統計計算與模擬

政治大學統計系余清祥 2025年3月18日~3月25日 第四單元:模擬檢定 http://csyue.nccu.edu.tw

Permutation tests and Bootstrap

- ■模擬檢定的部份將介紹
- → Permutation Tests
- → Monte Carlo Tests (and p-values)
- →Bootstrap and Resampling Methods
- → Preliminary Exploration of Unknowns
- → Applications

方法上的差異

- Permutation Tests
- →

 找出資料的所有可能排列或組合
- Monte Carlo Tests (Monte Carlo p-value)
- →在模型假設下產生亂數
- Bootstrap and Resampling Methods
- →對資料執行隨機抽樣(Nonparametric)
- →以模型假設配合資料求出參數,再產生 亂數(Parametric)

Monte Carlo vs. Bootstrap

- 蒙地卡羅(Monte Carlo)與拔靴法(Bootstrap) 兩者操作方式類似:
- →蒙地卡羅認為母體分配已知,從這個假設 產生亂數,再從這些亂數探討問題,包括 期望值、變異數、百分位數等母體性質;
- →拔靴法「假設」<u>樣本就是母體</u>,從這個有限母體中產生亂數,再從這些亂數計算樣本統計量的「變異數」!

註:拔靴法的功能較為侷限。

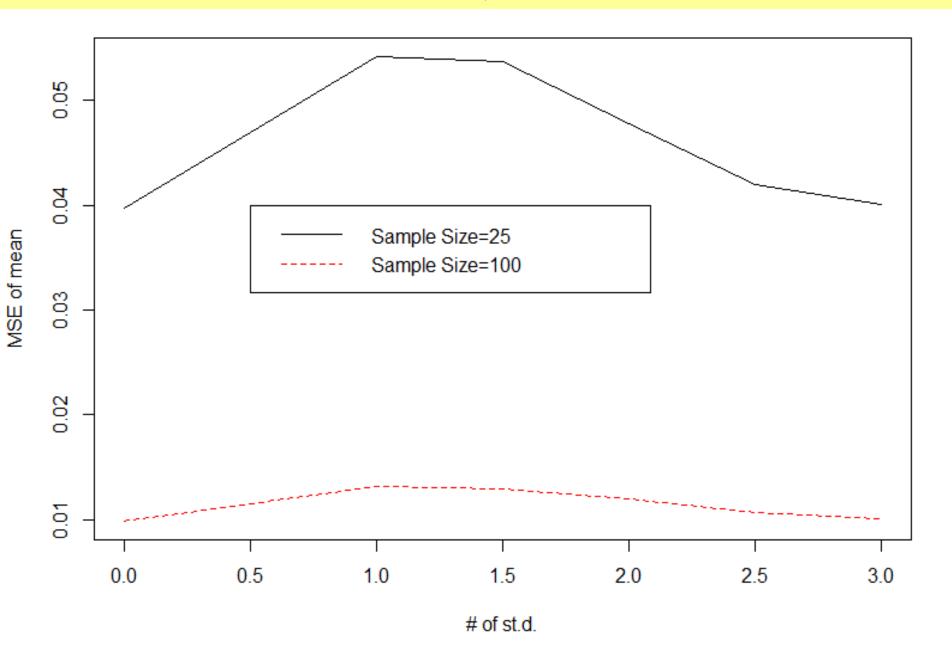
模擬應用範例:

- Monte Carlo Sampling:
- →檢查抽出的樣本是否**隨機**。

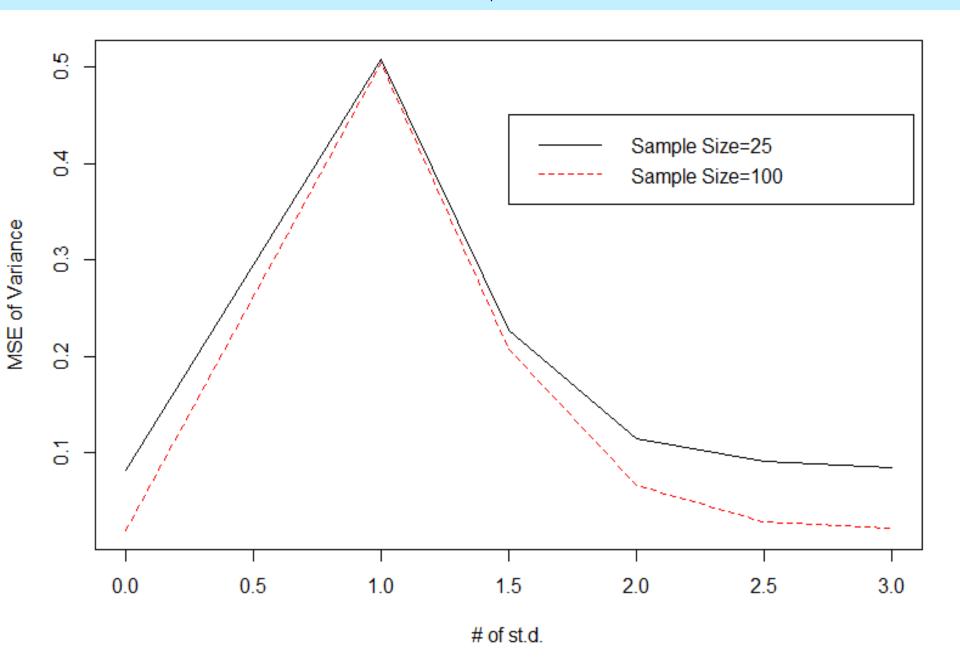
應用範例:

- →是否應該聽從某股市名嘴的建議,投資某些「熱門股票」?下表中的平均投資報酬為7.05% [=(\$468.873-\$438)/\$438]。
- →問題:這個報酬是否明顯高於任意選股?

Table 3.1
The stocks picked by the analyst

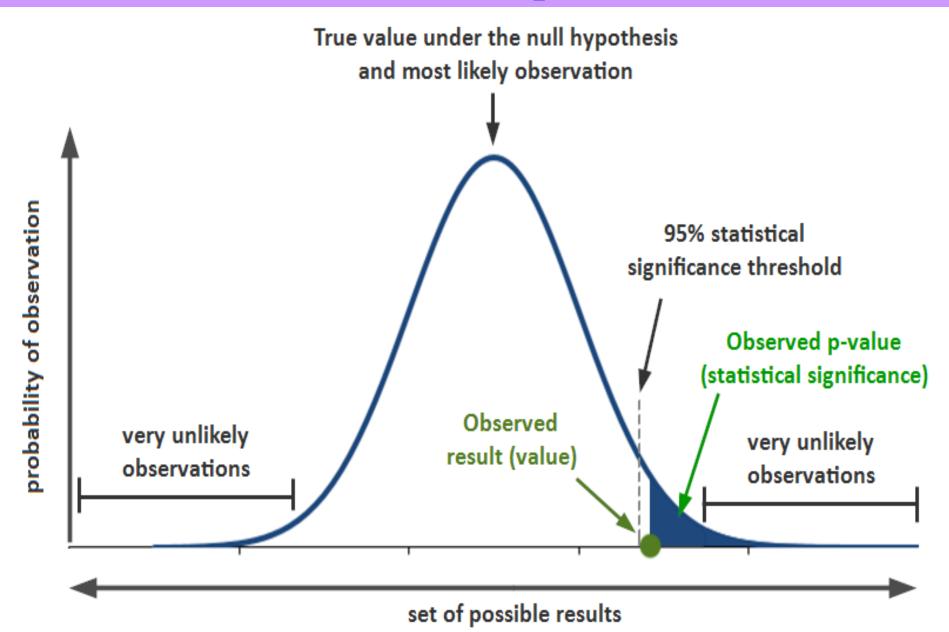

隨機抽取10支股票,在1000次的模擬中,有26%(260次)的機會報酬率不小於7.05%。

→ 與隨機選股無異!!


- ■另一個範例:(關於刪除離群值的迷思!)
- →資料分析若發現離群值,直接刪去不見 得是最好的辦法,因為離群值可能蘊含 珍貴的資訊。
- →假設觀察值服從標準常態分配,我們的 目標在估計期望值及變異數。比較以下 兩種方法的精確度(Mean Squared Error):
- 一、樣本平均數(記為a=0);
- 二、去掉a倍標準差後的平均數(1, 1.5, 2, 2.5, 3總共五種情境)。

假設觀察值有25及100個,模擬10,000次。

不同期望值估計值的MSE比較



不同變異數估計值的MSE比較


```
t 1=NULL
t2=NULL
    for (i in 1:10000) {
        x=rnorm(100)
            a=mean(x)
                b=sqrt(var(x))
                    x1=x[x > a-b \& x < a+b]
                         x1.5=x[x > a-1.5*b & x < a+1.5*b]
                            x2=x[x > a-2*b \& x < a+2*b]
                        x2.5=x[x > a-2.5*b \& x < a+2.5*b]
                    x3=x[x > a-3*b \& x < a+3*b]
                y1=c(mean(x), mean(x1), mean(x1.5), mean(x2), mean(x2.5), mean(x3))
            y2=c(var(x), var(x1), var(x1.5), var(x2), var(x2.5), var(x3))
        t1=cbind(t1,y1)
    t2=cbind(t2,y2)
matplot(xx,yy,type="1",lty=c(1,2),col=c(1,2),xlab="# of st.d.",ylab="MSE of
mean")
legend(0.5,0.04,c("Sample Size=25", "Sample Size=100"), lty=c(1,2), col=c(1,2))
matplot(xx,yz,type="1",1ty=c(1,2),col=c(1,2),x1ab="# of st.d.",y1ab="MSE of st.d.",y
Variance")
legend(1.5,0.45,c("Sample Size=25", "Sample Size=100"), lty=c(1,2), col=c(1,2))
```

統計檢定與p-value

■統計檢定與p-value

- →p-value測量觀察值的「<u>罕見程度</u>」,數值 愈小、出現機會愈小。
- ■根據「虛無假設」及「檢定量」描繪出可能狀況,如:t-test之類的檢定。
- →問題:如果缺乏檢定量的資訊,或是不確 定假設條件是否成立,如何檢測觀察值?
- →排列檢定(均勻分配)、t檢定(常態分配)是兩種常見的假設。

註:「顯著性」也與假設條件有關。

Concept of Permutation Test

Structure

Random Pattern

https://byuistats.github.io/Statistics-Notebook/PermutationTests.html

Permutation test:

- →以排列組合的方式計算事件的發生機率, 常見於兩組樣本的比較,尤其當資料不是 常態分配時,或是樣本數較少時。(使用R 的BHH2模組之「permtest」。)
- ■檢定步驟:
- →定義問題、確認虚無與對立假設;
- →確定檢定量;
- >由觀察值計算檢定量;
- >重複抽樣獲得所有可能的檢定量;
- →由排列檢定的結果決定檢定結果。

應用範例:

- →某汽油添加劑宣稱可增加每公升的里程 數,以下為各測試4次添加與不添加的實 驗結果。
 - ◆添加: 33.0, 31.0, 34.5, 34.0
 - ◆不添加: 29.5, 32.0, 32.9, 31.5
- →因為樣本數少,除非差異較大,檢定結果通常是不能拒絕兩者的期望值相等。 (t-檢定的 p-value 等於0.170。)

→8個觀察值任意抽出4個,所有可能為:

若藉由Permutation test,知道有6種可能使得兩者的差異不小於觀察差異(即差異為6.6)。因此,p-value = 6/70 = 0.086。

註:排列檢定屬於無母數方法,在觀察值個數不多時的其檢力通常較小。

→以R指令「permtest」測試 x1=c(33.0, 31.0, 34.5, 34.0) y1=c(29.5, 32.0, 32.9, 31.5) permtest(x1,y1)

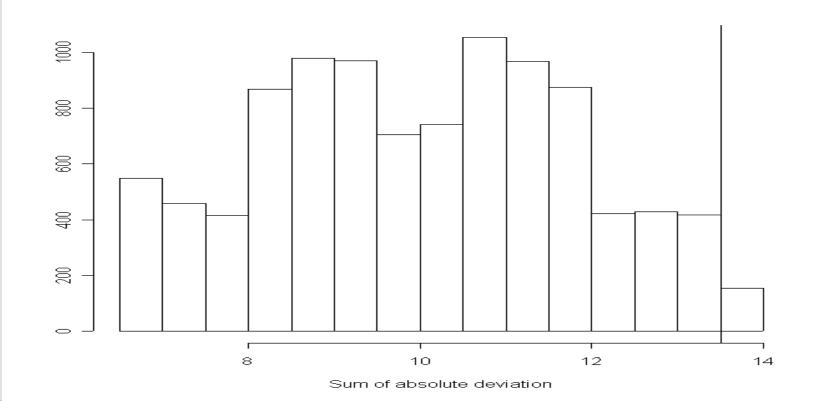
N t.obs t-Dist:P(>t) PermDist:P(>t)
70.00000000 1.56172013 0.08468935 0.07142857

→藉由手算Permutation test,知道有6種可能使得兩者的差異不小於觀察差異(即差異為6.6)。因此,p-value = 6/70 = 0.086。

■再一個範例:

比較兩組樣本的變異程度,Good(1994)建議轉換原始樣本為 $X_i'=|X_i-median(X)|$,

再計算 $S = \sum_{i=1}^{n-1} X_i'$, 其中 $X_n = median(X)$ 。


原則上, S愈大變異也就愈大。

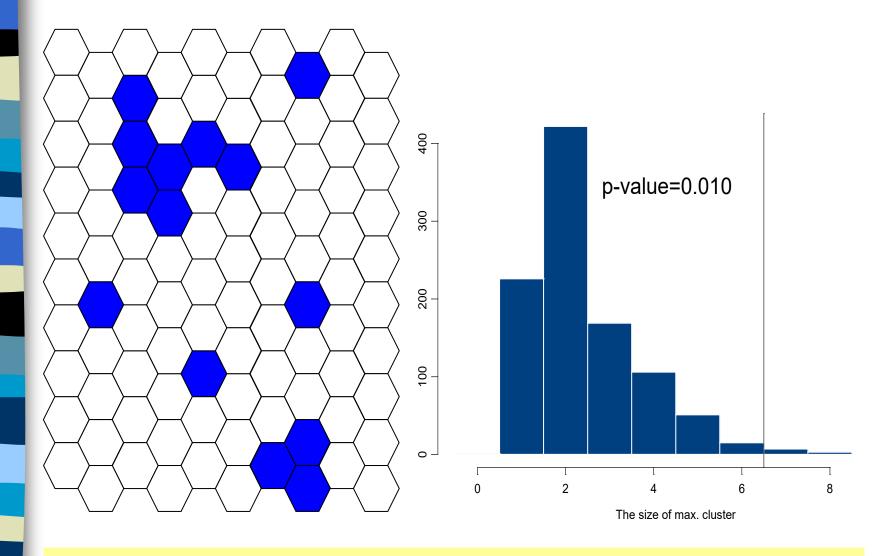
→問題:何種程度的S的差異才算有差別?

範例:兩組樣本 $X = \{121,123,126,128.5,129\}$ 及 $Y = \{153,154,155,156,158\}$ 。

 \rightarrow 計算得出 $X' = \{5, 3, 2.5, 3\} \cdot S_X = 13.5$ 、 $Y' = \{2, 1, 1, 3\} \cdot S_Y = 7$ 。

- →以 X'及 Y'的共8個數值為依據(8中抽4),看 看模擬的數值中有幾次的S值不小於13.5。
- →模擬100,000次,發現S值大於或等於13.5 的模擬次數有5712次, p-value等於0.05712, 表示X的變異程度大於Y。(排列檢定=4/70)

- ■另一個範例:(兩個變數間是否相關!)如如果只有兩個變數(X,Y),但觀察值的個數不多、或是變異過大,藉由相關係數得出的結果一般都不顯著。
- →計算所有可能的 $S = \sum_{i=1}^{n} x_i y_{\phi(i)}$ 數值,看看有幾次比觀察值大(或小),其中 ϕ 為定義於 $\{1,2,...,n\}$ 的排列。


	1	2	3	4	5
DDT (ppm)	65	98	117	122	130
Egg Shell Thickness	.52	.53	.49	.49	.37
(1) 中国 (1)					

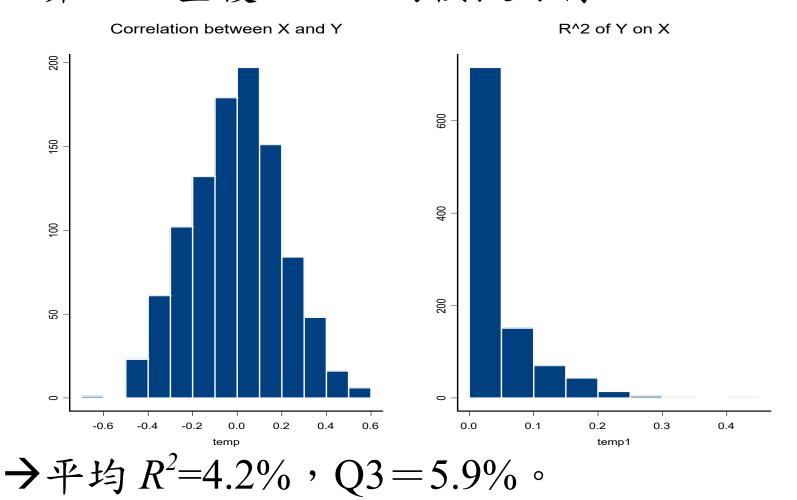
https://media.nationalgeographic.org/assets/photos/000/279/27969.jpg

- ■如果直接代入計算,在常態分配的假設下得出相關係數 -0.663, p 值0.223。
- →若以排列檢定,因為120種 組合中僅有兩種的S值不大 於觀察值的S值,表示兩個 變數間存在非常強的負相關。

檢查是否有群聚(Cluster)的現象!

An example of testing the largest cluster (1,000 runs)

霧霾出現的天數是否為連續(群聚)?


日	_	_	三	四	五	六
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

註:31天中有10天有霧霾,<u>連續四天</u>算是 群聚嗎?(Run test?)

Monte Carlo p-value & Test

- ■根據虛無假設模擬出n組樣本,如果觀察值排在第k個(也就是第k大),則檢定的p-value = k/(n+1)。一般顯著水準為0.05,n值多半選為99、499、999、9,999或99,999等數字。
- →Q:蒙地卡羅p-value與排列檢定的差別?
- 蒙地卡羅檢定的作法類似,給定模型假設下,求出統計量等相關數值的分配。
- →應用範例:迴歸分析中有人用調整過的 R^2 ,以消除因隨機而造成的線性相關。

■ 隨機由N(0,1)產生互相獨立的25個 $X \times Y$ 觀察值,根據迴歸方程式 $Y = \alpha + \beta X$ 計 算 R^2 ,重複1000次的模擬可得

Note: The relationship between R^2 and R_a^2 is

$$R_a^2 = 1 - (1 - R^2)(\frac{n-1}{n-p}).$$

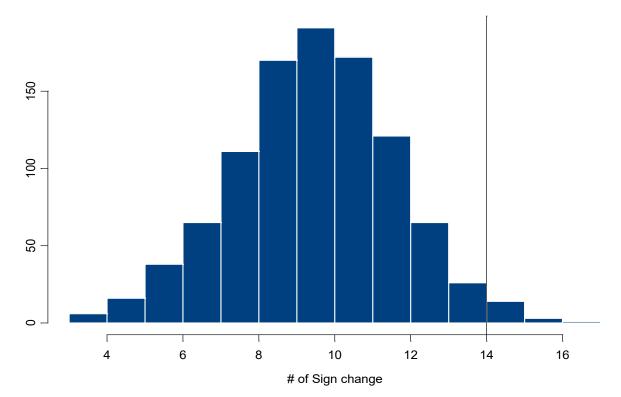
Or, equivalently,

$$1 - R_a^2 = (1 - R^2)(\frac{n - 1}{n - p}).$$

Plugging into n = 25 and p = 2, we get

$$R_a^2 = 1 - (1 - 4.2\%) \times \frac{24}{23} = 0.035\% \cong 0.$$

■另一個範例:


迴歸分析中常以殘差的符號變化,判斷殘 差間是否互相獨立。例如:如果共有20 個殘差,其正負號為

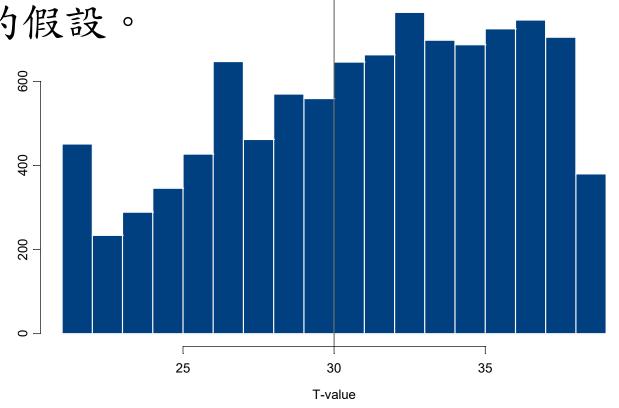
+--+-+-+-+-+--+

共有14個符號改變,想檢查是否殘差間 是否為負相關。

- → 符號改變頻繁,表示負相關;
- → 符號不改變,表示正相關。

→以10個正號、10個負號為基礎,重複模擬999次,計算符號改變的次數。發現大於或等於14次符號改變的模擬次數有44次,因此p-value = (44+1)/(999+1) = 0.045,也就是殘差間呈現負相關。

■ 另一個範例: $X_i \sim i.i.d. N(m, \sigma^2), i = 1, 2, ..., n.$


Wilcoxon符號檢定可用來檢查一組樣本的中位數是否等於某個定值,首先計算所有觀察值的秩(rank),再乘以大於或小於中位數的符號,分別加總正負兩個秩(T+、T-)的總和,取較小者為統計檢定量。

→理論上,
$$T^+ + T^- = \frac{n(n+1)}{2}$$
。

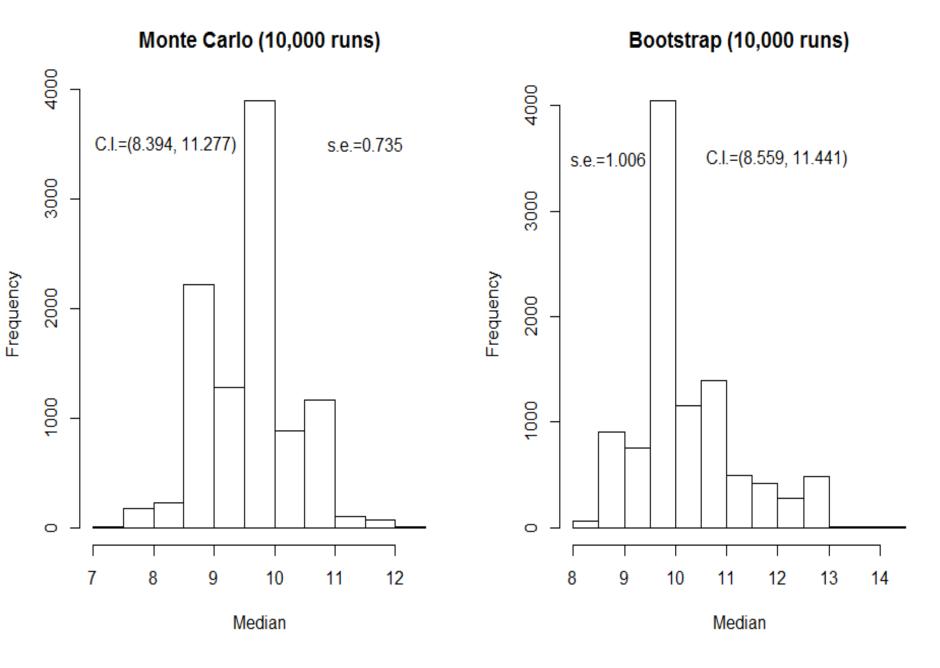
→當樣本數較大時,

$$E(T) = \frac{n(n+1)}{4} \& Var(T) = \frac{n(n+1)(2n+1)}{24}.$$

 \rightarrow 以 $X_i \sim i.i.d.$ N(0,1), i=1,2,...,12 為例,假設某組觀察值的檢定量為30,重複9,999次的模擬,計算出Monte-Carlo p-value等於 (1+3985)/(1+9999)=0.3986,不拒絕中位數為0的假設。

Critical values of the Mann-Whitney-Wilcoxon test (α =.05, 10,000 runs, and numbers in red are the true critical values.)

	\mathbf{n}_{I} =2	3	4	5	6	7	8	9	10
n ₂ =2	3	3	3	3	3	3	4	4	4
3	6	6	6	7	8	8	9	9	10
4	10	10	11	12	13	14	14(15)	16(15)	16
5	15	16	17	18	19	21	22	23	24
6	21	23	24	25	27	28	30	31(32)	33
7	28	30	32	34	35	37	39	41	43
8	37	39	41	43	45	47	49(50)	52	54
9	46	48	51(50)	53	56	58	61	63	66
10	56	58(59)	61	64	67	70	73	76	79

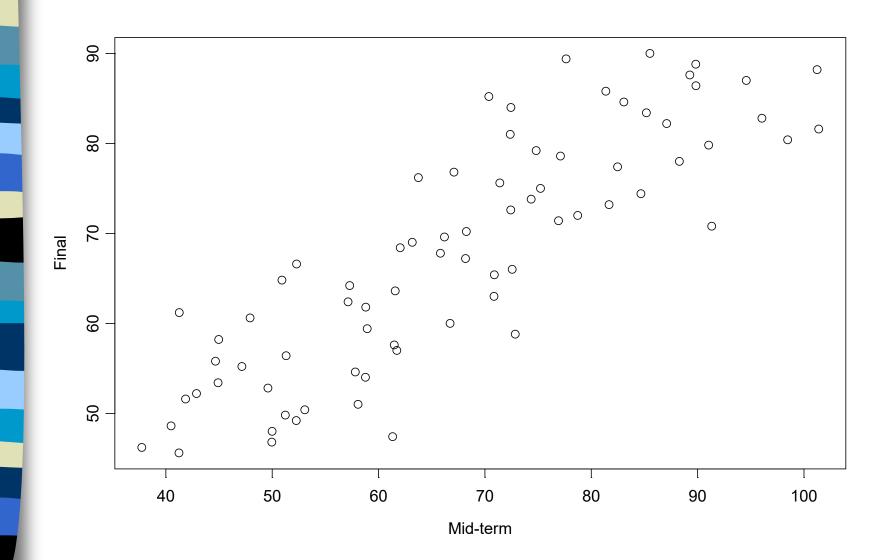

Bootstrap(拔靴法)

- Bootstrap法可追塑至Efron於1979提出的方法,屬於重複抽樣(Resampling)方法。將已有的觀察值當作是母體重複抽樣(與Monte Carlo有真實母體不同!!),以求取原先因資料不足而無法探討的資料特性,早期探討的特性以變異數為主。
- →舉例而言,假設 x₁,x₂,...,x_N 為來自同一分配的觀察值,而我們想瞭解這個分配的中位數與其中位數的變異數。

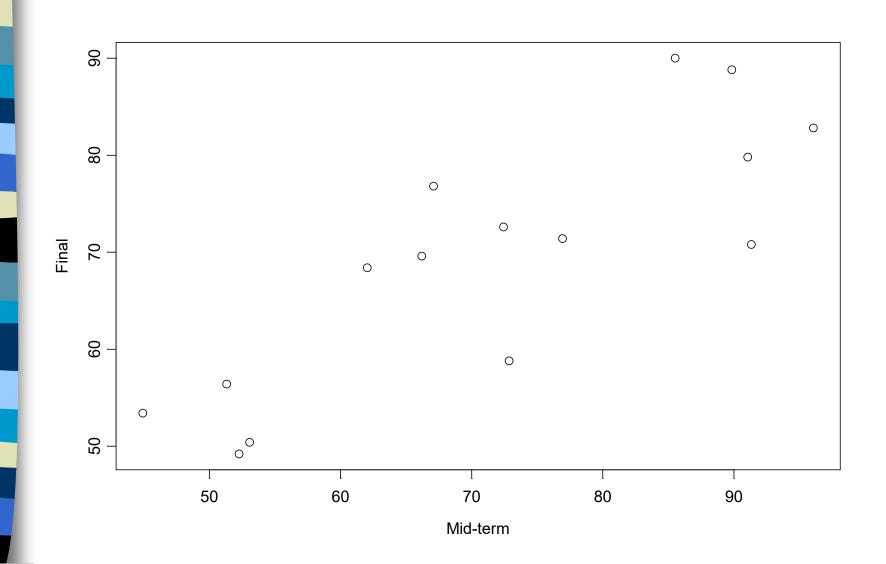
範例:一組由Poisson分配抽出的隨機樣本 6 7 7 7 7 8 8 8 9 9 9 10 10 10 10 11 11 12 13 13 13 13 14 15 15 15 15 17 20

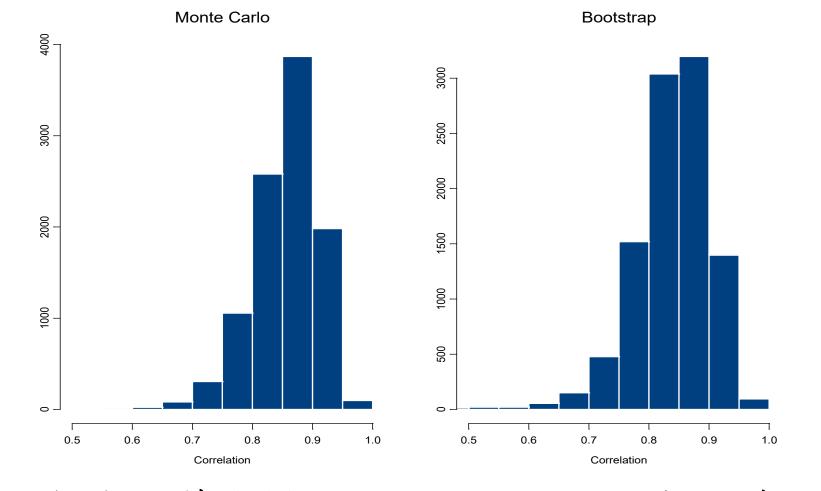
→已知樣本中位數為10,欲求出母體中位數的信賴區間,可由Bootstrap模擬出標準差。10,000次模擬得出標準差估計值1.0063,中位數的95%信賴區間 (8.5586,11.4414) 涵蓋了實際中位數10。

註:母體為Poisson(10);蒙地卡羅95%信賴 區間為(8.3939, 11.2767)。



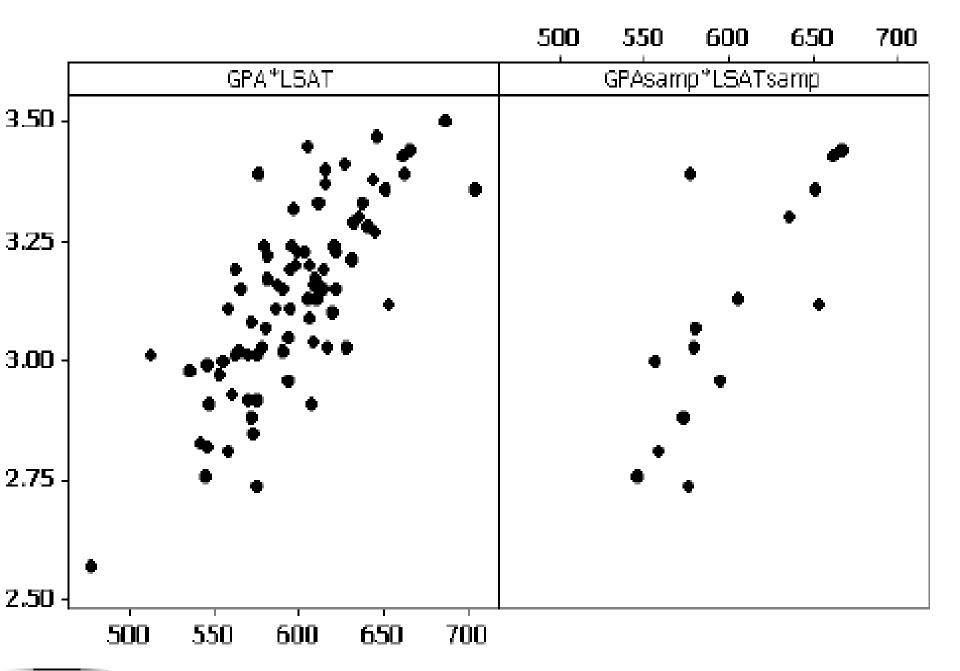
兩者的差異並不大!(標準誤0.7354 vs. 1.0063)


Monte Carlo及Bootstrap的模擬程式


```
# Monte Carlo
t1=NULL
for (i in 1:10000) { x1=rpois(30,10); y1=median(x1); t1=c(t1,y1) }
# Bootstrap
x0 = rpois(30,10)
t2=NULL
 for (i in 1:10000) { x2=sample(x0,30,T); y2=median(x2); t2=c(t2,y2) }
#
a1=mean(t1)
b1=sqrt(var(t1))
 b2=sqrt(var(t2))
par(mfrow=c(1,2))
hist(t1,xlab="Median",main="Monte Carlo (10,000 runs)")
 text(8.2,3500,c("C.I.=(8.394, 11.277)"))
 text(11.5,3500,c("s.e.=0.735"))
hist(t2,xlab="Median",main="Bootstrap (10,000 runs)")
 text(8.7,3500,c("s.e.=1.006"))
 text(12,3500,c("C.I.=(8.559, 11.441)"))
```

範例:75位選修統計學的學生,想瞭解期中考與總成績的相關性,只抽出15位學生。

抽出的15位學生與母體特性大致接近,相關係數分別是0.8399及0.8543。

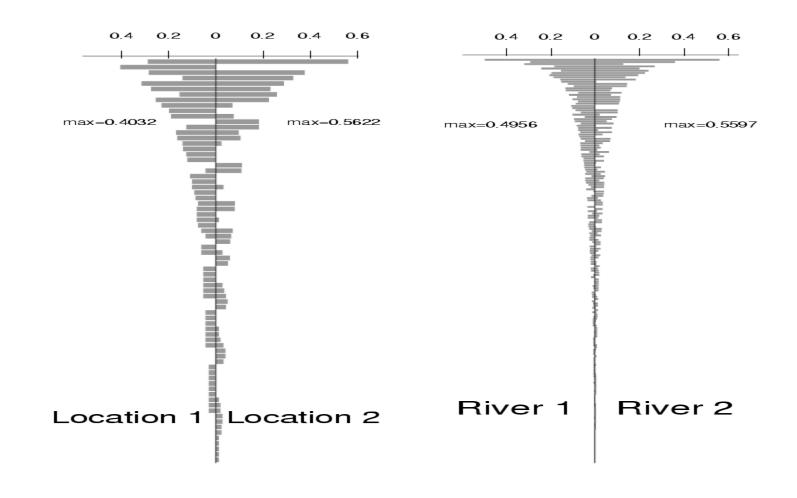

比較各一萬次模擬, Monte Carlo法由母體任意抽出15個樣本得出的相關係數,與15個樣本以Bootstrap法算出的相關係數。

→ 兩者非常接近!(標準差0.0540 vs. 0.0654)

■註:

- (1) 理論上,我們認為 Bootstrap error
- = Sampling error + bootstrap simulation error
- (2) 當有充足的樣本數、且樣本具有與母體 類似的特性時,Bootstrap可用來近似分 配的形狀。(Shift methods!)
- (3) 請參考Bootstrap講義!

Law School Data Scatterplots: Population and Sample



1 622 3.23 22 614 3.19 43 573 2.85 63 572 2 542 2.83 23 628 3.03 44 644 3.38 64 610 3 579 3.24 24 575 3.01 (45) 545 2.76 65 562 (4) 653 3.12 25 662 3.39 46 645 3.27 66 635 5 606 3.09 26 627 3.41 (47) 651 3.36 67 614 (6) 576 3.39 27 608 3.04 48 562 3.19 68 546 7 620 3.10 28 632 3.29 49 609 3.17 69 598	3.08 3.13 3.01 3.30 3.15 2.82 3.20
3 579 3.24 24 575 3.01 (45) 545 2.76 65 562 (4) 653 3.12 25 662 3.39 46 645 3.27 66 635 5 606 3.09 26 627 3.41 (47) 651 3.36 67 614 (6) 576 3.39 27 608 3.04 48 562 3.19 68 546	3.01 3.30 3.15 2.82 3.20
(4) 653 3.12 25 662 3.39 46 645 3.27 66 635 5 606 3.09 26 627 3.41 (47) 651 3.36 67 614 (6) 576 3.39 27 608 3.04 48 562 3.19 68 546	3.30 3.15 2.82 3.20
5 606 3.09 26 627 3.41 (47) 651 3.36 67 614 (6) 576 3.39 27 608 3.04 48 562 3.19 68 546	3.15 2.82 3.20
(6) 576 3.39 27 608 3.04 48 562 3.19 68 546	$\frac{2.82}{3.20}$
	3.20
7 620 3.10 28 632 3.29 49 609 3.17 69 598	
	9 44
8 615 3.40 29 587 3.16 (50) 555 3.00 (70) 666	3.44
9 553 2.97 30 581 3.17 51 586 3.11 71 570	3.01
10 607 2.91 (31) 605 3.13 (52) 580 3.07 72 570	2.92
11 558 3.11 32 704 3.36 (53) 594 2.96 73 605	3.45
12 596 3.24 33 477 2.57 54 594 3.05 74 565	3.15
(13) 635 3.30 34 591 3.02 55 560 2.93 75 686	3.50
14 581 3.22 (35) 578 3.03 56 641 3.28 76 608	3.16
(15) 661 3.43 (36) 572 2.88 57 512 3.01 77 595	3.19
16 547 2.91 37 615 3.37 58 631 3.21 78 590	3.15
17 599 3.23 38 606 3.20 59 597 3.32 (79) 558	2.81
18 646 3.47 39 603 3.23 60 621 3.24 80 611	3.16
19 622 3.15 40 535 2.98 61 617 3.03 81 564	3.02
20 611 3.33 41 595 3.11 62 637 3.33 (82) 575	2.74
21 546 2.99 42 575 2.92	

Sampled schools have bold-faced school numbers.

Bootstrap法估計變異數的實例

■檢定兩個數值是否相等。

■ Bootstrap法計算出的變異數(標準差),與 大樣本理論Delta 法的數值比較:

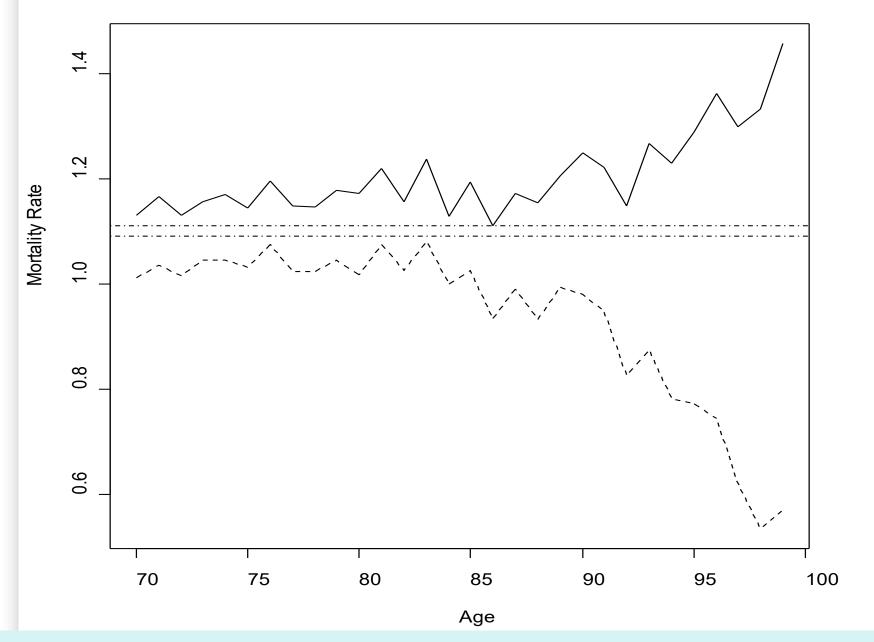
	Bootstrap	Delta
螃蟹資料	0.015	0.01426
水鳥資料	0.008	0.0083

Bootstrap用於檢定與預測

- ■除了用於估計變異數外,也可用於檢定與預測。
- →檢定可與變異數估計結合,在此將略過細節,僅以一個範例說明想法。
- →預測多半與相關資料(Dependent data)有關,都屬於無母數方法,但至今仍無統一的方法。常見的方法有Block, Sieve, Local, Wild與Markov Bootstrap,以及Subsampling,在此只介紹Block Bootstrap。

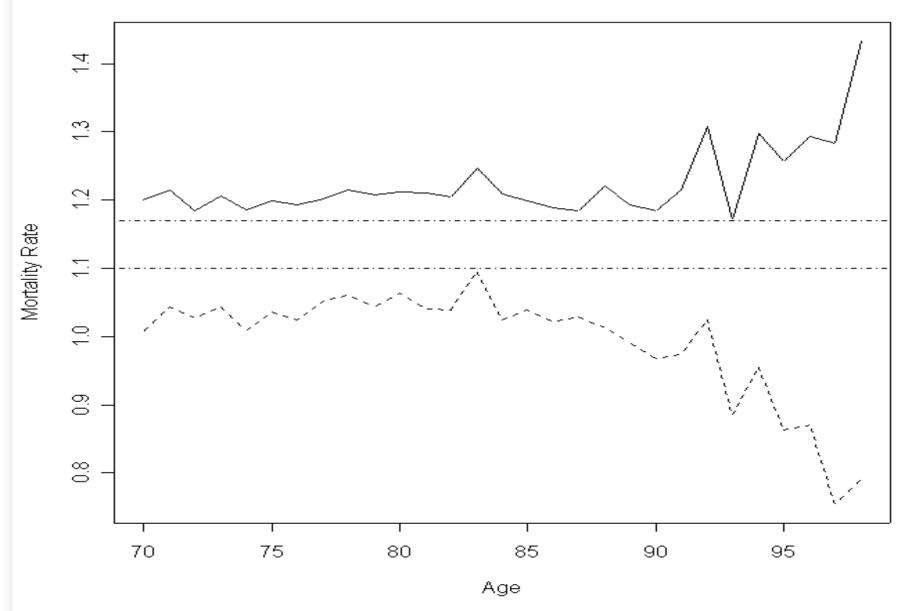
Bootstrap法的檢定實例

- ■檢定某個假設是否成立。
- → 範例:死亡率是否服從Gompertz分配 也就是瞬間死亡率滿足

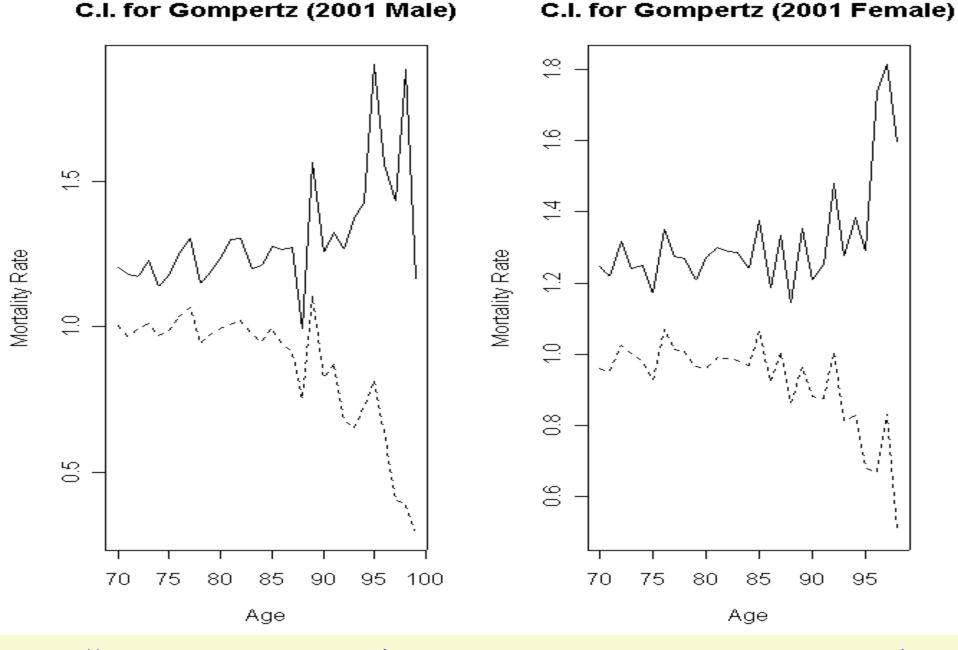

$$\mu_{x} = BC^{x}$$
, $B > 0$, $C > 1$

或是

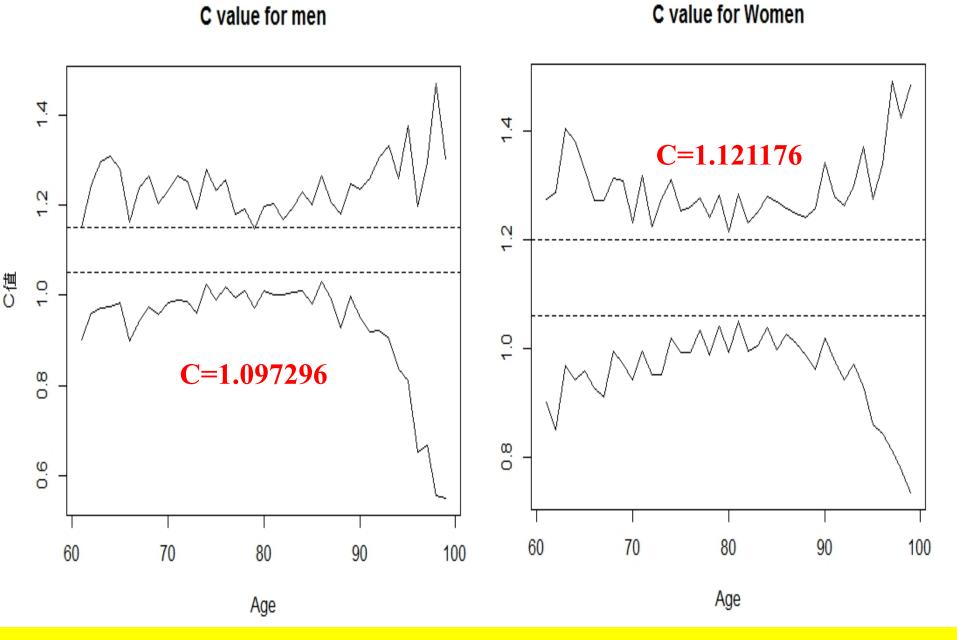
$$log(p_{x+1})/log(p_x) = C$$


若C的可能分布範圍不為空集合,則不拒絕Gompertz假設。

Bootstrap C.I. of Male Mortality Rat



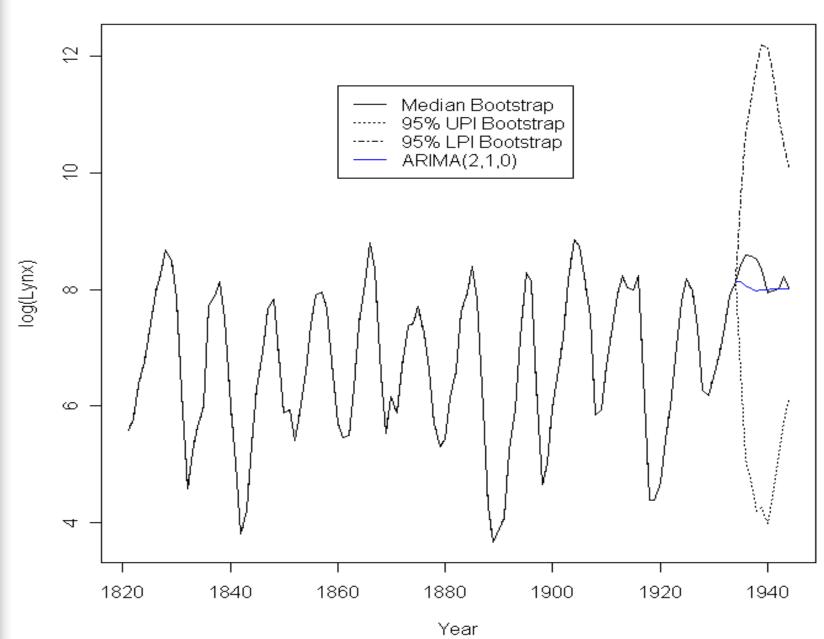
台灣男性死亡率1000次Bootstrap模擬(1999~2001年)


Bootstrap C.I. of Female Mortality Rates

台灣女性死亡率1000次Bootstrap模擬(1999~2001年)

台灣男女兩性死亡率1000次Bootstrap模擬(2001年)

2009至2011年臺灣高齡死亡率的模擬檢定


區塊(Block)拔靴法

- ■區塊拔靴法的重複抽樣方式類似一般的拔靴法,只是每次抽取一個「區塊」的資料,當資料服從均衡(Stationary)假設時,區塊拔靴法大多都適用。
- →區塊拔靴法用於相關資料有不錯的效果, 雖然不如獨立樣本時一般拔靴法的準確, 但比Subsampling效果好,而且不需要資 料滿足很強的條件,加上操作時不需對資 料給予任何假設,實證上是很好的選擇。

- ■區塊拔靴法的抽樣方式類似拔靴法,但 不是對觀察值直接抽樣,而是對相鄰觀 察值的差異抽樣,而且抽取時將連續一 串的差異值抽出。例如:若區塊長度為b、 且抽到第 k 個觀察值,則第 k 個至第 k+ b-1個差異值被抽出,最後一個觀察值 加上這些差異值即為預測值。
- ■R的模組「boot」也有處理時間數列資料 (相關資料的一種)的功能,細節可查閱 「tsboot」指令。(這個指令可指定區塊長 度為定值、或是服從幾何分配。)

- ■範例:R的說明檔中使用「lynx」資料, 一共有114筆資料。使用tsboot指令,可 限定固定區塊長度,也可指定區塊長度 服從幾何分配。(兩者得出的結果非常 接近。)
- → 首先對「lynx」資料取對數,再計算相 鄰時間觀察值的差值,之後抽出一整個 區塊差值,加到最後一期的觀察值。下 圖為依據一千次區塊拔靴法的模擬,計 算而得的95%預測區間,與差分後的 AR(2)模型之預測值之比較。

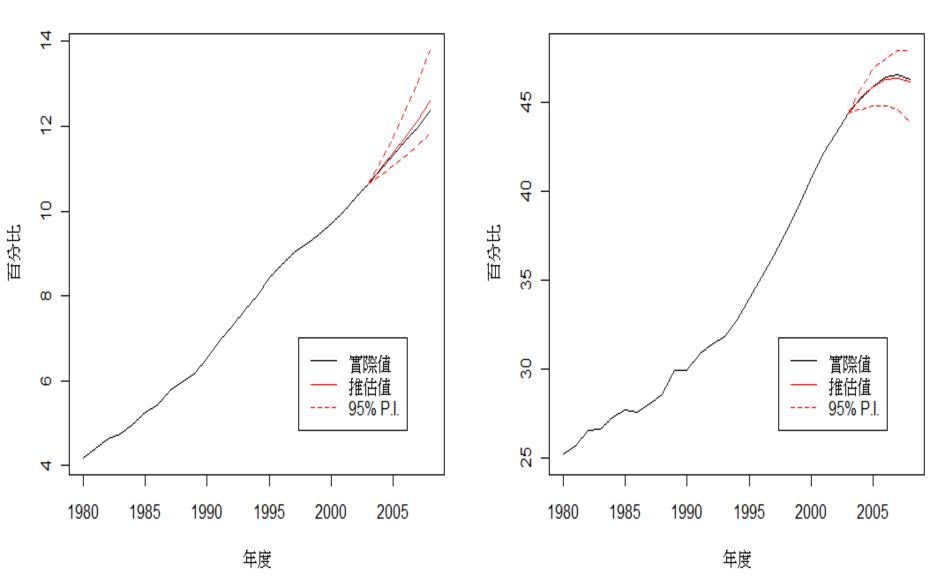
Block Bootstrap in Lynx Data

■ 以區塊拔靴法推估生育率、死亡率等數值:

差分後隨機 抽取第[t~t+n] 年的變動量/

資料最後一年 加上變動量, 得到未來n年 的推估結果

	0~4歲	5~9歲	•••	•••
1980年	$q_{x}(1980)$	$q_{x}(1980)$	•••	•••
•	:	•	:	:
2015年	$q_{x}(2015)$	$q_{x}(2015)$	•••	•••
2010	$\mathbf{q}_{\mathbf{X}}(\mathbf{z} \circ \mathbf{r} \boldsymbol{\varepsilon})$	$\mathbf{q}_{\mathbf{X}}(\mathbf{z} \circ \mathbf{r} \boldsymbol{z})$	•••	• • •


t年	$\Delta q_{x}(t)$	$\Delta q_{x}(t)$	•••	• • •
:	i	:	:	:
t+n年	$\Delta q_x(t+n)$	$\Delta q_x(t+n)$	•••	•••

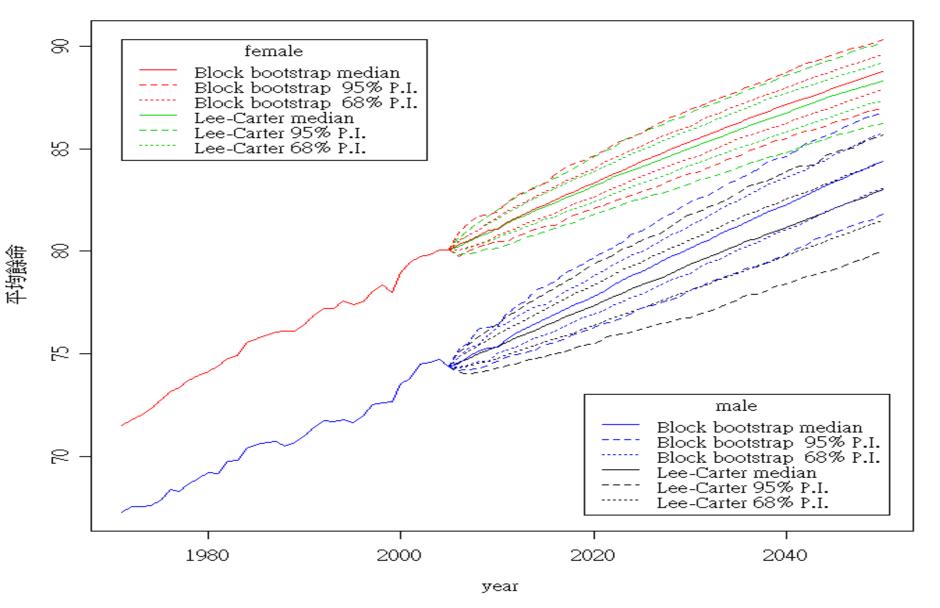
	0~4歲	5~9歲	•••	•••
2016年	$q_x(2016)$	$q_{x}(2016)$	•••	•••
:	:	:	•	:

區塊拔靴法範例:臺北市高齡人口比例

65 到 99 歲人口比例

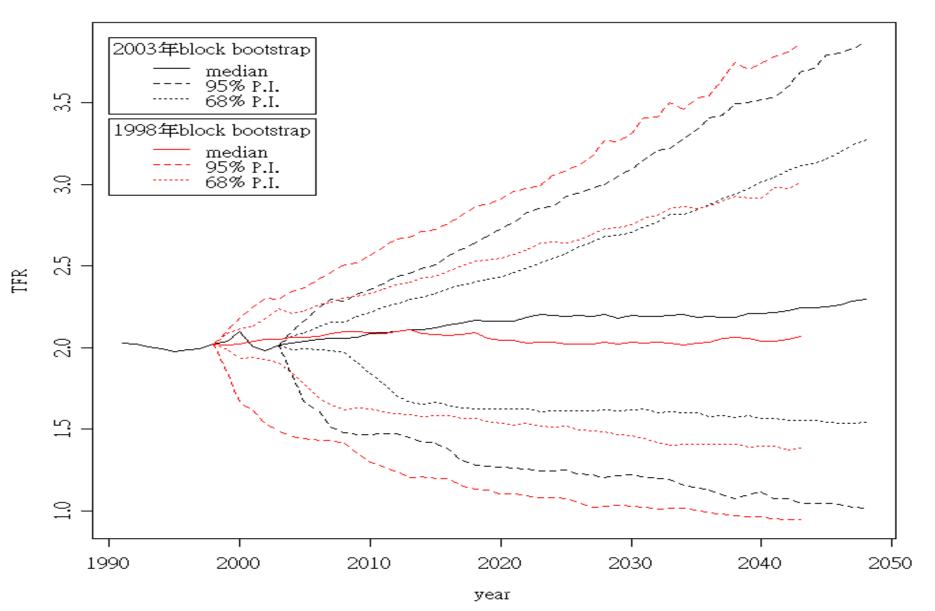
75 到 99 歲人口佔 65 到 99 歲人口比例

臺北市主計處與區塊拔靴法 推估誤差比較

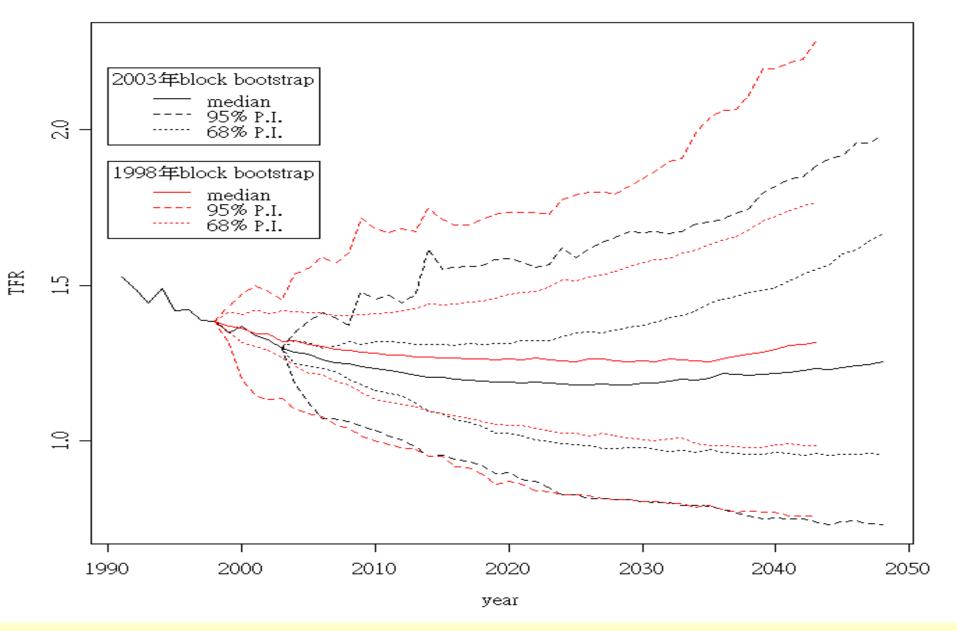

 要素
 本研究
 臺北市主計處

 世代生存法
 四歸分析法
 ARIMA (直接)
 (間接)

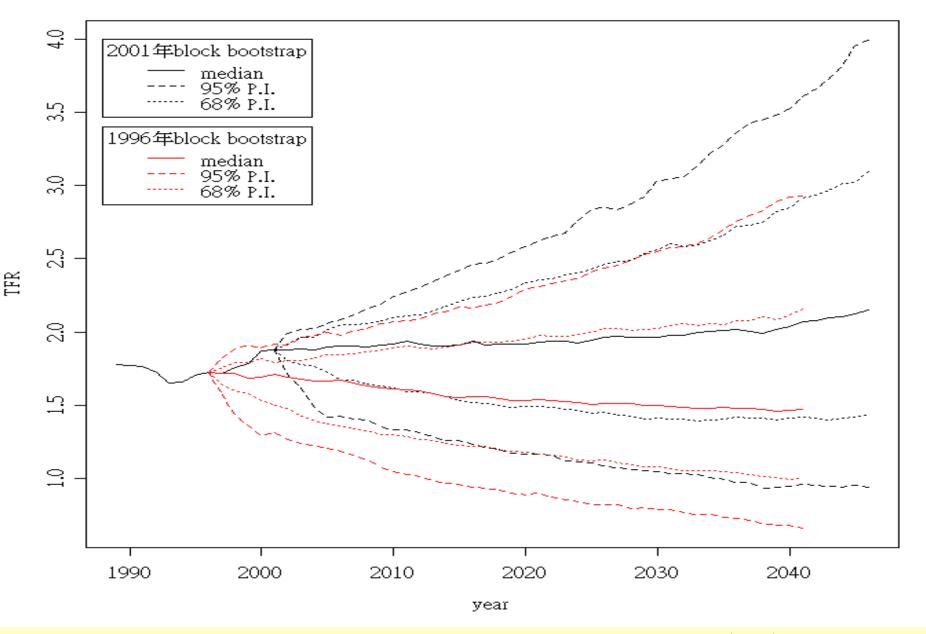
 總人口
 0.80
 1.70
 3.17
 0.87
 1.38


區塊拔靴法範例:臺灣死亡率模型預測

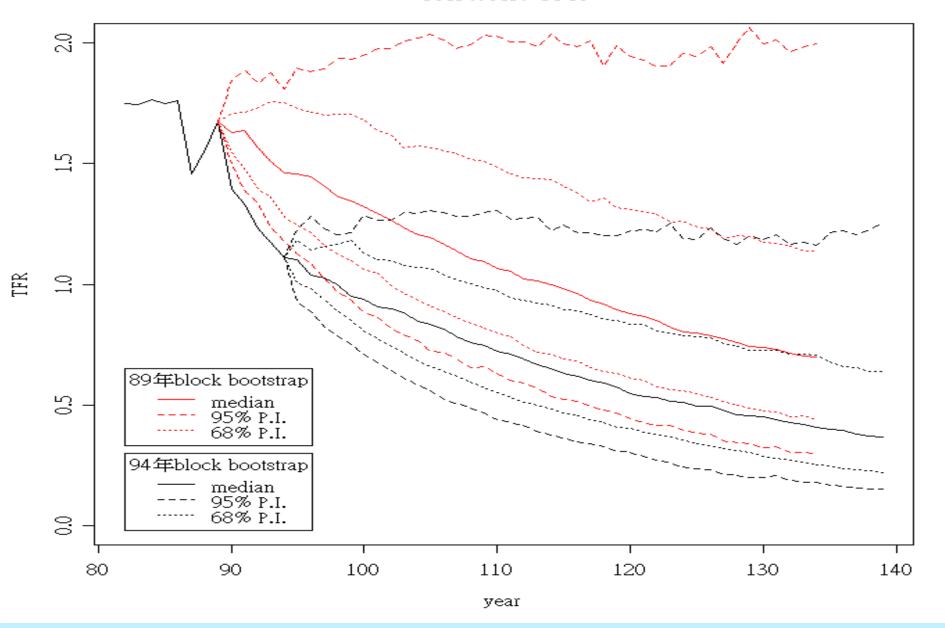
TAIWAN 零歲平均餘命



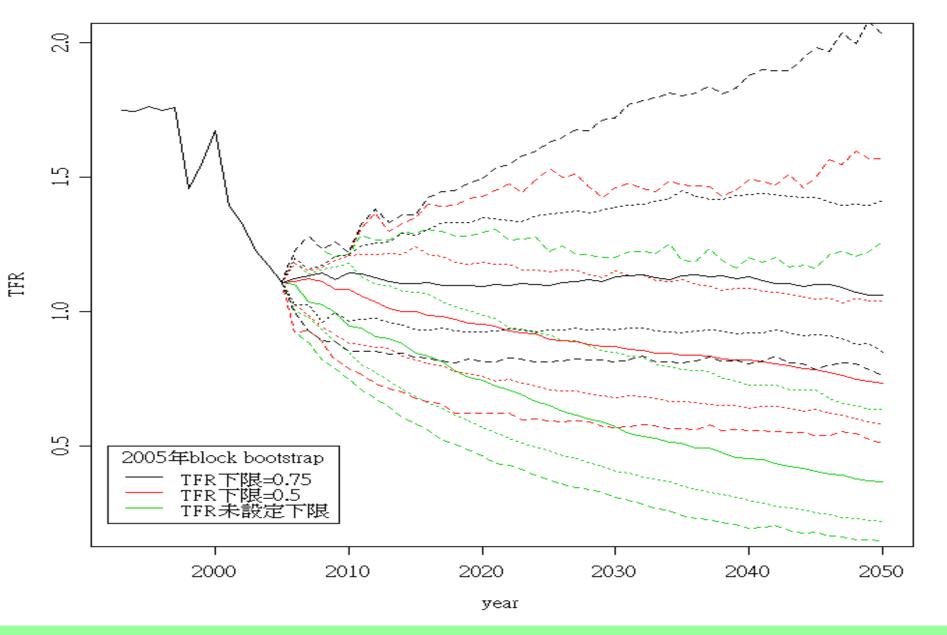
區塊拔靴法範例:美國總生育率預測



JAPAN TFR


區塊拔靴法的交叉驗證(日本生育率)

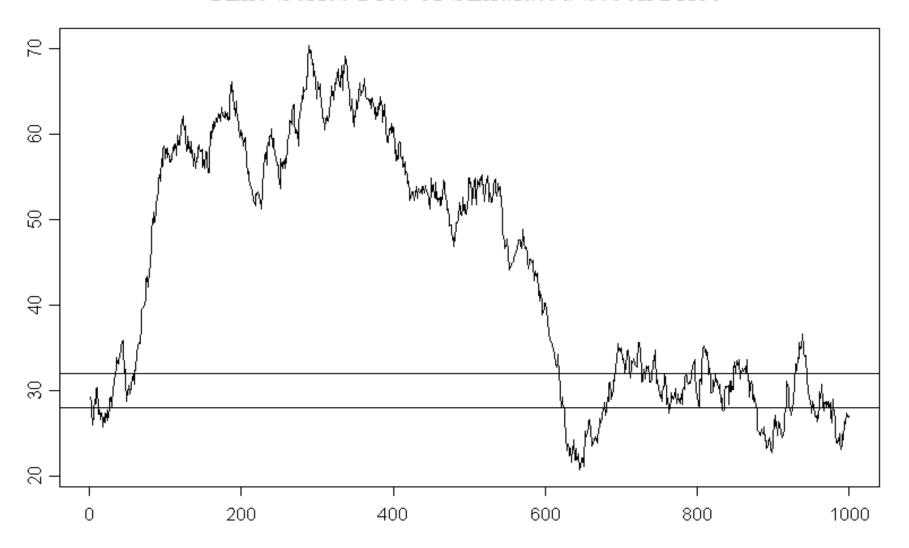
FRANCE TFR


區塊拔靴法的交叉驗證(法國生育率)

TAIWAN TFR

區塊拔靴法的交叉驗證(台灣生育率)

TAIWAN TFR



設定下限的區塊拔靴法(台灣生育率)

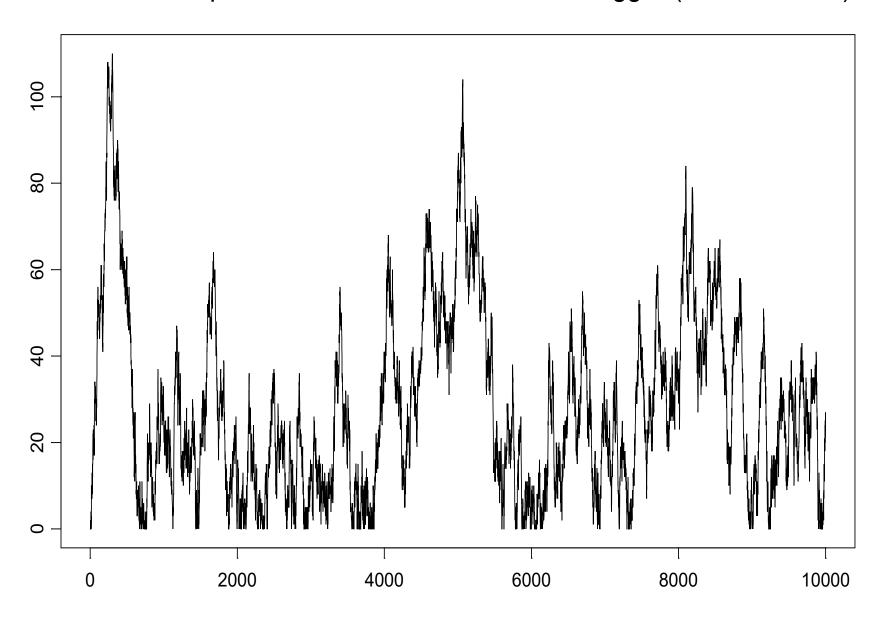
股市投資策略模擬

- ■亞洲股市中據說台灣股市最接近隨機漫步(Random Walk),如何在雜亂無章的訊息中獲取利潤?
- →隨機漫步也就是假設時間 t 的股價B(t): $B(t+s)-B(t)|B(t)\sim N(s\mu,s\sigma^2)$
- →「逢低買進、逢高賣出!」

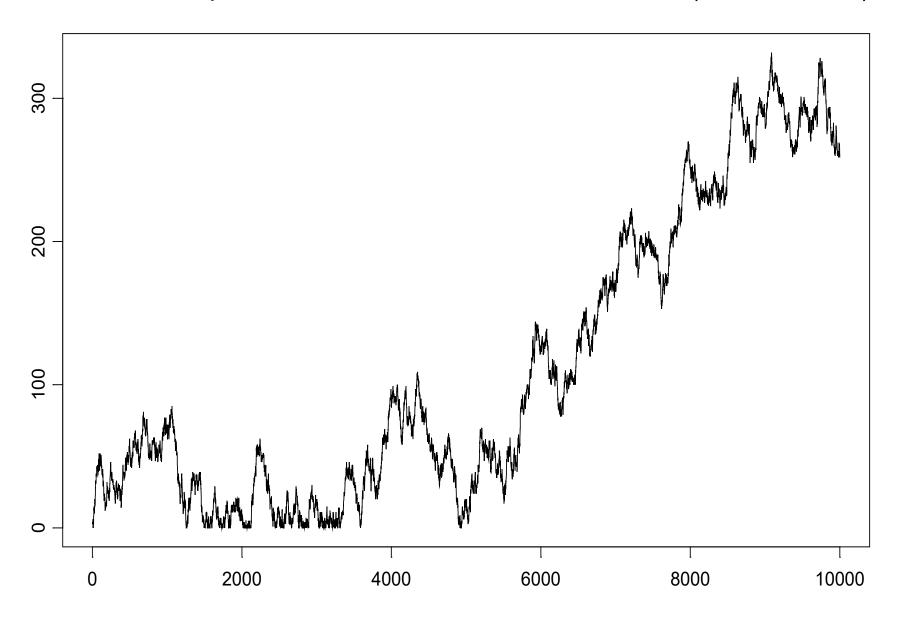
Time Series Plot of Simulated Stock Price

1000次模擬的年平均報酬為16%!

排隊理論的等待時間模擬


■若服務每位顧客平均需時μ分鐘的指數分配,兩位顧客間的間隔時間為λ分鐘的指數分配;若μ<λ則等待服務的顧客隊伍才有可能消失,否則將愈排愈長。
</p>

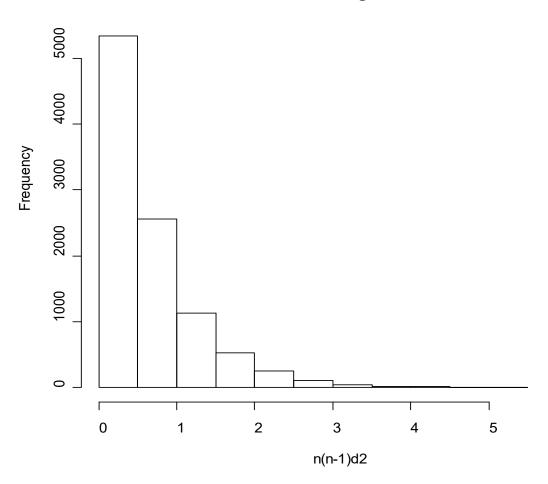
兩組模擬比較:(利用率 = μ/λ)


$$\rightarrow \mu = 3.26 < \lambda = 3.27$$
;

$$\rightarrow \mu = 3.26 > \lambda = 3.25$$
 °

Time series plot when the interarrival time is bigger (3.27 v.s. 3.26)

Time series plot when the inter-arrival rate is smaller(3.25 v.s. 3.26)

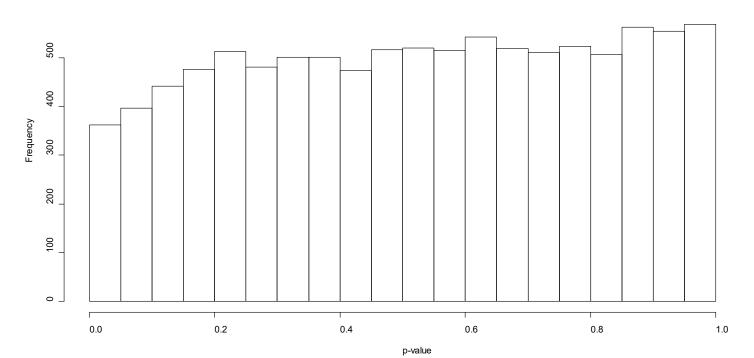


測試大樣本理論

- ■當大樣本理論不容易推導(或不容易推敲) 時,可用蒙地卡羅法測試樣本統計量的 可能性質。
- →例如:在單位正方形(0,1)×(0,1)內隨機抽出 加個觀察值,這些觀察值間的最小距離為 d,據說n(n-1)d²服從某種分配,我們可以由電腦模擬探索這個分配開始。

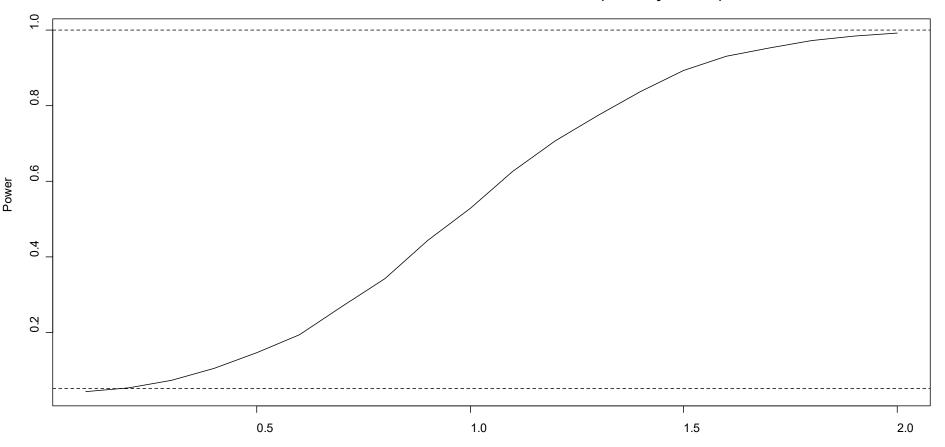
下圖為 n = 20的一萬次模擬所得出的長條圖,似乎與指數分配有關:

Histogram of 10,000 simulation

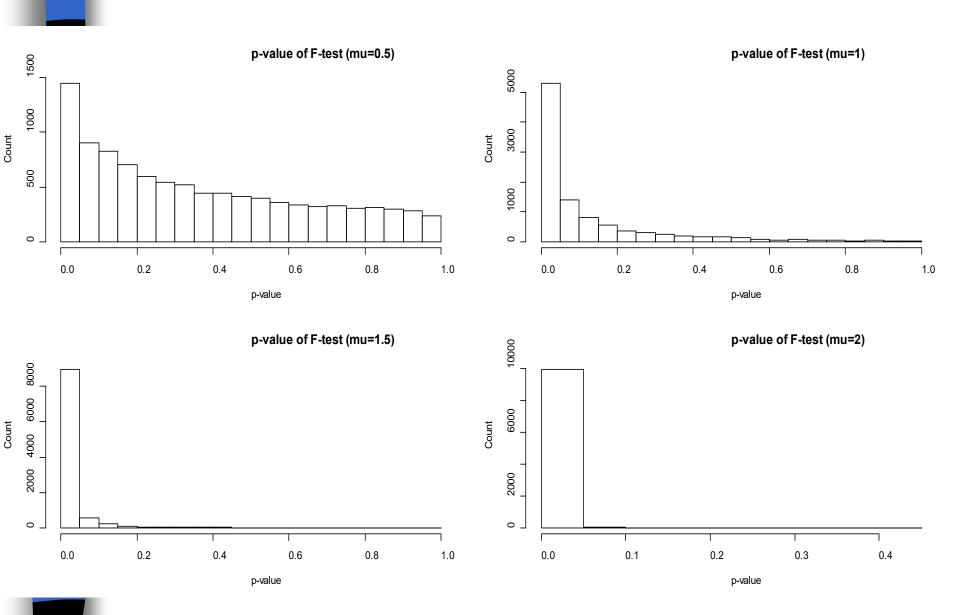


是否符合指數分配可由KS檢定確認。

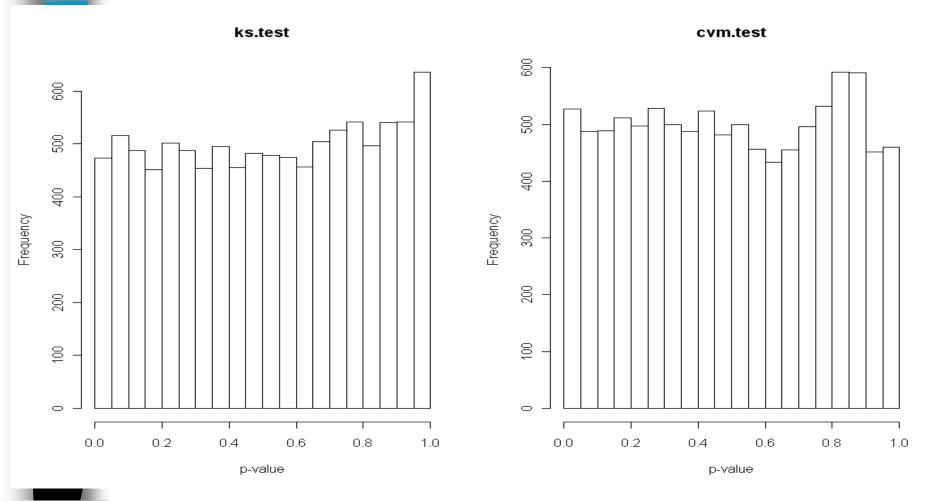
範例:檢查單因子變異數分析,假設有三個因子,每組的10個觀察值皆服從變異數為一的常態分配。


- (1) 計算型一誤差:三組期望值都是0。
- →一萬次模擬的p-value不像是均勻分配, 小於0.05者約為0.0363。

p-value of F-test (One-way ANOVA)

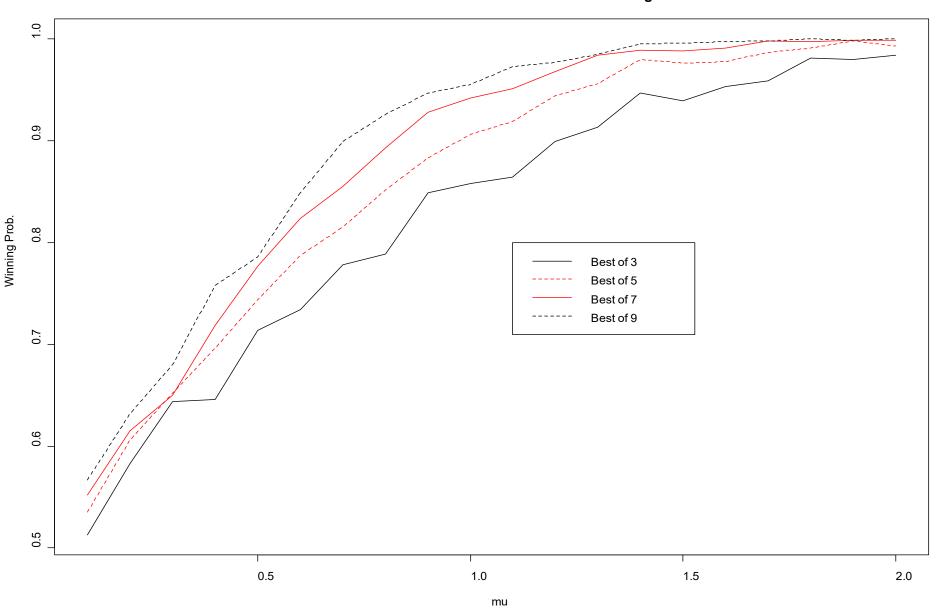

(2) 計算檢力:假設其中一組的期望值為µ, 其他兩組為0,以下檢力曲線皆為一萬次 模擬的結果:(下線為0.05!)

Power of F-test (One-way ANOVA)


mu

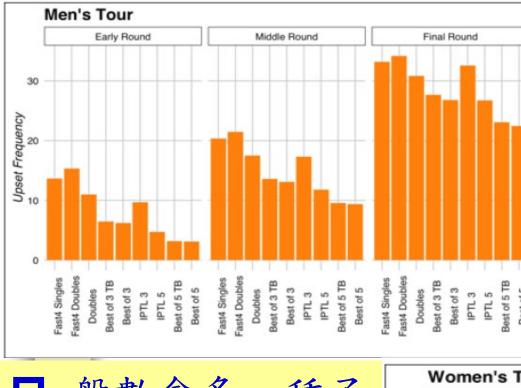
F-test p-value在 µ=0.5, 1, 1.5, 2的長條圖

→100筆資料來自標準常態分配,計算檢定 量的p-value,重複模擬一萬次。

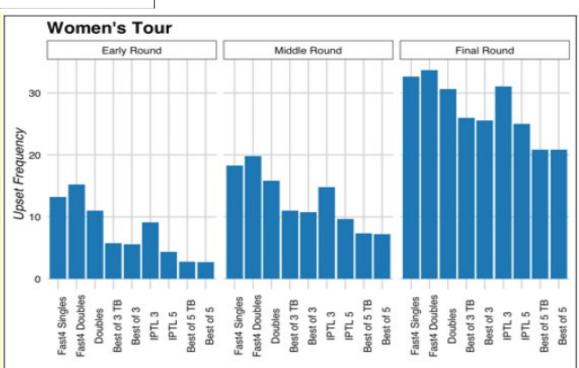

■一萬次模擬的p-value理論上應該接近均勻分配U(0,1),因此分別以卡方適合度檢定(分成10組)計算,發現兩者的檢定值都大於50,遠大於臨界值16.92。

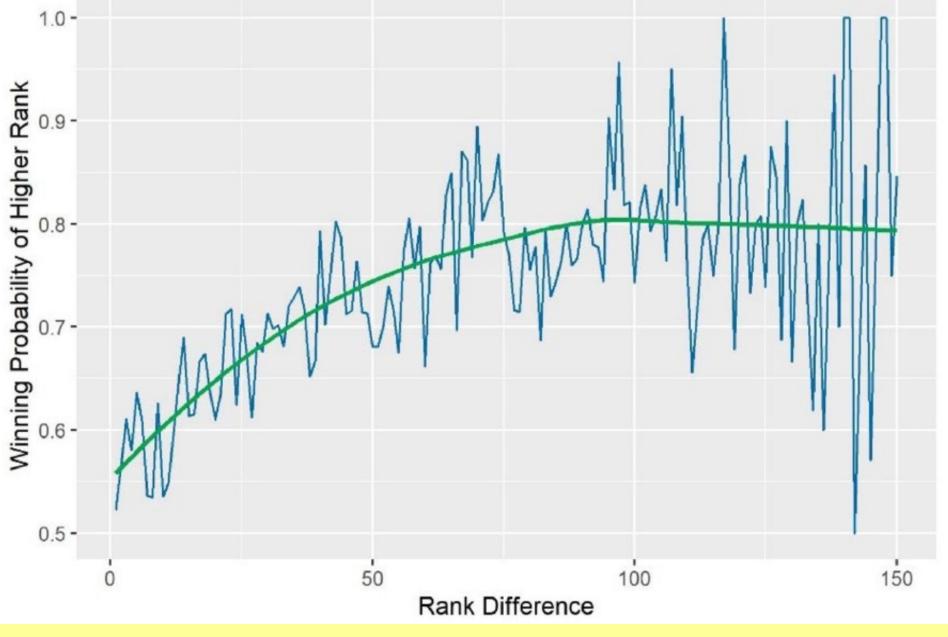
→若再以ks.test檢定均勻分配,也是拒絕!

	0	1	2	3	4	5	6	7	8	9
KS	989	938	990	949	937	952	961	1068	1038	1178
CVM	1015	1001	1025	987	1005	956	888	1028	1183	912

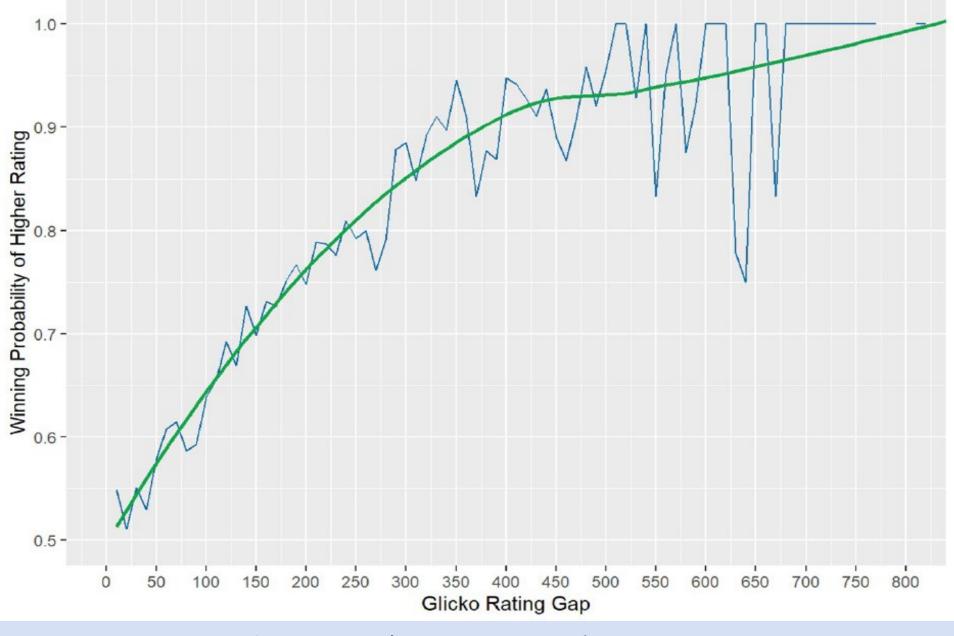

七戰四勝等賽制中強隊勝出的機會

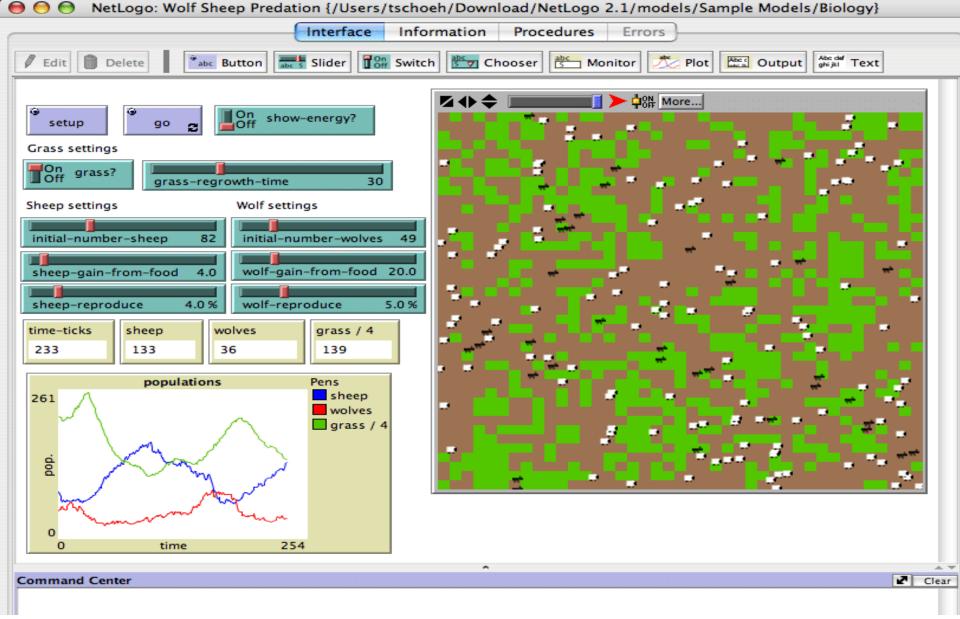
of Games vs. Winning Prob.


Name	Description
Best of 3	Sets are played to six games. Winner is first to win two sets. Tiebreak is played at 6-6 except in third set when an advantage set is played.
Best of 3 TB	This format is the same at the Best of 3 except that third set uses a tiebreak at 6-6.
Best of 5	Same as Best of 3 but the winner is the first to win three sets.
Best of 5 TB	This format is the same at the Best of 5 except that third set uses a tiebreak at 6-6.
Doubles	First two sets are played as a Best of 3 but there is no ad and tiebreaks are played at 6-6. Third sets are decided by a a ten-point tiebreak.
IPTL 3	Three sets with no ad and no lets. At 5-5, players play a first to 7-point tiebreak. http://www.iptlworld.com/format
IPTL 5	Same as IPTL but five sets.
Fast4 Singles	Best of 3 sets with sets played to four games. There is no ad and no lets. At 3-3, players play a first to five-point tiebreak.
Fast4 Doubles	Same format as Fast4 singles for first 2 sets. Third set is decided by ten-point tiebreak.
valchik, A.A. and Ing	gram, M. (2018), "Estimating the Duration of Professional Tennis Matches for Varying F


Journal of Quantitative Analysis in Sports, 14(1): 13-23.

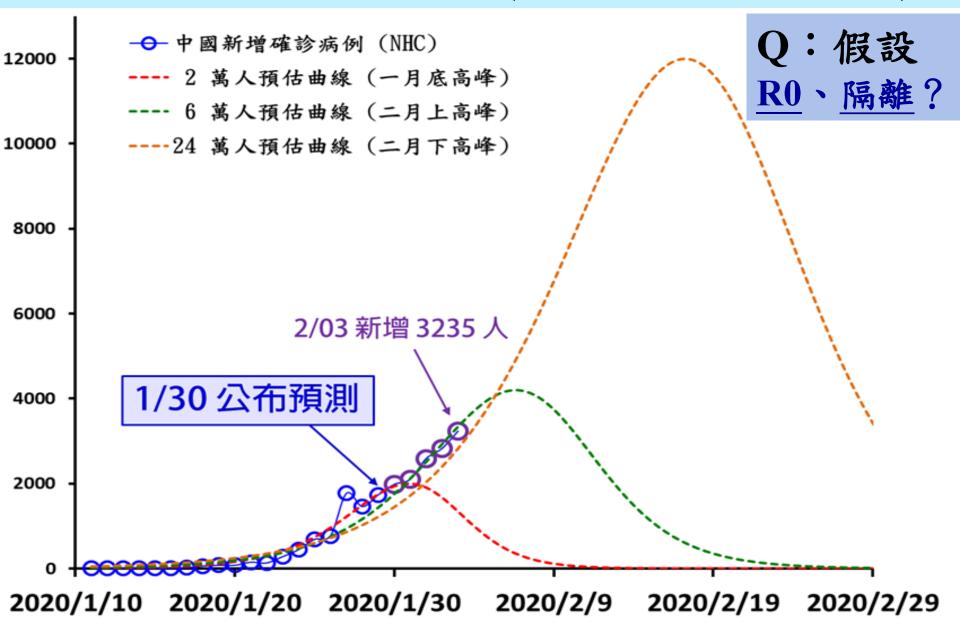
- 盤數愈多、種子 球員勝出的機會 愈大。
- →愈接近決賽、翻 盤的機會也愈大。


註:實力愈接近!


排名差異與勝率(四大滿貫、2000~2019)

J.C. Yue, E.P. Chou, M.H. Hsieh, and L. Hsiao (2022), "A Study of Forecasting Tennis Matches via the Glicko Model".

Glicko分數與勝率(四大滿貫、2000~2019)


J.C. Yue, E.P. Chou, M.H. Hsieh, and L. Hsiao (2022), "A Study of Forecasting Tennis Matches via the Glicko Model".

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FThe-NetLogo-Predator-Prey-simulation-Wolf-Sheep-Grass_fig1_222712675&psig=AOvVaw00VcW-auVzvkGWIZ8jAScB&ust=1586753167702000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCNjKucWK4ugCFQAAAAAdAAAABAD

狼、羊、草地的自然均衡(Predator & Prey模擬)

COVID-19案例最高峰(台大化學系徐承志)

 $https://buzzorange.com/wp-content/uploads/2020/02/84522328_202375034148039_2193869019918893056_n.png$

疾病的基本傳染數(Basic Reproduction Number, R0)

疾病	病死率	傳染途徑	R0
麻疹	1-3%	空氣傳播	12-18
天花	95%	空氣、飛沫	5-7
愛滋病 (不經台療)	80-90%	性行為傳播	2-5
霍亂	1-50%	糞口傳播	1.06-2.63
伊波拉 (2014)	83-90%	體液傳播	1.5-2.5
普通流感	0.5%	空氣、飛沫	0.9-2.1
流行性感冒 (1918 流感大流行)	>2.5%	空氣、飛沫	2-3
SARS (2003)	11%	空氣、飛沫	0.85-3

飛沫、接觸

1.4-3.8

https://zh.wikipedia.org/wiki/%E5%9F%BA%E6%9C%AC%E4%BC%A0%E6%9F%93%E6%95%B0 https://health.udn.com/health/story/9684/4354766

2~3%

COVID-19

武漢大逃亡 Worldpop 分析路線圖

https://mrmad.com.tw/wp-contefnt/uploads/2020/02/wuhan-escape-worldpop-analysis-roadmap.jpg