, and α(x |y) should suppress y → x transitions
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We can summarize the two cases as:

α(y |x) =
{

q(y)k(x |y)
q(x)k(y |x) if q(y)k(x |y) < q(x)k(y |x)
1 otherwise

or equivalently:

α(y |x) = min

[

q(y)k(x |y)
q(x)k(y |x) , 1

]
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Metropolis-Hastings algorithm

Given a target quasi-distribution q(x) (it need not be normalized):

1. Specify a proposal distribution k(y |x) (make sure it is
irreducible and aperiodic).

2. Choose a starting point x ; set t = 0 and St = x

3. Increment t
4. Propose a new state y ∼ k(y |x)
5. If q(x)k(y |x) < q(y)k(x |y), set St = y ; goto (3)
6. Draw a uniform random number u
7. If u < q(y)k(x|y)

q(x)k(y|x) , set St = y ; else set St = x ; goto (3)

The art of MCMC is in specifying the proposal distribution k(y |x)

We want:

• New proposals to be accepted, so there is movement
• Movement to be significant, so we explore efficiently

These desiderata compete!
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Random walk Metropolis (RWM)
Propose an increment, z , from the current location, not dependent
on the current location, so y = x + z with a specified PDF K (z),
corresponding to

k(y |x) = K (y − x)

The proposals would give rise to a random walk if they were all
accepted; the M-H rule modifies them to be a kind of directed
random walk

Most commonly, a symmetric proposal is adopted:

k(y |x) = K (|y − x |)

The acceptance probability simplifies:

α(y |x) = min

[

q(y)

q(x)
, 1

]

Key issues: shape and scale (in all directions) of K (z)
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RWM in 2-D

MacKay (2003)

Small step size → good acceptance rate, but slow exploration
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Independent Metropolis (IM)

Propose a new point independently of the current location:

k(y |x) = K (y)

The acceptance probability is now

α(y |x) = min

[

q(y)K (x)

q(x)K (y)
, 1

]

Note if K (·) ∝ q(·), proposals are from the target and are always
accepted

Good acceptance requires K (·) to resemble the posterior → IM is
typically only useful in low-D problems where we can construct a
good K (·) (e.g., MVN at the mode)

19 / 42



Blocking and Gibbs sampling
Basic idea: Propose moves of only subsets of the parameters at a
time in an effort to improve rate of exploration

Suppose x = (x1, x2) is 2-D. If we alternate two 1-D M-H samplers,

• Targeting peq(x1) ∝ p(x1|x2)

• Targeting peq(x2) ∝ p(x2|x1)

then the resulting chain produces samples from p(x)

The simplest case is Gibbs sampling, which alternates proposals
drawn directly from full conditionals:

p(x1|x2) =
p(x1, x2)

p(x2)
∝ p(x1, x2) with x2 fixed

p(x2|x1) =
p(x1, x2)

p(x1)
∝ p(x1, x2) with x1 fixed

M-H with these proposals always accepts
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Gibbs sampling in 2-D

MacKay (2003)
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Metropolis-within-Gibbs

θ

x1 x2 xN

For MLMs with conditional independence structure:

• Full conditionals for latent parameters are often low-D and
straightforward to sample from

• Full conditionals for upper-level parameters (hyperparameters) are
not easy to sample from

⇒ block-update upper- and lower-level parameters:

• Use Gibbs sampling for latent parameters (always accepts)
• Use another M-H algorithm for upper-level parameters
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The Good News
The Metropolis-Hastings algorithm enables us to draw a few time
series realizations {θt}, t = 0 to N, from a Markov chain with a
specified stationary distribution p(θ)

The algorithm works for any f (θ) ∝ p(θ), i.e., Z needn’t be known

The marginal distribution at each time is pt(θ)

• Stationarity: If p0(θ) = p(θ), then pt(θ) = p(θ)

• Convergence: If p0(θ) 6= p(θ), eventually

||pt(θ), p(θ)|| < ǫ

for an appropriate norm between distributions

• Ergodicity:

ḡ ≡ 1

N

∑

i

g(θi ) → 〈g〉 ≡
∫

dθ g(θ)p(θ)
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The Bad News

• We never have p0(θ) = p(θ): we have to figure out how to
initialize a realization, and we are always in the situation
where pt(θ) 6= p(θ)

• “Eventually” means t < ∞; that’s not very comforting!

• After convergence at time t = c , pt(θ) ≈ p(θ), but θ values
at different times are dependent; the Markov chain CLT says

ḡ ∼ N(〈g〉, σ2/N)

σ2 = var[g(θc )] + 2
∞
∑

k=1

cov[g(θc ), g(θc+k )]

• We have to learn about pt(θ) from just a few time series
realizations (maybe just one)
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Posterior sample diagnostics
Posterior sample diagnostics use single or multiple chains, {θt}, to
diagnose:

• Convergence: How long until starting values are forgotten?
(Discard as “burn-in,” or run long enough so averages
“forget” initialization bias.)

• Mixing: How long until we have fairly sampled the full
posterior? (Make finite-sample Monte Carlo uncertainties
small.)

Two excellent R packages with routines, descriptions, references:

• boa
http://cran.r-project.org/web/packages/boa/index.html

• coda
http://cran.r-project.org/web/packages/coda/index.html

They also supply other output analyses: estimating means,
variances, marginals, HPD regions. . .
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Diagnosing convergence
Qualitative

• Trace plots—trends?

• Diagnostic plots; e.g., running mean

• Color-coded pair plots

Exoplanet parameter
estimation using RV data
from HD 222582 and
Ter Braak’s differential
evolution MCMC
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Quantitative

• Gelman-Rubin-Brooks potential scale-reduction statistic
√
R:

multiple chains, compare within- and between-chain variance

• Geweke: single chain, consistency of early/late means

• Heidelberger & Welch: single chain, checks for Brownian
motion signature of stationarity, estimates burn-in

• Fan-Brooks-Gelman score statistic:

Uk(θ) =
∂ log p(θ)

∂θk

Uses 〈Uk〉p = 0 (but requires derivatives)

Use diagnostics for all quantities of interest!

Check all parameters, and functions of them
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Diagnosing mixing

Qualitative

• Trace plots—does chain get stuck, have slow trends?

• Diagnostic plots; e.g., running mean, autocorrelation function

Quantitative

• Batch means (Murali’s CASt summer school lab)

• AR and spectral analysis estimators (SCMA 2011 tutorials)
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Bayesian Inference and the Joint Distribution

Recall that Bayes’s theorem comes from the joint distribution for

data and hypotheses (parameters/models):

p(θ,D|M) = p(θ|M) p(D|θ,M)

= p(D|M) p(θ|D,M)

Bayesian inference takes D = Dobs and solves RHS for the posterior:

→ p(θ|Dobs,M) =
p(θ|M)p(Dobs|θ,M)

p(Dobs|M)

MCMC is nontrivial technology for building RNGs to sample θ
values from the intractable posterior, p(θ|Dobs,M).
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Posterior sampling is hard, but sampling from the other
distributions is often easy:

• Often easy to draw θ∗ from π(θ)

• Typically easy to draw Dsim from p(D|θ,M)

• Thus we can sample the joint for (θ,D) by sequencing:

θ∗ ∼ π(θ)

Dsim ∼ p(D|θ∗,M)

• {Dsim} from above are samples from prior predictive,

p(D|M) =

∫

dθ π(θ)p(D|θ,M)

Now note that {Dsim, θ} with θ ∼ p(θ|Dsim,M) are also samples
from the joint distribution

Joint distribution methods check the consistency of these two joint
samplers to validate a posterior sampler
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Example: “Calibration” of credible regions

How often may we expect an HPD region with probability P to
include the true value if we analyze many datasets? I.e., what’s the
frequentist coverage of an interval rule ∆(D) defined by
calculating the Bayesian HPD region each time?

Suppose we generate datasets by picking a parameter value from
π(θ) and simulating data from p(D|θ).

The fraction of time θ will be in the HPD region is:

Q =

∫

dθ π(θ)

∫

dD p(D|θ) Jθ ∈ ∆(D)K

Note π(θ)p(D|θ) = p(θ,D) = p(D)p(θ|D), so

Q =

∫

dD

∫

dθ p(θ|D) p(D) Jθ ∈ ∆(D)K
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Q =

∫

dD

∫

dθ p(θ|D) p(D) Jθ ∈ ∆(D)K

=

∫

dD p(D)

∫

dθ p(θ|D) Jθ ∈ ∆(D)K

=

∫

dD p(D)

∫

∆(D)
dθ p(θ|D)

=

∫

dD p(D)P

= P

The HPD region includes the true parameters 100P% of the time

This is exactly true for any problem, even for small datasets

Keep in mind it involves drawing θ from the prior; credible regions
are “calibrated with respect to the prior”
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A Tangent: Average Coverage

Recall the original Q integral:

Q =

∫

dθ π(θ)

∫

dD p(D|θ) Jθ ∈ ∆(D)K

=

∫

dθ π(θ)C (θ)

where C (θ) is the (frequentist) coverage of the HPD region when
the data are generated using θ

This indicates Bayesian regions have accurate average coverage

The prior can be interpreted as quantifying how much we care
about coverage in different parts of the parameter space
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Basic Bayesian Calibration Diagnostics

Encapsulate your sampler: Create an MCMC posterior sampling
algorithm for model M that takes data D as input and produces
posterior samples {θi}, and a 100P% credible region ∆P(D)

Initialize counter Q = 0
Repeat N ≫ 1 times:

1 Sample a “true” parameter value θ∗ from π(θ)

2 Sample a dataset Dsim from p(D|θ∗)
3 Use the encapsulated posterior sampler to get ∆P(Dsim) from

p(θ|Dsim,M)

4 If θ∗ ∈ ∆P(D), increment Q

Check that Q/N ≈ P
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Easily extend the idea to check all credible region sizes:

Initialize a list that will store N probabilities, P
Repeat N ≫ 1 times:

1 Sample a “true” parameter value θ∗ from π(θ)

2 Sample a dataset Dsim from p(D|θ∗)
3 Use the encapsulated posterior sampler to get {θi} from

p(θ|Dsim,M)

4 Find P so that θ∗ is on the boundary of ∆P(D); append to list
[P = fraction of {θi} with q(θi ) > q(θ∗)]

Check that the Ps follow a uniform distribution on [0, 1]
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Other Joint Distribution Tests

• Geweke 2004: Calculate means of scalar functions of (θ,D)
two ways; compare with z statistics

• Cook, Gelman, Rubin 2006: Posterior quantile test, expect
p[g(θ) > g(θ∗)] ∼ Uniform (HPD test is special case)
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What Joint Distribution Tests Accomplish
Suppose the prior and sampling distribution samplers are
well-validated

• Convergence verification: If your sampler is bug-free but
was not run long enough → unlikely that inferences will be
calibrated

• Bug detection: An incorrect posterior sampler
implementation will not converge to the correct posterior
distribution → unlikely that inferences will be calibrated, even
if the chain converges

Cost: Prior and data sampling is often cheap, but posterior
sampling is often expensive, and joint distribution tests require you
run your MCMC code hundreds of times

Compromise: If MCMC cost grows with dataset size, running the
test with smaller datasets provides a good bug test, and some

insight on convergence
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Experts Speak
All the methods can fail to detect the sorts of convergence failure
they were designed to identify. We recommend a combination of
strategies. . . it is not possible to say with certainty that a finite
sample from an MCMC algorithm is representative of an
underlying stationary distribution.

— Cowles & Carlin review of 13 diagnostics

[A]ll methods based solely upon sampler output can be
fooled. . . and multiple-chain-based diagnostics, while safer than
single-chain-based diagnostics, can still be highly dependent upon
the starting points of the simulations. . . . in practice, it may be
useful to combine a number of the alternative approaches. . . .

— Brooks & Gelman 1998

In more than, say, a dozen dimensions, it is difficult to believe that
a few, even well-chosen, scalar statistics give an adequate picture
of convergence of the multivariate distribution.

— Peter Green 2002
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Handbook of Markov Chain Monte Carlo (2011)

Your humble author has a dictum that the least one can do is to

make an overnight run. What better way for your computer to
spend its time? In many problems that are not too complicated,
this is millions or billions of iterations. If you do not make runs like

that, you are simply not serious about MCMC. Your humble author
has another dictum (only slightly facetious) that one should start a
run when the paper is submitted and keep running until the
referees’ reports arrive. This cannot delay the paper, and may
detect pseudo-convergence.

— Charles Geyer

When all is done, compare inferences to those from simpler models
or approximations. Examine discrepancies to see whether they
represent programming errors, poor convergence, or actual changes
in inferences as the model is expanded.

— Gelman & Shirley
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Much More to Computational Bayes
Fancier MCMC
• Sophisticated proposals (e.g., with auxiliary variables)

• Adaptive proposals (use many past states)

• Population-based MCMC (e.g., differential evolution MCMC)

Sequential Monte Carlo
• Particle filters for dynamical models (posterior tracks a changing

state)

• Adaptive importance sampling (“evolve” posterior via annealing or
on-line processing)

Model uncertainty
• Marginal likelihood computation: Thermodynamic integration,

bridge sampling, nested sampling

• MCMC in model space: Reversible jump MCMC, birth/death

• Exploration of large (discrete) model spaces (e.g., variable
selection): Shotgun stochastic search, Bayesian adaptive sampling

This is just a small sampling!
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