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What is optimization? ( i it )




F42(Root Finding)
m We often need to find solution(s) of
equation f(x) = 0.

—> In one variable case, it is equivalent to
finding the root(s) of a function.

—> Except in linear problems, root finding
usually proceeds by iteration. A good
algorithm will always converge. (We can
determine 1n advance the rate of

B  convergence of most algorithms.)

l - We will start with one-dim cases.




® Bracketing (3% 35%)

- If f(a) and f(b) have opposite signs, and f(x)
1s continuous, then at least one root lying in
(a,b). In this case, we say that a root 1s
bracketed 1n the iterval (a,b).

Root --= Singularity



B Bisection Method (= 4 18 :17/2)

—> Once we know a root lying in an interval,
several classical procedures are available
(although most of them converge slowly).
Bisection method 1s one of them and after
each iteration the bounds containing the
root decrease by a factor of two. That 1s, 1f
&, 1s length of interval after n iterations,

E..=& 12.

In other words, if ¢ 1s the desire ending
g

0o - .
tolerance, we need 7 =log, — iterations.
&




m Notes:

1. Bisection will find at least a root 1f they exist,
and 1t will converge on the singularity if there
are no roots (e.g. f(x) = 1/(x-c)).

2.1f ¢,,,=¢,/ p, (with p, >1)then it is said to
converge linearly. On the other hand, 1f

&, =cx(g )", m>1, it converges superlinearly.

n

3. Because of floating-point numbers, we shall
B expect the computed number is never zero.

l Need to set a reasonable tolerance.




m False Positions & Secant Methods (4 2=

—>In general, false position and secant methods
converges faster than bisection. Secant, 1n
particularly, converges more rapidly near a
root of a sufficiently continuous function with

. ~ 1.618

,lclil; Eral=ex gy (golden ratio)

—> Secant method: The root does not necessarily
remain bracketed, since 1t retains the most
recent of the prior estimate. (False position

retains those with opposite sign.)




Figure 9.2.1. Secant method. Extrapolation or interpolation lines (dashed) are drawn through the two
most recently evaluated points, whether or not they bracket the function. The points are numbered in
the order that they are used.



Figure 9.2.2. False position method. Interpolation lines (dashed) are drawn through the most recent
points that bracket the root. In this example, point 1 thus remains “active” for many steps. False position
converges less rapidly than the secant method, but it is more certain.



Notes:

—>In general, the secant and false position
methods converge much faster than
bisection (although the false position
usually converges linearly). But their
convergence could be very slow if the
function has some special structures.

—> Unlike bisection, the starting points of the
secant and false position methods need not
bracket the root.
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Figure 9.2.3. Example where both the secant and false position methods will take many iterations to
arrive at the true root. This function would be difficult for many other root-finding methods.




®m Ridder’s Method:

—> A powerful variant of false position. Let x;
and x, be two bracket points, and x;=(x;+x,)/2
be the mid-point. The next point 1s solved by

F6) =21 ()€ + f(x,)e’? =0
o _ J(x)+signlf () f (x) =21 (x) + £ (xy)
£(x)
In other words, x, 1s given by
signl £ (x) = £ (x)1f (x)
VS = F(x) f(x,)

or e

Xy =X+ (x;—X,)




Notes:

(1) x, 1s guaranteed to lie 1n the interval (x;, x,).
(2) The convergence 1s quadratic, or m = 2.

(3) In both reliability and speed, Ridder’s
method 1s generally competitive with more
highly developed and better established
methods (such as Brent method).



m Brent’s Method:

-> Brent’s method combines the sureness of
bisection with the speed of a higher-order
method when appropriate. (It combines root
bracketing, bisection, and inverse quadratic
interpolation.

-> Brent’s method is recommended for general
one-dimensional root finding where a
function’s values only (and not its derivative
or functional form) are available.

B Note: Due to its complex form, we will not
l show the algorithm of Brent’s method.



m Newton-Raphson Method: (using derivative)

—> It is also called Newton’s method, perhaps
the most celebrated of all one-dimensional
root-finding routines.

—> The 1dea 1s via Taylor’s series expansion:

f(+8)> () + ()5
/e
If 0)=0=> o0=- .
fero (0
— f(x,)

In other words, x, ,=x —

l f'(x,)



Notes:

1. Far from a root, the Newton-Raphson
formula can give grossly inaccurate,
meaningless corrections.

2. By the Newton-Raphson formula
fe) )

x+1:xn_ n+l — ©“n >

’ J'(x,) /'(x,)
07', £ . :—85 ] f”(xn) .
21'(x,)

1.e., quadratic convergence.




Notes: (continued)

3. It 1s very common to “polish up” a root
with one or two steps of Newton-Raphson,
which can multiply by two or four its
number of significant figures.

4. The Newton-Raphson formula can be used
to multiple dimensions as well.

5. The Newton-Raphson formula also uses the
derivative of a function.




&)

/

Figure 9.4.1. Newton’s method extrapolates the local derivative to find the next estimate of the root. In
this example it works well and converges quadratically.




Figure 9.4.2. Unfortunate case where Newton’s method encounters a local extremum and shoots off to
outer space. Here bracketing bounds, as in rtsafe, would save the day.




m Roots of Polynomials

—> The effort of seeking roots of a polynomial
can be reduced by the use of deflation, 1.e.,
P(x) = (x-r)Q(x), since the roots of O(x) are
exactly the remaining roots of P(x). Two

types of deflation: Forward deflation and
Backward deflation.

—> Because each root is known with only
finite accuracy, errors creep into the
B8 determination of the coefficients of the

l successively deflated polynomial.




mRoots of Polynomials (Continued)

There are some good methods can be used
to solve the roots of a polynomual.

—>Muller’s method (like Secant’s method)
—> Laguerre’s method (very complex method)
—> Eigen-value method (form a matrix)

Note: In general, it 1s not recommended that
we find the roots of a polynomial one by one,
due to the rounding errors.




= Example 1. Find the root of f(x)=x>-2=0.
- Initial values (1,2), i.e., looking for the root

V2 and convergence criterion (|x;, ; — x;|<)10-¢
1s used. We shall compare the bisection, false
position, and secant methods.

Method  Bisection False Secant

1terations 20 9 6




m Notes:

(1) There are 5 1terations 1f Newton’s method 1s
used with starting point 1.

(2) If we use the command “nlminb” 1n R
by setting the objective function as (x* —2)° ,
then there are 7 iterations with starting
point 1. (You could use “uniroot”,

“polyroot”, “nlm” or “optim” in R.)
(3) Don't turn an optimization problem into a
root-finding problem, or vice versa. It 1s

likely to be 1nefficient.




m Example 1(continued).

Let f(x)=x"-3x>+3x-3. Wealso
compare the bisection, false position, and
secant methods. The convergence criterion
1s 10-¢ and the starting points are (2,3).

Method Bisection False Secant

iterations 20 15 7

Note: The secant and false position methods
don’t need to have the root(s) bracketed; 5
and 7 1terations 1f Newton’s method and
niminb are used with starting point 2.




® Example 2. Maximum likelthood (Poisson
Regression, Thisted and Efron, 1986)

i= o0 1 2 3 4 5 6 1 8 9

40 10 21 16 11 7 4 4 2 3
M,

30.11 1391 10.63 868 7.14 599 523 437 4.09 3.54

X,

J

- The likelihood function is defined as
[(0)=—na+ ZM]. log(a +6x,) —Z log(M ;!).



—> The MLE can be done via letting ['(6) =0,

€., ['(0) = Zaw% (Note: o = M .)

Using the secant and Newton-Raphson
(derivative) methods to solve 0, starting from

6, =1.0 and setting convergence criterion 106,
Newton-Rapson converges in four iterations
and the secant method 1n six, with

(0,1(0)) = (1.5062598,-36.300727).




—> The method of using derivative, such as
Newton’s method, 1s easily to extend. For
example, the formula of 1iteration becomes

X, =X, ~[Vf(x)]" f(x,),

which 1s again derived via Taylor’s expansion.

m Solving f(x) = 0: The vector case
- When we deal with the vector case, 1.e.,
several parameters must be estimated
simultaneously.
N



m Example 3. Binomial/Poisson Mixture

The following data are believed to be drawn
from a mixture of Binomial/Poisson dist.

% 0 with prob. &
Poisson(A) with prob.1-¢&

X 0 1 2 3 4 5 6
Count 3062 587 284 103 33 4 2




as the function f(x), and V f(x) as well.

The mitial guess for C 1s n,/N = 0.75 and for
A is X = 0.40. The convergence criterion is
10°° measured in the L; norm. Using the
Newton method, the process stops after 6

1terations.

—> First, write down the log-likelihood:
1(§,A) = nylog(§+(1-&)e™)
+(N —n,)[log(1-&) —/1]+iinl. log 1.
Then, we need to find the derivative of / (&,4)
N



m References:
—> Numerical Recipes in C (Chapters 9 &10)
(http://www.nrbook.com/a/bookcpdf.php)

—> Numerical Methods of Statistics (Monahan)
(Chapters 8 & 9)

-> Elements of Statistical Computing (Thisted)
(Chapter 4)
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Minimization (and Maximization)

m It 1s, also known as Optimization,
searching for extremums (could be global
or local) of a function.

m The applications include in Economics
and Engineers (e.g. constrained
optimization), in Operational Research
(e.g. Linear Programming).
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Note: If we want to find the extreme values of
function f and f 1s differentiable, could we
use the first derivative of £, 1.e., f* = 0?

—> For example, given x, y > 0, find the

minimum of f(x,y) = xy + 1/xy. The first
o _o
ox oy
But the Hessian matrix does not show 1f

xy = I 1s the minimum, since

derivative =0 leadsto xy = 1.

O f 0 f
2
H=| & FW | Get(H)=0.
of of
 Ox Oy oy” |




®m Grid Search:

—> A lattice of points is laid out and F is then
evaluated at each point on the lattice.

Contour Plot of Magnitud

245 —

240 —

Lattitude

23.5 —

23.0 —

Longtitude




—> Every lattice can be expressed in the
following form: {x |x =x, + Ma,ae Z"},
where x,1s a given fixed point and M 1s a pxp
matrix with linearly independent columns.

—> In higher-dimensional (p > 2) problems the
full grid search 1s impractical, but 1t 1s
impossible to search 1n one direction at a time
by finding the minimum values. Then do 1t for
different 1nitial values (i.e. sequential search)
and could use them as starting values of other
methods.




® Golden Section Search (one-dim):

—> Analogy to bisection, we can also “bracket”
a minimum. The 1dea1s thatifa < b <c
such that f(b) < f(a) and f(b) < f(c), then the
next step 1s to use (a,b,x) 1f f(b) < f(x), or
(b,x,c) 1f f(b) > f(x). Continue this process
until (71-¢)b < b < (1+¢&)b, 1f b 1s a minimum.

- In general, f(x)z= f(b) +% £"(b)(x—b)?,
2|1 f(D)]
—b b
= |x—b|<e]| |\/b2f,,(b)
We only need to ask for \/; of precision.




N
&

N

e

S
nction is evaluated at 4, which replaces 2; then at 5, which re s 1; then at 6, which
e

t

Figure 10.1. cketing of a minimum. The minimum is originally bracketed by points
1,3,2. The fu I
. The rule at each stage is to keep a center point that is lower than the outside points. After
e steps shown, the minimum is bracketed by points 5,3,6



m Parabolic Interpolation and Brents’ Method
—Golden section 1s similar to bisection, and

we shall introduce a method similar to the

secant method.

—(Given a “bracket,” 1.e.,a <b <c,usea

local polynomial (such as a parabola) to

find the next iteration point, or

x=b

_lo(b—a)2

f(b)-f(c)

~(b-o)'[f ()~ f(a)]

2 (b-a)

(D)= f(c)

~(b-)f(b)-f(@)]



_______ parabola through @ @ @
............... parabola through @ @ @

Figure 10.2.1. Convergenceto a minimum by inverse parabolic interpolation. A parabola (dashed line) 1s
drawn through the three original points 1,2,3 on the given function (solid line). The function is evaluated
at the parabola’s minimum, 4, which replaces point 3. A new parabola (dotted line) is drawn through
points 1,4,2. The minimum of this parabola is at 5, which is close to the mimimum of the function.



—> The above formula fails only if the three
points are collinear.

—>1t is also possible to adapt the idea of
Brents’ method, but six (not necessarily all
distinct) functional points (three in the
previous case) are required to find the next
points. See “Numerical Recipes in Fortran”
for detailed program code.




B One-dim. Search with first Derivatives

—The function’s first derivative can be used to
detect extreme values, but we need to
distinguish maxima from minima.

- We don’t want to give up our strategy of
maintaining a rigorous bracket on the
minimum at all times. The only way to keep
such a bracket 1s to update 1t using function
(not derivative) information, with the central
point in the bracketing triplet always that
with the lowest function value.




-> But we don’t want to use the root of the
first derivative directly. Instead, the first
derivative 1s used to assess the next iteration
point. The sign of the derivative at the
central point of the bracketing triplet (a,b,c)
indicates uniquely whether the next point

should be taken 1n (a,b) or (b,c).

—> The value of this derivative and of the
derivative at the second-best-so-far point

B  arc extrapolated to zero by the secant

l method, which 1s superlinear of order 1.618.




® Downhill Simplex Method (Multi-dim)

—> The downhill simplex method requires only
function of evaluations, not derivatives.

=1t 1s not very efficient but it may frequently be
the best method to use 1f the figure of merit 1s
“getting something working quickly” for a
problem whose computational burden 1s small.

= A complex 1s the geometrical figure consisting
of N+1 points (in N dimensions) and all their
B inter connecting line segments, polygonal

l faces, etc.
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—> The downbhill simplex method must be
started not just with a single point, but with
all N+1 points on initial simplex. Then
takes a series of steps, mostly moving the
largest to the opposite face of the simplex to
a lower point.

— Termination criteria is different. It can be
terminated 1f the vector distance moved 1n
that step 1s fractionally smaller in
magnitude than some tolerance.




® Methods for using derivatives

- Newton’s steps:
dy =—L/"OI'[f"(%)]

—> Steepest descent:
dg =—f"(x)

-> Levenberg-Marquardt adjustment
dpy =—1/" )+ AT (0)]

-> Conjugate-gradient methods

B >Other methods




m Example 4. Given x> 0, find the minimum of

f(x) =x + 1/x.
- In R/S-Plus, we use “nlminb” to find the
minimum of f(x).
f=function(x) [ x+I1/x }
nlminb(start=2,0bj=t, lower=0)
The minimum 2 1s attained at x =/, with 7
1iterations. (Larger starting values, more iterations?)

Starting 2 5 8 10 20 50 100

] [terations 7 9 11 10 10 13 16

lNote: “nlm” and “optim™ can also be used.



m Example 4. (continued) Given x, y > 0, find
the minimum of f(xy) = xy + 1/xy.

—> Similarly, we use the command “nlminb.”

The minimum 2 1s attained at x =y =1. The
following table shows the number of iterations

needed for different starting points.

Starting 2,2 5,5 8.8 10, 20, 50, 100,
10 20 50 100

[terations 7 10 12 10 14 13 14




Note: In other words, we can see that the
starting points do have some influences on
the number of 1terations. If we can use grid
search or bisection method to narrow down
the range of minimum, then the 1terations
required in either linear or superlinear
search can be thus reduced.

Question: What happen 1f we use methods
other than Newton’s method?




m Example 5. We want to calculate the death
rate from the central death rate (or vice versa).
If the mortality follows the distribution of

uniform death, these two terms satisfy
m

X

l+m_/2
d d

X X

lx j lxﬂdt L

If the survivors follow harmonic assumption,

I 1= t+L:>l [ 1,

[ ! tl +(1-2)!

X+t X x+1 x+1

qdx =

where ¢, =

[




If we plug this formula into Lx,

L =r .. dt = r il dt
' 0 0 l +t(lx_lx+1)

x+1

=l.-(p,/q,)1logl+q,/p,)
d, q.

Therefore, m_=—=
L. (p./q,)logl/p,)

_ (9.)°
—(1—gq,)-log(1-gq,)




We can use the optimization to solve for the
value of g, given m_. In specific, we use the
function “nlminb” 1n R to find the value.

ff=function(a) {(-a™2/((1-a) *log(1-a))-0.05)"2}
niminb(start=0.05, obj=ff)

It takes 3 iterations to reach the value .04876067.
You can also use the bisection method manually
to reach similar answer. Note that the Taylor

expansion 1s another possible method, but the
B Answer is slightly different (0.04872).



m Example 6. We use Japanese and Swedish
clderly data (both sets are age-specific data,
collected 1n the time period: 1980-1990) 1n
Kannisto (1994) to check the Gompertz
assumption, use the weighted least squares
to find the estimates of parameters.

1
—| My dt
I

Note« u . =BC & p =e”
= .p. =—BC*(C° -1)/logC
or logp_ ., /logp =C.



- In other words, we want to minimize

. X 5 2
Min Z A (.p.+BC*(C°-1)/logC)’.

Of course, we can also apply least squares to

log p,. directly, since log p_., /log p_=C.
Similarly, we can use Maximum likelthood to

find the values of B and C as well.

Question: Which approach is the best?



Simulated loss of B for Gompertz Law (unit: 1)

Method:
Weights

MLE

E f
_
|

Japan
Male Female
000485  .000309
000928  .000455
000459  .000295
005189  .003433
000418  .000248

Sweden
Male Female
002884  .001741
003998  .002090
002570  .001711
015640  .012701
002498  .001419



Simulated loss of C for Gompertz Law (unit: .001)

Weights

WLS

Japan

Male

000146
000280
000138
001465
000126

Female

.000093
000138
000088
000950
000074

Sweden

Male

000859
001168
000759
004239
000729

Female

000515
000616
000497
003402
000416



m In practice, 1f the extreme values are not
easy to achieve via optimization methods, it
1s also possible to use methods such as
(weighted) least squares to obtain
approximate solutions.

—>In this example, since the loss of precision
1s small, comparing to the instability of
nonlinear optimization methods (such as
Newton’s method), I would recommend
using the WLS.

B Note: You can download the paper from my

l homepage.




m Example 6 (Continued). Given the
following data and the Gompertz
assumption, find the estimates of
parameters.

50~54

55~59

60~64

65~69

70~74

75~79

80~84

85~89

90~94

436981

416303

354898

364844

299732

172914

80739

31606

7165

3369

4766

6000

9071

11103

10431

7903

4503

1510
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Bootstrap Test for Gompertz Law (2009-11 Taiwan)



Survival Probability
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Rectangularization of Survival Curve

Survival Curves of Taiwan (Female)
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NM method.
—>Normal distribution (Number of deaths d, )

_(x—M)2
1 e 20

d. oc

N2mo

—> Logistic distribution (Force of Mortality ;)

b
ae”

Proposed Approaches

® The optimization method 1s model dependent
and two distributions are used to verify the
_ Hi ™

l+ae™

® Yue, C.J. (2012),“Mortality Compression and Longevity
Risk”, North American Actuarial Journal, vol. 16(4), 434-448.
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