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® Numerical integration

—> Also named as “quadrature,” it 1s related to
the evaluation of the integral

I = Jj f(x)dx

1s precisely equivalent to solving for the
value I =y(b) the differential equation

with the boundary condition y(a) = 0.
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Question: What 1s your intuitive idea of calculating an
integral, such as Gint’s index (in a Lorenz curve)?
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—-> We shall denote the equal spaced points as
a =Xy, X;,..., Xy, Xy, = b, which are spaced
apart by a constant step 4, 1.e.,
X, =x,+ih, 1=0,1,---,N+1.

We shall focus on the integration between
any two consecutive x’s points, 1.e.,(x,,x,,,),

and the integration between a and b can be
divided into integrating a function over a
number of smaller intervals.




® Closed Newton-Cotes Formulas

> Trapezoidal rule:

2 1 "
J . Feodx = h[ () + f(xz)}O(h ™.
Here the error term O( ) signifies that the
true answer differs from the estimate by an
amount that 1s the product of some
numerical coefficient times /7 times f .

In other words, the error of the integral on
(a,b) using Trapezoidal rule is about O(n—=).




-> Simpson’s rule:

[ f(x)dx=th1 + S, +§f3}+0<h5f<‘”>.

- Simpson’s % rule:

[ =h|2 S fi2 £ 2 [+ 007

m Extended Trapezoidal rule:

j;Nf(x)dxzh[%]q Ffy+ fo

I (b-a)"f
—a "
l °”+fN1+5fN]+O( N2 j




- Extended formula of order 1/N3:

J S oy = h[—ﬂ+—f2+f3+f4

1
ot s "‘Ef]xu +§fN]+O(N3j‘

- Extended Simpson’s rule:
Xy 1 4 2 4
J, S Code =l fir S o4 S

4 1
e fN 2+3fN1+ fN]+O(N4j



Variance Reduction

m Since the standard error reduces at the rate

of 1/+/n , we need to increase the size of
experiment to f~ if a factor of f is needed in
reducing the standard error.

- However, larger sample size means higher
cost 1n computer.

® We shall introduce methods for reducing
standard errors, including Importance
l sampling, Control and Antithetic variates.
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Monte-Carlo Integration
-> Suppose we wish to evaluate 0 = j P(x) f(x)dx

After sampling X, X,,..., X 1independently
from f and form

n

6=<3 p(x)

n .

~ 1 ,
Var(0) =— [[¢(x) = 0T / (x)dx
i.e., the precision of € is proportionto1/+/n .

N (In numerical integration, » points can achieve

l the precision of O(n™).)



Question: We can use Riemann integral to
evaluate definite integrals. Then why do we
need Monte Carlo integration?

— As the number of dimensions & increases,
the number of points n required to achieve a
fair estimate of integral would increase
dramatically, 1.e., proportional to #»*.

— Even when the value £ is small, if the
function to integrated is irregular, then 1t
would inefficient to use the regular methods
of integration. (Also, what happen if the
range of integration 1s not close, €.g.(0,00))




Numerical vs. Monte Carlo Integration

m Example 1. If C i1s a Cauchy deviate, then
estimate =P(C>2)=0.5-P(0<C<2).

1
m(1l+x?) °

= If X ~ Cauchy, i.e., f(x) =
|

0=1-F(2) :5—7;-1 tan 2 = 0.1476.
-> Choosing various values for #:

B ST [T S YITN KT

015013 0.14784 0.14761 0.14759
l D 0.12  0.51 01460 0.14702
Carlo




Multivariate Cauchy distribution

Arandom vector X = (Xj,... ,Xk)T is said to have the multivariate Cauchy distribution if every linear combination of its components

Y =0 X ++++ + ;X has a Cauchy distribution. That is, for any constant vector ¢ € R* the random variable ¥ = g” X should have
univariate Cauchy distribution. ! The characteristic function of a multivariate Cauchy distribution is given by:

oxt) = eti-1t)

where &(t) and 4(t) are real functions with (t) a homogeneous function of degree one and () a positive homogeneous function ¢
degree one. 3! More formally: 3

f)
)

2(of) = oy
7(0t) = o

for all .

An example of a bivariate Cauchy distribution can be given by:[24]

. )
0 |((z- )+ (y-mt +R))

fla, 20 90,7) =



History of Monte Carlo Integration

® Modern Monte Carlo method was born in
1940s when Stanislaw Ulam, John von
Neumann and others started to use random
numbers to examine physics from the
stochastic perspective.

— One of the most effective use of Monte
Carlo method 1s to evaluate definite
integrals which analytically would be too

difficult to find. (For example, the CDF
values of normal, t, and other distributions.)




m Example 1. Estimate 6 = P(C > 2), given
that C 1s a Cauchy deviate.

—> There are quite a few ways to estimate 6,
depending on the simulation setting.
0(1-6) 0.126

(1) no ~ B(n,@):Var(é) =

n n
(2) Compute 6= %Pq C|>2) by setting

B(x) = %m t[>2), and
6(1-26) _0.052

216 ~ B(n,20)= Var(é) =
2n n




2 dx

=), 7z(1+x) 07z(l+y )_-[0 J(y)dy.

Using transformation on ¢(y) =< f(y) and
9.3x107

n

Y, ~ U(0,1/2), we have Var(0) =

1.1x107°

Note: The largest reduction is Var(0) =
n

3) Since 1-26 dx =2
) I— J(x)dx O m(1+x7)
let X, ~U(0,2), ¢(x)=2f(x), then we can get
Var(6) = 0.028
(4) Lety = l/x in (3) then
I & y 2 dy p
Hl



m Antithetic Variate:

> Suppose Z* has the same dist. as Z but is
negatively correlated with Z. Suppose we
estimate 6 by g = L(Z+7Z%). 0 is unbiased
and
Var(g) =[2Var(Z)+2Cov(Z,2Z%)]/ 4
=2Var(Z)[1+ Corr(Z,2%)].

If Corr(Z,2*) <0, then a smaller variance 1s
attained. Usually, we set Z = F~/(U) and
Z*=F1(1-U) = Corr(Z,Z*) < 0.




m Note: Consider the integral 6 = IOI 2(x)dx,
which is usually estimated by § = lz g(U),
while the estimate via antithetic V:ri;te 1S

= -l +20-))]

-> For symmetric dist., we can obtain perfect
negative correlation. Consider the Bernoull:

dist. with P(Z = 1) = 1~ P(Z=0) =p,

N
Then —p —(1-

p)

max :
l _l_p p

<Corr(Z,2%)<1.



—> The general form of antithetic variate 1s

Corr(Z,Z*)z(zp_l)_pxp:_(l_p),iprO.S.
p(-p) p

> Thus, itisofnousetolet Z*=1—-Zifp =0
or p = 1, since only a minor reduction in
variance 1s possible.

Note: The 1dea of antithetic variate 1s like
. “duplicating” the number of random

l numbers.




m Example 1(continued). Use Antithetic variate
to reduce variances of (3) and (4).

(3) (3)a (4) (4)a
Ave. 1457 1477 1474 1476

Var. 0286 59e-4 9.6e-5 390e-6

B Note: The antithetic variate on (4) does not
l reduce as much as the case 1in control variate.



Example 2. Want to estimate m. We simulate
U(0,1) random numbers U,, i =1, 2, and set

1, ifU+UX<1
0, Otherwise.

—> The value 7 can be estimated by 4*E(I) and

also by antithetic variate. Simulate 1,000
times, with 10,000 U’s, we found that

[ =+

Mean Variance

4+E() 3.142468 | 2.5844¢—4
Antithetic | 3.141529 | 9.6713e-5




m Conditioning:
-> In general, we have
Var|E(Z |\ W)= Var(Z) - ElVar(Z | W) < Var(Z).

-> Example 2 (Conti.). Want to estimate m.
We did it before by V, =2U.— 1, i =1, 2,
and set

1, ifVi+vi<l

0, Otherwise.

[ =+

B We can improve the estimate £() by using

l EdV,;).



conditional variance equals to
Varl(1-V)"*1=Var[(1-U*)"*1= E1-U?) —(%)2
— %- (%) =0.0498.

E[L|\V,=v]=P{V +V, <1|V, =v}

=P{vi+V,; <1V, =v}=P{V, <1-v"}
= [0 Q)dx=(1-v7)”

Thus, E(I|V,)=(1-V?)"* has mean nt/4 (check
this!) and a smaller variance. Also, the

N

lsmaller than Var(l) =~ )(1——) 0.1686.



m Stratified Sampling:

-> Without loss of generality, assume the study
region is (0,1) and 4,, 4,, ..., A is a partition
of (0,1). Instead of randomly selecting n obs.
from (0,1), we select one obs. from each
interval and have

Eg(X)=) E(g(x)|xe4,) P(xe4).
i=l1
N

. i—1 i
Note: For convenience, let 4, = (——,—).
non




m Latin Hypercube Sampling with Dependence

—>This is a type of stratified Monte Carlo
sampling. The range of each variable 1s
portioned into N non-overlapping intervals
of equal probability 1/N.

L~




Pairing x1 with x2 when N=5

LA
A, B C O




e Consider 5 random numbers on [0.1]?, correlated with a Gaussian

0.8

0.6

0.4

0.2

()

B Latin Hypercube Sampling

copula with parameter 0.5:

each dimension: {(3,4), (1,3), (5,5), (2,1),

|Ird-_ __\-_\-\_-_\-__— —""JI

Permutation in each dimension

[ | [ 1 [ [
. - 08 L
*
*
- . 06 -
*
*‘L
. . 04 -
+
. - 02 L
¥ *
l | | l 0 l | | l
0 02 04 06 08 | 0 02 04 06 08
Ranks in (4,2)}




¢ |dea: LHS, but instead of choosing a random permutation, choose a
particular one.

Definition (Rank statistic)

Let Xi..... X, be i.i.d. random variables with continuous distribution

r

function. Reorder them such that X(1) < ... < X(") P-ass.. The
index of X; within X1 ..., X(") is the i-th rank statistic, given by




e LHSD sample

j . rin(Ug, - Tin . o
Vf!n.— a + , i=1,....n, j=1,....d,

with }7{” random variables taking values in [0, 1].

° (V{n., - V{;sn) is a stratified sample in each dimension j.

e Choices for rf

i.n

T}f” = 1/2 (just capture joint distribution)
®

e |LHS a special case of LHSD.

o LHSD sampling strategy already suggested by [Stein, 1987], but not
analysed.



I
A simple way to get an estimate to the variance of average is called replicated

Latin hypercube sampling [7]. The idea is to produce several independent LHS
samples and then compare the variances between samples. If the number of

samples is a and size of them M. N=a-M. If

M
=M~ " h(X)), (15)
j=1

then an unbiased estimator for the variance is

a a a E?',
.*L}a_?1(a,:_1 Z h"f.) — a(al 1 [Z h? _ (25';1)2] (16)
1 Y C

This is exactly same as the sample variance of mean for normal sampling. Now
if a is too small. the estimate of variance is not precise. On the other hand.
increasing o while N is fixed increases this estimator of variance. However, as
long as ratio % is large, the increase in variance is small.



Example Samphng W1th Lognormal Dlstrlbutlon (L HS)
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® Importance Sampling:

- In evaluating 0 = E¢(X), some outcomes of
X may be more important.
(Take 0O as the prob. of the occurrence of a
N

rare event = produce more rare event.)
-> Idea: Simulate from p.d.f. g (instead of the
true /). Let v _?/ g 0, =lZW(xl—), X, ~g.
n

Here, g 1s unbiased estimate of 6, and

g

Var(9,) = [y (X) -0 g(ode = [ (L 07 gx)ds

l can be very small 1f 2/ s close to a constant.
g



m Example 1 (continued)

We select g so that {g>0}={|¢ f|>0}={X >2}.
Forx >2, f(x)= ! — 1s closely matched by

w(l+x7)

g(x) = % , 1.e., sampling X = 2/U, U ~ U(0,1),
X

I f(x) _ X’ B 1
2 g(x) - 27(1+x%) - 2r(1+x7%)

and let w(x) =

By ég = %Zw(xi), this 1s equivalent to (4).

We shall use simulation to check.



(1) (2) A3) (4)
10,000 runs 1461 1484 1474 1475
(s.e.) 1248 1043 0283 9.6e-5
50,000 runs - 1464 1470 1467 1476
(s.e.) 1250 1038 0285 9.6¢-5
100,000 1455 1462 1477 1476
rumns
) 1243 1034 0286 9.5¢-5
Ratio 1 1.2 43 1300

BEE  Note: We can see that all methods have unbiased
estimates, since 0 = 0.1476. The format of cells
are the estimate (top) and s.e. (bottom).




e V3 ,
logistic, i.e., g(y):\@(ue‘”y/ﬁ)z >u=0,0"=1.

x k
o) &) dy, k is a normalization

S DO(x) = LO o

&)/):72'8

—ﬂy/\/g(1+e—7ry/\/§)
constant, 1.€., I \E(l 4o ™y3 )

m Example 3. Evaluate the CDF of standard
. N . e—y2/2
normal dist.: @(x)= LO o(y)dy = LO o dy.
-> Note that ¢(y) has similar shape as the
N



— We can therefore estimate dD(x) by
G-t 1 - o))
- axi3
nol+e™ ' H ey
where p,’s 1s a random sample from g(y)/k.

In other words,

U~U@O,)=U=F(Y)=

—ﬂx/\/g
—ﬂY/\/§ ?

l+e

l+e

Y = —ﬁlog[(l + e_”/ﬁ)U_1 — 1]
T




D(x) D(x) D)

X n=100 n=1000 n=5000 D(x)
-2.0 0222 0229 0229 0227
-1.5 0652 0681 0666 0668
-1.0 1592 .1599 1584 1587
-0.5 3082 .3090 3081 3085

B Note: The differences between estimates and
l the true values are at the fourth decimal.



m Control Vanate:

-> Suppose we wish to estimate € = E(Z) for
some Z = @¢(X) observed 1n a process of X.
Take another observation W = ¢(X), which
we believe varies with Z and which has a
known mean. We can then estimate 6 by
averaging observations of Z— (W —E(W)).

For example, we can use “sample mean” to
reduce the variance of “sample median.”




® Example 4. We want to find median of
Poisson(11.5) for a set of 100 observations.

— Similar to the idea of bivariate normal
distribution, we can modify the estimate as

median(X) — p(median,mean)
x(sample mean — grand average)

As a demonstration, we repeat simulation 20

Times (of 100 obs.) and get
Median Ave.=11.35 Var=0.3184

Control Ave=11.35 Var.=0.2294




with each W, 1.e.,
0=Z~BW,~EW)~~B,W,~EW,)
and @ is unbiased.

For example, consider p = 1, 1.e.,
Var(0) =Var(Z) -2 BCov(Z, W)+ B Var(W)

Cov(Z, W)
Var(W)
l — Multiple regressionot Zon W, ..., W,

m Control Variate (continued)

—>In general, suppose there are p control
variates W, ..., W, and Z generally varies
and the min. 1s attained when S =

N



m Example 1(continued). Use control variate

to reduce the variance. We can modify (3)

0, = %—[f(x)+0.15(x2 —4)-0.025(x* —19)]

6.3x107*

n
Note: The correlation coefficients of x? and x?
were obtained via the multiple regression
model with f(x) as the dependent variable
and x? & x* as the independent variables.

Also, the values of x can be chosen as 0.01,
0.02, 0.03, ..., 1.99, 2.00.

where X ~U(0,2) = Var(ég) =




Question: How do we find the estimates of
correlation coefficients between Z and ’s?

-> For example, in the previous case, the
range of x 15 (0,2) and so we can divide this
range into x = 0.01, 0.02, ..., 2. Then fita
regression equation on f(x), based on x? and
x#. The regression coefficients derived are
the correlation coefficients between f(x) and
x’s. Similarly, we can add the terms x and

B X’ if necessary.

Question: How do we handle multi-collineaity?



m Example 1(continued).
Similarly, the modified version of (4) is

0, = £(x)+0.312(x> =) —0.233(x" —1)]
3.8x107°

n

where X ~U(0,7) = Var(@) ~

Note: These two estimates are the control
variate version of (3) and (4) in the previous
case.




Var. 0286 6.2¢-4 9.6e-5 1.1e-9

Note: The control variate of (4) can achieve a
reduction of 1.1x108 times.

Based on 10,000 simulation runs, we can see
the effect of control variate from the
following table:

(3) (3)c (4) (4)c
I Ave. 1465 1475 1476 1476
N



Mortality rate {unit0.001}

Mortality Rates of the Elderly Male in Taiwan
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Table 1. Variance Reduction for the Ratio Method
(M otty,0,0,,0,)=(2,3,09502,03)

i1y (1) i1y (2)
1 =34 3.000408 3.002138
m=9 (.0026533) (.0021510)
=23 3.000246 3.000802
m =20 (.0038690) (.0023129)

a0)=S"y/n  4Q2)=%,.,x Zyl

llx
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