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m Multiple Regression

m Generalized Linear Model

® Multivariate Analysis

m Time Series

® Other topics (Random variables)
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Multiple Regression

® In a multiple regression problem, we want
to approximate vector Y by fitted values Y
(a linear function of a set p predictors), 1.¢€.,

Y=XB+¢e, ¢~N(0,0°1 )
= (X'X) ,B =X'Y (Normal equation)
= f=(X'X)"X'Y = A4Y.

(1f the inverse can be solved.)

- Note: The normal equation 1s hardly solved
l directly, unless it 1s necessary.



(or lower) triangular matrix, then the estimate
can be solved easily,

- (X'Y),
(X'Y),

/an a, d

0 a, a,; e a,,

N\

=

/
I )h)

>

(X'Y),,
 (XY),

<
S
L
>y
|

® In other words, we need to be familiar with
matrix computation, such as matrix product
and matrix inverse, i.e., X’Y and (X'X)™".
m If the left hand side matrix (X' X)'is a upper
-

/
-
-
-
Q
K
S
N
9
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(Matrix and Vector Space)
mickA=7ZX>A-mxn~Z:mxk~X kxn -
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Gauss Elimination

® Gauss Elimination 1s a process of “row”
operation, such as adding multiples of rows
and interchanging rows, that produces a

triangular system in the end.

XX XY | S [U(XY)]

m Gauss Elimination can be used to construct

o matrix inverse as well.

l (x'x) | I]—> > |11xx)




® An Example of Gauss Elimination:
11 2 7Y (25 -1 —-4)
2 5 -1 -4|—>|1 1 2 7
21 -1 0) (21 -1 o0,
1 5/2 -1/2 =2 (1 5/2 -=1/2 =2)
11 1 2 7 |>|0 =3/2 5/2 9

2 1 —1 0) \0 -4 0 4 )
1 5/2 -=1/2 =2\ (1 5/2 -=1/2 =2)
-0 -4 0 4 |—>|0 1 0 —1

0 -3/2 5/2 9) (0 -3/2 5/2 9
(1 5/2 —-1/2 =2 (x) (2
-0 1 0 -1 |= |yl|=|-1|
0 0 5/2 15/2) z) \ 3,




® The 1dea of Gauss elimination is fine, but 1t
would require a lot of computations.

-> For example, let X be an nx p matrix.
Then we need to compute X’ X first and
then find the upper triangular matrix for
(X’X). This requires a number of n?x p
multiplications for (X’X) and about another
px p(p-1)/2= O(p3) multiplications for the
upper triangular matrix.




P ~O0% 07

m =<0 (bigo)% -] O (little 0)
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a =0(n*)< na, is bounded

a =o(n* )y n"a,—>0asn— o
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Cholesky Decomposition

m If A 1s positive semi-definite, there exists an
lower triangular matrix L such that

. P
Le.,a, = kzlikljk and so
|

i i1
d; = kz_:llikljk — kz_:llikljk T liilij9

since /., = 0 for r> c.



m Thus, the elements of L equal to

Notes: (1) If A 1s “positive semi-definite” 1f for
all vectors ve RP, we have v’4Av > (), where A
1s a px p matrix. Ifv’4Av = 0 1if and only 1f

v = (0, then A 1s “positive definite.”
. (2) In R, Cholesky decomposition requires
symmetric and positive definite.




Applications of Cholesky decomposition:
® Simulation of correlated random variables

(and also multivariate distributions).
m Regression

X'Xp=X'y=LL'B=X"y
solve LO=X'y for 6=L'[3
and backsolve L' =6 for p.

® Determinant of a symmetric matrix, 4 = LL'

det(A4) = det(LL") = det(L)* = Hlé




|

m Example of Cholesky decomposition

- We want to generate two random variables,

(Xj N Ja o po O, \
Y K, ’ po.0, Ui )

Let p=0.5. We generate X1 & X2 from N(0,1).

Lol os a)-ea-on(g )




m Cholesky decomposition (R-code)

- We shall demonstrate using R.
x=matrix(rnorm(2000),ncol=1000)

apply(x,1,var)
apply(x,1,summary)

cor(x/1,],x[2,])
A=matrix(c(1,0.5,0.5,1),ncol=2)

a=t(chol(A))
x1=a% *%x
apply(x1,1,var)
apply(x1, 1,summary)

cor(x1[1,],x1/2,])
ks.test(x1[1,], "pnorm”)

ks.test(x1/2,], "pnorm”)




® Cholesky decomposition

(Conti.)

-> Another way to generate is via

X\ [a b X,
Y) (¢ d X,
and we have ([ 272 _4
et +dt =1
kaa’+bc:1/2
Possible solution includes | |
(a b] V2 V2
c d \/7 \/7 \/7 \/7
. 4 4

\

J



QR Decomposition

m [f we can find matrices Q and R such that
X = QR, where Q 1s orthogonal (Q’Q =1)
and R 1s upper triangular matrices, then

(X' X)B=X'Y
< (OR)(OR)f =(QR)'Y
< R'O'ORB=RQ'Y
< (RR)B=RQ'Y
- Rﬁ =0'Y (if R is full rank)




Gram-Schmidt Algorithm
® Gram-Schmidt algorithm 1s a famous
algorithm for doing QR decomposition.
m Algorithm: (Qisnxpand Rispxp.)
for Gin 1:p) {
i

1[j,j] € sqrt(sum(x[,j]"2))
x[.j] < x[j)/rlj.]
if j <p) for (k in (j+1):p) {
r[j,k] € sum(x[,j]*x[,k])
x[,k] € x[k] —x[,j]*r[j.k]
)

Note Check the function “g7” in R and S-Plus.



QR#; 4 tR#4g (F(QR in R)

IQR—’rE"‘E_/,,\ﬁm,L Rr’ﬁ#;]; = 0 qr | ’Rg
¥ EaE ahfk #ic(Rank) 2 H v Ap R L
hodk TR RNQEREL » PR Hildn 4

rqr.QJ 2 TgrR, -
A=matrix(c(1:9),ncol=3)
qr(4)
qr.Q(qr(A4))7*%qr.R(qr(4))
o qr.Q(qr(A4))76*%t(qr.Q(qr(4))
l t(qr.Q(qr(4)))76*%oqr.Q(qr(4))




m Notes:

(1) Since R is upper triangular, i.e., R™' is easy
to obtain, RSB =Q'y

& B=(RR)'RQOy=RY(R)X'y.

(2) The 1dea of the preceding algorithm 1s
X =0R
S X' X=R'O0OR=R'R.




® Notes: (continued)

(3) If X 1s not of full rank, one of the columns
will be very close to 0. Thus, . = 0 and so
there will be a divide-by-zero error.

(4) If we apply Gram-Schmidt algorithm to
the augmented matrix (X :y), the last
column will become the residuals of

A A

E=Yy—).




Y=XP+e<=0Y=0'XB+0'¢c

Lol

Thus, |Y - XB[=|0'(Y -Xp)[=|0'Y - Q' XB[’

i)

Y,) (X,

=1V =X Bl +Y, - X B[

=Y - X, B[ +|Y, I,
=(X,)'Y, and RSS=|Y, |”.




Other orthogonalization methods:

®m Householder Transformation is a
computationally efficient and numerically
stable method for QR decomposition. The
Householder transformation we have
constructed are n x n matrices, and the
transformation Q is the product of p such
matrices.

m Given’s rotation: The matrix X i1s reduced to
R

0

exactly subdiagonal element equal to zero at
each step.

upper triangular form [ j by making




Sweep Operator

® The normal equation 1s not solved directly
in the preceding methods. But sometimes
we need to compute sums of squares and
cross-products (SSCP) matrix.

m This 1s particularly useful 1n stepwise
regression, since we need to compute the
residual sum of squares (RSS) before and
after a certain variable 1s added or removed.




m Sweep algorithm is also known as “Gauss-
Jordan™ algorithm.

®m Consider the SSCP matrix
X'X X'
yXxX o yy
where Xi1s nxp and y 1s pxI.

m Applications of the Sweep operator to
columns 1 through p of 4 results in the

matrix 1 .
Fo| XX A
B RSS




Details of Sweep algorithm
Step 1: Row 1 (times (X' X))

N

xx xy 1], B xx) ]

Step 2: Row 2
X vy 0]l yu-r)y -p

B The operation of Row 2 1s done via minus

l the right term of Row 1 times V' X.




m Notes:

(1) If you apply the Sweep operator to columns
i;, I, ..., I, you'll receive the results from

regressingyon X, , X, ,..., X,
— the corresponding elements 1n the last
column will be the estimated regression
coefficients, the (p+1, p+1) element will
contain RSS, and so forth.



symmetric, and any application of Sweep or
its inverse result in a symmetric matrix, so
one may take advantage of symmetric

® Notes: (continued)
(2) The Sweep operator has a simple inverse;
the two together make it very easy to do
stepwise regression. The SSCP matrix 1s
l storage.

=



General Least Square (GLS)

m Consider the model y=Xf+¢,
where ¢ ~ N(0,0°V) with V unknown.

m Consider the Cholesky decomposition of 7,
V=LL,andlet S'=(L)" =(L").
let v¥=8"y, X*=8'X,and c*=9§"¢.

Then y* = X*B+ &* with &*~ N(0,5°),
and we may proceed with before.

m A special case (WLS): V' =diag{v,,...,v,}.




Eigenvalues, Eigenvectors, and
Principal Component Analysis

® The notion of principal components refers to
a collection of uncorrelated r.v.’s formed by
linear combinations of a set of possibly
correlated r.v.’s.

m Idea: From eigenvalues and eigenvectors, 1.¢.,
if x and A are eigenvector and eigenvector of
a symmetric positive semidefinite matrix A,

then
Ax = Ax.




m If A 1s a symmetric positive semi-definite

matrix (pxp), then we can find orthogonal
matrix / suchthat 4 = I"A I”, where

(2 \

A
A= T With 2>, 2> 2 > 0.

N /119/
m Note: This 1s called the spectral
decomposition of A. The 1th row of /" 1s the

eigenvector of A which corresponds to the

ith eigenvalue 4.



Write ,é " =VATU v where

We should note that the normal equation

X 'X,B = X'y does not have a unique solution.
,3* 1s the solution of the normal equations for
Z ,3 is minimized.




Power Method

® A naive method for finding the eigenvalues

of a matrix 1s via the fact that

k k
Ax = AZCZ. Vv, = ZC} AV,
- i=1 ~ i=1 ~

k
n o __ n ~ n

= A {-Zciﬂi v, = A v

i=I ~ ~

In other words, the largest eigenvalue will

B8 dominate the product and eventually we can
l get approximate values of 4, and V.



Singular Value Decomposition
® In regression problem, we have
Y=XB+e=>U'Y=U'XB+U'¢e
or equivalently, (9 =V"' & X,V = D)

. [ X . (X *
Y :[01),8+g :( I)VV',BJrg

0
D "
= 0+¢

Note: SVD is often used for regression diagnostics,
l data reduction, and graphical clustering.




® The two orthogonal matrices U and V are
assoclated with the following result:

The Singular-Value Decomposition

—> Let X be an arbitrary nxp matrix with n>p.
Then there exists orthogonal matrices U: nxn

and V: pxpsuchthat /' xp =D = D ]
0
(d, A
d,
where D = . withd, 2d,>--->d  20.
\ d, )
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m Example of SVD:

= You can check if the command “svd” in R
returns correct outputs.

A=matrix(c(1:12),ncol=3)
aa=svd(A)
t(aa$u)%*%A%*%aa$v  # Diagonal!
aa$u%*%diag(c(aa$d))%*%t(aa$v)
t(aa$u)%*%A  # Upper triangular!




Application of SVD (Lee-Carter Model)

m Lee and Carter (1992) proposed a model to
forecast the mortality rates of U.S. :

Inm_)=a +p x +¢&,
where

K .2 change of mortality intensity

axé average mortality of each age group
] ﬁxé relative change rate of each age group



Singular Value Decomposition (SVD)

The parameters of Lee-Carter model can be
estimated via

Minimize th (In(m_)—a, - B.x,)°
—> This is done via decomposing the matrix
(In(m_)—a )=UPV'

- We can also use the approximation method,

or the PCA to achieve similar estimation.



SVD Interpretation of Lee-Carter Model
Applying the SVD, i.e., (In(m_)-a )=UPV,

the matrix U represents the time component,
P is the singular values, and V 1s the age

component.

~ K, is derived from the first vector of the
time-component matrix and the first singular
value, and f_1s from the first vector of the
age-component matrix. Other vectors

correspond to the residuals.



m Example of SVD (Lee-Carter model)

-> Suppose there are three vectors and their
relationships to X-axis are similar. We want to
use only one vector to express the common
pattern in these three vectors. (Data Reduction!)

Y-Axis
3
|




al=0.2+0.5*c(1:10)+0.1*rmorm(10)
a2=0.4+0.4*c(1:10)+0.1*rnorm(10)
a3=0.6+0.3*c(1:10)+0.1*rmnorm(10)
A=cbind(al,a2,a3)
x0=cbind(1:10,1:10,1:10)
matplot(x0,A,type="1",xlab="X-Axis",ylab="Y -
Axis'")
aa=svd(A)
A
Al=aa$u%*%diag(c(aa$d[1],0,0))%*%t(aa$v)
Al
A2=A-Al
mean(abs(A2/A))
.
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Time Series

m The time series analysis considered usually
1s ARIMA model, consisting of Auto-
regressive (AR) and Moving Average (MA).

-2 AR(1) model
L, =¢ZL _ +e,e ~N(0,07), t=1,2,...,n

127t

Then the correlation coetticient of Z; and Z
is Yi-j, where 7, = ¢" and k=|i-j|.

-> General form AR(p):

i Zt:¢lzt—1+¢2Zt—2+'”+¢pzt—p+et

l :>7/k:¢17/k—1+¢27/k—2+”'+¢p7/k—p




Time Series (conti.)

Note: The coefficients of AR(p) can be solved
by the ordinary regression, with some minor
adjustments of variables.

->MA(1) model

Z =e—0e_,e~N(0,0°), t=12,...,n
Then the covariance of Z, and Z. 18 7)i-j,
1+0°, k=0
7. =4 —0, k=1
0, k=2

-




Time Series (conti.)
m The general form of ARMA(p,q) 1s.
#(B)Z, = O(B)e,
where ¢(B) and 0(B) are polynomials of the
backward operator B, 1.e., B(Zt)=Zt-1.
—e¢.g., MA(1) model
Then the covariance of Z, and Z;1s });_;  , or

C1+62 -6 O 0
-8 1487 -4 0
0 -8  1+8* -8
0 0 -6 1462




Time Series Estimation

m The parameters in AR(p) model can be
solved using the OLS, since

Zt:¢lzt—1+¢zzt—2+'”+¢ Z— 7
= EZNZ, s s 2, )= Z ++0,Z, _,

Then the parameters are derived by

minimizing (errors are normally distributed)
2

- S D) =Y~ = - ==, Gy - 0]



Estimation of AR(p) model

® The parameter estimation of AR model 1s
easier (MA model requires iterations, since
the “error” 1s not observable.)

-2 AR(2) model
Z,=9Z +$Z, ,+e,e ~N(0,0%).

12 7t

The coefficients ¢, and ¢,can be solved by

(1) OLS (Z._, and Z, , as independent variables)
(2) Plugging the related numbers (Moment?)
N (3) Exact likelihood functions (usually are

l very complicated)




Example: Estimation of AR(2) model

m Fit AR(2) model to the data “lynx” in R.

(1) OLS: (B,,4,.6,)=(710.11,1.1542,—0.6062)
and by # =5, /(1-¢,—¢,) to give 1.

(2) Moment:

¢1 ¢12
corr(£.,2.,,)= , corr(Z,,Z,,)=¢, +
1 1—¢2 2 2 1_¢2

> (B, Py b b)) =(0.7159,0.2177,1.1486,— 0.6046)
(3) Compare to the output from software

B > Minitab: (2, 8,4, ¢,) = (1545.4,699.84,1.1575,—0.6106)
l%R(arima):( 0,6,,4,)=(1545.45,1.1474,— 0.5997)




Example: AR(2) model (conti.)

m R also has a lot of options.

—>Several choices in the function “AR”
ar(lynx, method="ols”, 2)

(1) OLS: (4.4,)=(1.0320,—0.6288)

(2) MLE: (4,,4,) = (1.0555,—0.6298)

(3) Default: (¢,,4,) =(1.0379,—0.6063)

(4) Burg: (4,6,) = (1.0634,—0.6379)

S5 YW: (4,4,)=(1.0379,—0.6063)




Note: There are some handouts from the
references regarding “Matrix Computation”

® “Numerical Linear Algebra” from Internet
hapters 3 to 6 in Monohan (2001)

hapter 3 in Thisted (1988)

hapter 2 1n Gentle et al. (2004)

hapter 2 in Numerical Recipes in Fortran 77

Students are required to read and understand
B all these materials, in addition to the

l powerpoint notes.
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