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如何整理大數據的分析結果

2

分析大數據的策略與傳統資料分析並無不

同，僅在大量、時效(速度)的需求及差異，

特別需要資料所屬領域的知識支持，尤其

定義研究目的、量化目標變數（標的）。

藉由大數據探討某個議題，如同撰寫論文

、報告，具備幾個必要的元素。

→即使研究主題相同，因為切入角度、研究素

材（資料）、方法理論（研究者專業）等，

使得研究方向、甚至研究結論會大異其趣。



報告撰寫的幾個關鍵要素

3

一篇研究報告包含至少三個要素：

動機與目標：問題背景及動機、問題的重要

性及其影響、具體(或量)研究目標；

文獻探討：相關研究方法及參考文獻、現有

方法優勢及限制、本篇研究貢獻(區隔)；

本研究特色：研究方法及素材、主要研究發

現（及其意涵）、本文適用時機及限制。

◆註：研究發現的價值除了創新之外，也希

望能夠具有實質意涵及影響。



◼ Numerical integration

→Also named as “quadrature,” it is related to 

the evaluation of the integral 

is precisely equivalent to solving for the 

value I  y(b) the differential equation

with the boundary condition y(a) = 0.
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→Classical formula is known at equally spaced steps. 

The differences are on if the end points, i.e., a and b, 

of function f are used. If they are (are not), it is 

called a closed (open) formula.  (Only one is used is 

called semi-open).  



Question: What is your intuitive idea of calculating an 

integral, such as Gini’s index (in a Lorenz curve)? 
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→We shall denote the equal spaced points as 

which are spaced 

apart by a constant step h, i.e.,

We shall focus on the integration between 

any two consecutive x’s points, i.e.,             ,

and the integration between a and b can be 

divided into integrating a function over a 

number of smaller intervals.    
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◼ Closed Newton-Cotes Formulas 

→ Trapezoidal rule:

Here the error term O( ) signifies that the 

true answer differs from the estimate by an 

amount that is the product of some 

numerical coefficient times h3 times f ’’.  

In other words, the error of the integral on 

(a,b) using Trapezoidal rule is about O(n–2).
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→ Simpson’s rule:

→ Simpson’s     rule:

◼ Extended Trapezoidal rule:
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→ Extended formula of order 1/N3:

→ Extended Simpson’s rule: 
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Variance Reduction 
◼ Since the standard error reduces at the rate 

of            , we need to increase the size of 

experiment to f 2 if a factor of  f is needed in 

reducing the standard error. 

→ However, larger sample size means higher 

cost in computer. 

◼ We shall introduce methods for reducing 

standard errors, including Importance 

sampling, Control and Antithetic variates.   

n/1



縮減變異數的實例

◼ Value at Risk (VaR)

→定義＝ − VaR，表示損失會超過 的

機率不超過。這與統計的信心水準一樣，

常見的值有0.90、0.95、0.99三種數值，

在給定機率值下，找出最小可能的資產

值，或是最大的資產損失。

註：模擬次數與估計值的精確度成正比，

但每次模擬通常需要不少時間，不易由

增加模擬次數達成精確度的需求。



10%-value of Risk of a Normally Distributed Portfolio 



→目標在求得NPV(淨現值)會小於0的機率。

如果20次的電腦模擬得出12次的結果小於

0，因此機率值的估計值為0.6，計算可得

該機率值95%信賴區間約為(0.38, 0.82)。

→如果模擬次數為100次，則95%信賴區間

縮至(0.50,0.70)。

→如果模擬次數為1,000次，則95%信賴區間

縮至(0.57,0.63)，似乎精確度已足夠。

註：精確度為1%時，需要10,000次電腦模擬！



投資情境模擬
每年投資報酬率
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投資情境模擬
市場利率(短票利率)
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資產負債現金流量預測

註：上述為New York 7，7種最有可能的情境。



依投資情境推算投資報酬與風險、經
濟資本額以及風險資本額。
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Monte-Carlo Integration 

→ Suppose we wish to evaluate

After sampling                       independently

from f and form 

i.e., the precision of      is proportion to          .

(In numerical integration, n points can achieve 

the precision of            .)  
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Question: We can use Riemann integral to 

evaluate definite integrals. Then why do we 

need Monte Carlo integration? 

→ As the number of dimensions k increases, 

the number of points n required to achieve a 

fair estimate of integral would increase 

dramatically, i.e., proportional to  nk.

→ Even when the value k is small, if the 

function to integrated is irregular, then it 

would inefficient to use the regular methods 

of integration.  (Also, what happen if the 

range of integration is not close, e.g.(0,))



Numerical vs. Monte Carlo Integration

◼ Example 1. If C is a Cauchy deviate, then 

estimate  = P(C > 2) = 0.5 − P(0 < C < 2).

→ If X ~ Cauchy, i.e., , 

→Choosing various values for n: 

.1476.02tan
2

1
)2(1 1 −=−= − F

𝑓 𝑥 =
1

ሻ𝜋(1 + 𝑥2

100 1,000 10,000 100,000

Numerical 0.15013 0.14784 0.14761 0.14759

Monte 

Carlo
0.12 0.151 0.1460 0.14702





History of Monte Carlo Integration

◼ Modern Monte Carlo method was born in 

1940s when Stanislaw Ulam, John von 

Neumann and others started to use random 

numbers to examine physics from the 

stochastic perspective. 

→One of the most effective use of Monte 

Carlo method is to evaluate definite 

integrals which analytically would be too 

difficult to find. (For example, the CDF 

values of normal, t, and other distributions.) 



◼ Example 1. Estimate                     , given 

that C is a Cauchy deviate.

→ There are quite a few ways to estimate , 

depending on the simulation setting.

(1) 

(2) Compute                         by setting  

)2( = CP
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(3) Since

let                                           then we can get

(4) Let y = 1/x in (3), then 

Using transformation on                      and

Yi ~ U(0,1/2), we have 

Note: The largest reduction is 
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◼ Antithetic Variate:

→Suppose Z* has the same dist. as Z but is 

negatively correlated with Z. Suppose we 

estimate  by is unbiased 

and

If Corr(Z,Z*) < 0, then a smaller variance is 

attained. Usually, we set Z = F−1(U) and    

Z* = F−1(1−U)  Corr(Z,Z*) < 0. 
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◼ Note: Consider the integral 

which is usually estimated by

while the estimate via antithetic variate is

→ For symmetric dist., we can obtain perfect 

negative correlation. Consider the Bernoulli 

dist. with P(Z = 1) = 1 – P(Z = 0) = p. 

Then  
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→The general form of antithetic variate is

→Thus, it is of no use to let Z*=1 – Z if p  0

or p  1, since only a minor reduction in  

variance is possible. 

Note: The idea of antithetic variate is like 

“duplicating” the number of random 

numbers.
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◼ Example 1(continued). Use Antithetic variate 

to reduce variances of (3) and (4). 

(3) (3)a (4) (4)a

Ave. .1457 .1477 .1474

Var. .0286 5.9e-4 9.6e-5

.1476

3.9e-6

Note: The antithetic variate on (4) does not 

reduce as much as the case in control variate. 



Example 2. Want to estimate . We simulate 

U(0,1) random numbers Ui, i =1, 2, and set 

→The value  can be estimated by 4*E(I) and  

also by antithetic variate. Simulate 1,000 

times, with 10,000 U’s, we found that 


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UUif
I

Mean Variance

4E(I) 3.142468 2.5844e−4

Antithetic 3.141529 9.6713e−5



◼ Conditioning:

→ In general, we have 

→ Example 2 (Conti.). Want to estimate . 

We did it before by Vi = 2Ui – 1, i =1, 2, 

and set 

We can improve the estimate E(I) by using 

E(I|V1). 
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Thus,                                 has mean /4 (check

this!) and a smaller variance. Also, the 

conditional variance equals to 

smaller than 

.)1()
2

1
(

}1{}|1{

}|1{]|[

2/12)1(

)1(

22

21

2

2

2

1

2

2

2

11

2/12

2/12 vdx

vVPvVVvP

vVVVPvVIE

v

v −==

−==+=

=+==


−

−−

2/12

11 )1()|( VVIE −=

.0498.0)
4

(
3

2

)
4

()1(])1[(])1[(

2

222/122/12

1

−=

−−=−=−




UEUVarVVar

.1686.0)
4

1)(
4

()( −=


IVar



◼ Stratified Sampling:

→Without loss of generality, assume the study 

region is (0,1) and                       is a partition 

of (0,1).  Instead of randomly selecting n obs. 

from (0,1), we select one obs. from each 

interval and have

Note: For convenience, let 
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◼ Latin Hypercube Sampling with Dependence

→This is a type of stratified Monte Carlo 

sampling. The range of each variable is 

portioned into N non-overlapping intervals 

of equal probability 1/N.



Pairing x1 with x2 when N=5



◼ Latin Hypercube Sampling









Example. Sampling with Lognormal Distribution (LHS)

Sample means as function of sample size N



Sample Variances as Function of Sample Size N



◼ Importance Sampling:

→ In evaluating  = E(X), some outcomes of 

X may be more important. 

(Take  as the prob. of the occurrence of a 

rare event  produce more rare event.)

→ Idea: Simulate from p.d.f. g (instead of the 

true f ). Let

Here,       is unbiased estimate of , and

can be very small if         is close to a constant.
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◼ Example 1 (continued)

We select g so that

For x >2,                        is closely matched by

, i.e., sampling X = 2/U, U ~ U(0,1),

and let

By                          this is equivalent to (4). 

We shall use simulation to check.
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Note: We can see that all methods have unbiased 
estimates, since   0.1476. The format of cells 
are the estimate (top) and s.e. (bottom).

(1) (2) (3) (4)

10,000 runs

(s.e.)

.1461 .1484 .1474 .1475

.1248 .1043 .0283 9.6e-5

50,000 runs

(s.e.)

.1464 .1470 .1467 .1476

.1250 .1038 .0285 9.6e-5

100,000 

runs

(s.e.)

.1455 .1462 .1477 .1476

.1243 .1034 .0286 9.5e-5

Ratio 1 1.2 4.3 1300



◼ Example 3. Evaluate the CDF of standard

normal dist.: 

→ Note that (y) has similar shape as the

logistic, i.e.,

k is a normalization

constant, i.e.,  
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 We can therefore estimate (x) by

where yi’s is a random sample from g(y)/k. 

In other words, 
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x n=100 n=1000 n=5000 Φ(x)

-2.0 .0222 .0229 .0229 .0227

-1.5 .0652 .0681 .0666 .0668

-1.0 .1592 .1599 .1584 .1587

-0.5 .3082 .3090 .3081 .3085

)(ˆ x )(ˆ x )(ˆ x

Note: The differences between estimates and 

the true values are at the fourth decimal.



◼ Control Variate: 

→ Suppose we wish to estimate  = E(Z) for 

some Z = (X) observed in a process of X. 

Take another observation W = (X), which  

we believe varies with Z and which has a 

known mean. We can then estimate  by 

averaging observations of Z – (W – E(W)).

For example, we can use “sample mean” to 

reduce the variance of “sample median.” 



◼ Example 4. We want to find median of 

Poisson(11.5) for a set of 100 observations. 

→ Similar to the idea of bivariate normal 

distribution, we can modify the estimate as

median(X) – (median,mean)

(sample mean – grand average)

As a demonstration, we repeat simulation 20

Times (of 100 obs.) and get   

Median Ave.=11.35 Var.=0.3184

Control Ave.=11.35 Var.=0.2294



◼ Control Variate (continued)

→In general, suppose there are p control 

variates W1, …, Wp and Z generally varies 

with each Wi, i.e., 

and     is unbiased. 

For example, consider p = 1, i.e., 

and the min. is attained when 

 Multiple regression of Z on W1, …, Wp.
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◼ Example 1(continued). Use control variate 

to reduce the variance. We can modify (3) 

Note: The correlation coefficients of x2 and x4

were obtained via the multiple regression 

model with f(x) as the dependent variable 

and x2 & x4 as the independent variables. 

Also, the values of x can be chosen as 0.01, 

0.02, 0.03, , 1.99, 2.00.
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Question: How do we find the estimates of 

correlation coefficients between Z and W’s?

→ For example, in the previous case, the 

range of x is (0,2) and so we can divide this 

range into x = 0.01, 0.02, …, 2. Then fit a 

regression equation on f(x), based on x2 and 

x4. The regression coefficients derived are 

the correlation coefficients between f(x) and 

x’s.  Similarly, we can add the terms x and 

x3 if necessary. 

Question: How do we handle multi-collineaity? 



◼ Example 1(continued). 

Similarly, the modified version of (4) is 

Note: These two estimates are the control 

variate version of (3) and (4) in the previous 

case.  
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Based on 10,000 simulation runs, we can see 

the effect of control variate from the 

following table: 

(3) (3)c (4) (4)c

Ave. .1465 .1475 .1476 .1476

Var. .0286 6.2e-4 9.6e-5 1.1e-9

Note: The control variate of (4) can achieve a 

reduction of 1.1108 times.
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Table 1. Variance Reduction for the Ratio Method

(μx,μy,ρ,σx,σy) = (2, 3, 0.95, 0.2, 0.3 )

3.000408 3.002138

(.0026533) (.0021510)

3.000246 3.000802

(.0038690) (.0023129)
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