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= Numerical integration

—> Also named as “quadrature,” it is related to
the evaluation of the integral

b
| = j f (x)dx
IS precisely equivalent to solving for the
value | =y(b) the differential equation

dy
— = f (X
o (X)

with the boundary condition y(a) = 0.




If they are (are not), it Is

cal formula is known at equally spaced steps.
closed (open) formula. (Only one is used Is

fferences are on If the end points, I.e., a and b,

tion f are used.
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Question: What Is your intuitive idea of calculating an
integral, such as Gini’s index (in a Lorenz curve)?
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->We shall denote the equal spaced points as
& =Xg, X, Xy X1 =D, which are spaced
apart by a constant step h, I.e.,
X. =X, +1h, 1=0,1,---)N +1.

We shall focus on the integration between
any two consecutive X’s points, i.e., (X, X ;),

and the Integration between a and b can be
divided Into integrating a function over a
number of smaller intervals.




m Closed Newton-Cotes Formulas
-> Trapezoidal rule:

j f (x)dx = h{ f(x1)+—f(x2)}+0(h3f)

Here the error term O() signifies that the
true answer differs from the estimate by an
amount that is the product of some
numerical coefficient times h3 times 1.

In other words, the error of the integral on
(a,b) using Trapezoidal rule is about O(n—2).




- Simpson’s rule:

X3 1 4 1
le f(X)dx = h[g fi+s foe3 f3}+0(h5 f @),
> Simpson’s g rule:

9 3, 9, 9. 3
le f(x)dx:h{g f1+§f2+§f3+§f4}+0(h5f(4)).

m Extended Trapezoidal rule:

jXNf(x)dx:h[% f+f,+f,+

1 (b—a)’ f
_a 11
l ---+fN1+§fN]+O£ % j




- Extended formula of order 1/N3:

jf(x)dx h[3f+3f+f+f
12 ' 12

13 5 1
SEE 1 P +E fN_l+E fy ]+O(Wj

-> Extended Simpson’s rule:

Lxle(x)dx:h[% f1+g f2+§ f3+% f,

2 4 1 1
+§ fN_2+§ fN_1+§ f ]+O(—j.




Variance Reduction

m Since the standard error reduces at the rate
of 1/./n . we need to increase the size of
experiment to f2 if a factor of f is needed in
reducing the standard error.

-> However, larger sample size means higher
cost In computer.

m We shall introduce methods for reducing
— standard errors, including Importance
l sampling, Control and Antithetic variates.
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Monte-Carlo Integration
> Suppose we wish to evaluate 6 = [#(x) f (x) dx
After sampling X, X,,..., X, Independently
from f and form

Var(9) = % j [6(x) — O] f (x)dX

l i.e., the precision of & is proportion to1/+/n .
S (In numerical integration, n points can achieve

l the precision of O(n™).)



Question: We can use Riemann integral to

evaluate definite integrals. Then why do we
need Monte Carlo integration?

-> As the number of dimensions Kk increases,
the number of points n required to achieve a
fair estimate of integral would increase
dramatically, 1.e., proportional to nk,

- Even when the value k 1s small, if the
function to Integrated Is irregular, then it
would inefficient to use the regular methods
of integration. (Also, what happen if the
range of Integration is not close, e.9.(0,))




Numerical vs. Monte Carlo Integration

m Example 1. If C Is a Cauchy deviate, then
estimate /=P(C>2)=05-P(0<C<?2).

- If X~ Cauchy, l.e., f(x) =

1 m(1l+ x?)

0=1-F(2)= E—ﬂ_l tan 2 = 0.1476.
-—>Choosing various values for n:

| 00 1000 10000 100000

0.15013 0.14/84 0.14761 0.14/59

Monte 0.12 0151 01460 0.14702
Carlo




Multivariate Cauchy distribution

A random vector X = (X,..., Xk)T is said to have the multivariate Cauchy distribution if every linear combination of its component

Y =a;X; +++ + 0 X, has a Cauchy distribution. That is, for any constant vector g € R¥ the random variable ¥ = g7 X should have
univariate Cauchy distribution. 3 The characteristic function of a multivariate Cauchy distribution is given by:

ox () = eli-1t)

where &)(t) and 4(t) ave real functions with (t) a homogeneous function of degree one and (t) a positive homogeneous function ¢
egree one.8! More formally: 23

t)
)

a0 ot) = oy
Y(ot) = oyt

for all .

An example of a bivariate Cauchy distribution can be given by:[24]

l Y
o (w20t +(y- o +)18)

.f( ayﬁO’yﬁ"Y)



History of Monte Carlo Integration

m Modern Monte Carlo method was born In
1940s when Stanislaw Ulam, John von
Neumann and others started to use random
numbers to examine physics from the
stochastic perspective.

->One of the most effective use of Monte
Carlo method Is to evaluate definite
Integrals which analytically would be too

B (difficult to find. (For example, the CDF

l values of normal, t, and other distributions.)




m Example 1. Estimate 8 = P(C > 2), given
that C iIs a Cauchy deviate.

-> There are quite a few ways to estimate 6,
depending on the simulation setting.
6(1-6) 0.126

B n
(2) Compute 6= % P(IC|>2) by setting

(1) n6 ~ B(n,0)=Var(6) =

#(X) =%|(| X|>2), and

(1-26) _ 0.052

2n6 ~ B(n,20) =Var (0) =
2N n




0 = = _2 =[" £ (y)dy.

2 7z(1+x) 0 7z(1+
Using transformation on ¢(y) = ; f(y) and

9.3x107°

Y; ~ U(0,1/2), we have Var(0) = -

1.1x107°

Note: The largest reduction is Var(d) =
n

3) Since
(3) 1-20 = j f (X)dx = 2j0 7z(1+x)
let X, ~U(0,2), #(x)=2f(x), then we can get
Var () = O'(r)]28.
(4) Lety = 1/xIn (3), then
o dX Loyd
N



m Antithetic Variate:

—>Suppose Z* has the same dist. as Z but Is
negatively correlated with Z. Suppose we
estimate 0 by ¢ =1(z +2*).6 is unbiased
and _

Var(@) =[2Var(Z)+2Cov(Z,Z%*)]/ 4
=2Var(Z)[1+Corr(Z,Z2%)].

If Corr(Z,Z*) <0, then a smaller variance Is
attained. Usually, we set Z = F(U) and
Z* = F*(1-U) = Corr(Z,2*) < 0.




-> For symmetric dist., we

B Then b _dep)

MaXx :
e

m Note: Consider the integral 0 = jol g(x)dx,
which is usually estimated by ¢ = izn“ g(U,),
ng

while the estimate via antithetic variate 1s
~ 1 n
0 :Z_Z[g(ui)"‘ g(l_Ui)]'
e

can obtain perfect

negative correlation. Consider the Bernoulli
distt withP(Z=1)=1-

P(Z=0)=np.

<Corr(Z,2*)<1.



-> The general form of antithetic variate IS

Corr(Z,2%*) = (2p-1)-pxp_-{-p) Jif p>0.5.
p(d-p) p

—>Thus, itisofnousetoletZ*=1-Zifp =0
or p =1, since only a minor reduction In
variance is possible.

Note: The i1dea of antithetic variate is like
. “duplicating” the number of random

l numbers.




Var. 0286 5.9e-4 9.6e-5 30e-6

Note: The antithetic variate on (4) does not
reduce as much as the case In control variate.

m Example 1(continued). Use Antithetic variate
to reduce variances of (3) and (4).
(3) (3)a (4) (4)a
Ave. 1457 1477 1474 1476
N



Example 2. Want to estimate ©t. We simulate
U(0,1) random numbers U;, 1 =1, 2, and set

1 iful+U2<1
0, Otherwise.

—> The value 7 can be estimated by 4*E(l) and
also by antithetic variate. Simulate 1,000
times, with 10,000 U’s, we found that

| =<

Mean Variance

4+E(I) 3.142468 | 2.5844e—4
Antithetic | 3.141529 | 9.6713e-5




m Conditioning:
-> In general, we have
Var|E(Z |W)|=Var(Z)-E|Var(Z |W)]|<Var(2).

- Example 2 (Conti.). Want to estimate .
We did it before by V; = 2U; - 1,1 =1, 2,

and set (
l | :<1, ifVl2 +V22£1
0, Otherwise.

.

B We can improve the estimate E(l) by using

l E(I|Vy).



conditional variance equals to
Var{(L-V;")*] =Var[1-U*)"*] = E@-U") - ()

E[1V, =v]=P{V +V; <1|V, =V}
= P{v® +V, <1|V, =v}=P{V;/ <1-v°’}
|
= [0 Q)dx=@-v)
Thus, E(1|V,)=@1-V,%)"* has mean n/4 (check
this!) and a smaller variance. Also, the
== — (%)% = 0.0498.
. 3 (4)

smaller than Var(l) = (%)(1—%) ~0.1686.



from (0,1), we select one obs. from each
Interval and have

Eq(X) = Y E(9()]x€A) - P(xe A)

-1 1

Note: For convenience, let A = (
n n

).

m Stratified Sampling:

->Without loss of generality, assume the study
region is (0,1) and A, A,, ..., A, is a partition
of (0,1). Instead of randomly selecting n obs.

N



m Latin Hypercube Sampling with Dependence

—>This Is a type of stratified Monte Carlo
sampling. The range of each variable iIs
portioned into N non-overlapping intervals
of equal probability 1/N.

L




Pairing x1 with x2 when N=5

kA
A, B C O




e Consider 5 random numbers on [0.1]?, correlated with a Gaussian

0.8

0.6

0.4

0.2

()

B |atin Hypercube Sampling

copula with parameter 0.5:

each dimension: {(3,4), (1,3), (5,5), (2,1),

|Ilf-d-_ __\-_\-\_-_\-__— —“'J

Permutation in each dimension

[ | [ 1 [ [ |
. - 08 L
*
*
- . 06 -
*
*
. . 04 -
+
. - 02 L
¥ *
l | | l 0 l | l |
0 02 04 06 08 | 0 02 04 06 08
Ranks in (4,2)}




¢ |dea: LHS, but instead of choosing a random permutation, choose a
particular one.

Definition (Rank statistic)

Let Xi..... X, be i.i.d. random variables with continuous distribution

P i

function. Reorder them such that X(1) < ... < X(") P-ass.. The
index of X; within X1)_ ..., X(") is the i-th rank statistic, given by




e LHSD sample

j o fin\Ygs- - Tin -
L/I.!n.— L + , i=1,....n, j=1,....d,

with r;fn random variables taking values in [0, 1].

° (V{n., - V{;:n) is a stratified sample in each dimension ;.

e Choices for rf

i.n

?7:” .= 1/2 (just capture joint distribution)
®

o |LHS a special case of LHSD.

e LHSD sampling strategy already suggested by [Stein, 1987], but not
analysed.



E—
A simple way to get an estimate to the variance of average is called replicated

Latin hypercube sampling [7]. The idea is to produce several independent LHS
samples and then compare the variances between samples. If the number of

samples is a and size of them M. N=a-M. If

M
=M~ h(X)), (15)
j=1

then an unbiased estimator for the variance is

a a a Ei
.’L}a?m(a{_l Z h"i) _ a(al 1 [Z h? _ (Zf;l)g] (16)
1 Y(C

This is exactly same as the sample variance of mean for normal sampling. Now
if v is too small. the estimate of variance is not precise. On the other hand.
increasing o while N is fixed increases this estimator of variance. However, as
long as ratio % is large, the increase in variance is small.



Example Sampllng with Lognormal Dlstrlbutlon (L

HS)

2775 —T—T - — — . .
B o ohRe
280 Cnd L LHS 1

7EEL .

prd-) .

& :
27 55 | -
=
275 -

27 45 | .

27 4 e

27 35T |

ERG

Sample means as function of sample size N
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m Importance Sampling:

-> In evaluating 8 = E¢@(X), some outcomes of
X may be more important.

(Take 0O as the prob. of the occurrence of a
rare event = produce more rare event.)
- ldea: Simulate from p.d.f. g (instead of the
true f). Let wzﬂ&é =12w(x) X. ~dg.

g
Here, g IS unbiased estlmate of 6’ and

Varw)— j[w(X) 0T g(x)dx == j( —60)* g (x)dx

can be very small if 21 is close to a constant.
g




m Example 1 (continued)
We select g so that {g >0}={|¢ f |>0}={X > 2}.
For x >2, f(x)= = — IS closely matched by

(1+X%)
g(x) =£2 , 1.e., sampling X = 2/U, U ~ U(0,1),
X 1 f(x) X 1

and let v(x) = T 2 ed) 25 x D)

By 0, :%ZW(Xi)’ this is equivalent to (4).

We shall use simulation to check.



10,000 runs
(s.e.)

50,000 runs
(s.e.)

100,000
runs

(s.e.)
Ratio

(1)

1461
1248
1464
1250
1455
1243

1

(2)

1484
1043
1470
1038
1462
1034

1.2

(3)

1474
0283
1467
0285
1477
0286

4.3

(4)
1475
9.6e-5
1476
9.6e-5
1476
9.5e-5
1300

BN Note: We can see that all methods have unbiased
I estimates, since 0 = 0.1476. The format of cells

are the estimate (top) and s.e. (bottom).



m Example 3. Evaluate the CDF of standard
y 2
normal dist..  ©(x)= [ #(y)dy = I -

-> Note that ¢#(y) has similar shape as the
—nyl~/3

e
g(y) = >u=0,0°=1.
logistic, I.e., 73

3(1+e V3?2
p(y) 9(y)

y) k

g(y) ﬂ_e—izy/\/g(l_‘_e—izy/\/g)
constant, 1.e., k \/§(1+e—7ry/\/§) '

dy, k is a normalization




— We can therefore estimate @(x) by

1 1 #(Y:)
0 =
N 14e X Z 7 a(y;)
where y;’s is a random sample from g(y)/k.

In other words,
JU~U(@01)=U=F()=

—xx//3
Y /3]

1+e

1+e

Y = —ﬁ Iog[(1+ e‘”’ﬁ)u - —1]
7T




1592 1599 1584 1587

3082 3090 3081 3085

Note: The differences between estimates and
the true values are at the fourth decimal.

O(x)  D(X) D)

n=100 n=1000 n=5000 D(X)

0222 0229 0229 0227

0652 0681 .0666 .0668
Hl



m Control Variate:

-> Suppose we wish to estimate &= E(Z) for
some Z = ¢(X) observed in a process of X.
Take another observation W = ¢(X), which
we believe varies with Z and which has a
known mean. We can then estimate 6 by
averaging observations of Z — (W — E(W)).

For example, we can use “sample mean” to
reduce the variance of “sample median.”




m Example 4. We want to find median of
Poisson(11.5) for a set of 100 observations.

—> Similar to the idea of bivariate normal
distribution, we can modify the estimate as

median(X) — p(median,mean)
x(sample mean — grand average)
As a demonstration, we repeat simulation 20

Times (of 100 obs.) and get
Median Ave.=11.35 Var.=0.3184

Control Ave.=11.35 Var.=0.2294




with each Wi, 1.e.,
0=2 - W, — EWl)_'”_IBp(\Np — EWp)
and 6 is unbiased.

For example, consider p =1, I.e,,
Var (@) =Var(Z)—-28Cov(Z,W)+ B?Var(W)

Cov(Z,W)

Var(W)
l — Multiple regression of Zon Wy, ..., W,

m Control Variate (continued)

—>In general, suppose there are p control
variates W, ..., W, and Z generally varies
and the min. Is attained when g =

N



m Example 1(continued). Use control variate
to reduce the variance. We can modify (3)

é’g = % —[f(X)+ 0.15(X2 — %) —0.025(X4 — 1]
6.3x107*

where X ~U(0,2) = Var(6,) =

Note: The correlation coefficients of x2 and x*
were obtained via the multiple regression
model with f(x) as the dependent variable
and x2 & x* as the independent variables.
Also, the values of x can be chosen as 0.01,

0.02, 0.03, ..., 1.99, 2.00.




Question: How do we find the estimates of
correlation coefficients between Z and W’s?

- For example, in the previous case, the
range of x Is (0,2) and so we can divide this
range into x = 0.01, 0.02, ..., 2. Then fita
regression equation on f(x), based on x2 and
X*. The regression coefficients derived are
the correlation coefficients between f(x) and
X’s. Similarly, we can add the terms X and

N

X3 If necessary.
Question: How do we handle multi-collineaity?



m Example 1(continued).
Similarly, the modified version of (4) Is

0, = £(x)+0.312(x" - £)~0.233(x" - &)]
3.8x10°°

where X ~U (0,%) = Var(6,) =

Note: These two estimates are the control
variate version of (3) and (4) in the previous
case.




Var. 0286 6.2¢-4 9.6e-5 1.1e-9

Note: The control variate of (4) can achieve a

Based on 10,000 simulation runs, we can see
the effect of control variate from the
following table:

(3) (3)c (4) (4)c
l Ave. .1465 1475 .1476  .1476
]

l reduction of 1.1x108 times.
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Table 1. VVariance Reduction for the Ratio Method
(ux,uy,p,ax,ay) =(2,3,0.95,0.2,0.3)

i, (1) i, (2)
n =34 3.000408 3.002138
m=09 (.0026533) (.0021510)
n=23 3.000246 3.000802
m = 20 (.0038690) (.0023129)




