統計計算與模擬

政治大學統計系余清祥 2024年3月12日～19日第三單元：矩陣運算
http：／／csyue．nccu．edu．tw

矩陣運算（Matrix Computation）

矩陣運算在統計分析上扮演非常重要的
角色，包括以下方法：
■ Multiple Regression
■ Generalized Linear Model
－Multivariate Analysis
\square Time Series
■ Other topics（Random variables）
註：建議同學複習線性代數，可以幫助瞭解本次講義。

Multiple Regression

■ In a multiple regression problem, we want to approximate vector Y by fitted values \hat{Y} (a linear function of a set p predictors), i.e.,

$$
\begin{aligned}
& Y=X \beta+\varepsilon, \varepsilon \sim N\left(0, \sigma^{2} I_{n \times n}\right) \\
\Rightarrow & \left(X^{\prime} X\right) \hat{\beta}=X^{\prime} Y \quad(\text { Normal equation }) \\
\Rightarrow & \hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y \equiv A Y .
\end{aligned}
$$

(if the inverse can be solved.)
Note: The normal equation is hardly solved directly, unless it is necessary.

- In other words, we need to be familiar with matrix computation, such as matrix product and matrix inverse, i.e., $X^{\prime} Y$ and $\left(X^{\prime} X\right)^{-1}$.
- If the left hand side matrix $\left(X^{\prime} X\right)^{-1}$ is a upper (or lower) triangular matrix, then the estimate $\hat{\beta}$ can be solved easily,
$\left(\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \ldots & a_{n 1} \\ 0 & a_{22} & a_{23} & \ldots & a_{n 2} \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & a_{p-1, n-1} & a_{p, n-1} \\ 0 & 0 & \cdots & 0 & a_{p n}\end{array}\right)\left[\begin{array}{c}\hat{\beta}_{1} \\ \hat{\beta}_{2} \\ \vdots \\ \hat{\beta}_{p-1} \\ \hat{\beta}_{p}\end{array}\right]=\left[\begin{array}{c}\left(X^{\prime} Y\right)_{1} \\ \left(X^{\prime} Y\right)_{2} \\ \vdots \\ \left(X^{\prime} Y\right)_{n-1} \\ \left(X^{\prime} Y\right)_{n}\end{array}\right]$

矩陣與向量空間 （Matrix and Vector Space）
■ 如果 $A=Z X, A: m \times n, ~ Z: m \times k, ~ X: k \times n$ 。以向量的角度而言， A 矩陣的行向量是 Z矩陣行向量的線性組合：$\quad \tilde{A}_{j}=\sum_{i=1}^{k} X_{i j} \tilde{Z}_{i}$

$$
\begin{array}{r}
A=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
A_{1} & A_{2} & \cdots & A_{n} \\
\mid & \mid & & \mid
\end{array}\right], \quad Z=\left[\begin{array}{cc}
\mid & \mid \\
Z_{1} & Z_{2} \\
\mid & \mid
\end{array} .\right. \\
X=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & & x_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{k 1} & x_{k 2} & \cdots & x_{k n}
\end{array}\right]
\end{array}
$$

Gauss Elimination

- Gauss Elimination is a process of "row" operation, such as adding multiples of rows and interchanging rows, that produces a triangular system in the end.
$\left[\left(X^{\prime} X\right)^{-1} \mid X^{\prime} Y\right] \rightarrow \cdots \rightarrow\left[U \mid\left(X^{\prime} Y\right)^{*}\right]$
- Gauss Elimination can be used to construct matrix inverse as well.

$$
\left[\left(X^{\prime} X\right) \mid I\right] \rightarrow \cdots \rightarrow\left[I \mid\left(X^{\prime} X\right)^{-1}\right]
$$

- An Example of Gauss Elimination:

$$
\left(\begin{array}{cccc}
1 & 1 & 2 & 7 \\
2 & 5 & -1 & -4 \\
2 & 1 & -1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
2 & 5 & -1 & -4 \\
1 & 1 & 2 & 7 \\
2 & 1 & -1 & 0
\end{array}\right)
$$

$$
\rightarrow\left(\begin{array}{cccc}
1 & 5 / 2 & -1 / 2 & -2 \\
1 & 1 & 2 & 7 \\
2 & 1 & -1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 5 / 2 & -1 / 2 & -2 \\
0 & -3 / 2 & 5 / 2 & 9 \\
0 & -4 & 0 & 4
\end{array}\right)
$$

$$
\rightarrow\left(\begin{array}{cccc}
1 & 5 / 2 & -1 / 2 & -2 \\
0 & -4 & 0 & 4 \\
0 & -3 / 2 & 5 / 2 & 9
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 5 / 2 & -1 / 2 & -2 \\
0 & 1 & 0 & -1 \\
0 & -3 / 2 & 5 / 2 & 9
\end{array}\right)
$$

$$
\rightarrow\left(\begin{array}{cccc}
1 & 5 / 2 & -1 / 2 & -2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 5 / 2 & 15 / 2
\end{array}\right) \Rightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right) .
$$

\square The idea of Gauss elimination is fine, but it would require a lot of computations.
\rightarrow For example, let X be an $n \times p$ matrix. Then we need to compute $X^{\prime} X$ first and then find the upper triangular matrix for $\left(\mathrm{X}^{\prime} \mathrm{X}\right)$. This requires a number of $n^{2} \times p$ multiplications for ($\mathrm{X}^{\prime} \mathrm{X}$) and about another $p \times p(p-1) / 2 \cong O\left(p^{3}\right)$ multiplications for the upper triangular matrix.

何謂大 O 及小 O ？
－大O（big o）及小O（little o）
\rightarrow 常見的定義為

$$
\begin{aligned}
& a_{n}=O\left(n^{\lambda}\right) \Leftrightarrow n^{-\lambda} a_{n} \text { is bounded } \\
& a_{n}=o\left(n^{\lambda}\right) \Leftrightarrow n^{-\lambda} a_{n} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

註：大 O 代表同様的收敛速度，小 O 代表較快的收敛的速度。

Cholesky Decomposition

- If A is positive semi-definite, there exists an lower triangular matrix L such that

$$
\begin{gathered}
L L^{\prime}=A \\
\text { i.e., } a_{i j}=\sum_{k=1}^{p} l_{i k} l_{j k} \text { and so } \\
a_{i j}=\sum_{k=1}^{i} l_{i k} l_{j k}=\sum_{k=1}^{i-1} l_{i k} l_{j k}+l_{i i} l_{i j}, \\
\text { since } l_{c r}=0 \text { for } r>c .
\end{gathered}
$$

\square Thus, the elements of L equal to

$$
\begin{aligned}
& l_{i i}=\left(a_{i i}-\sum_{k=1}^{i-1} l_{i k} l_{j k}\right)^{1 / 2} \\
& l_{i j}=\left(a_{i j}-\sum_{k=1}^{i-1} l_{i k} l_{j k}\right) / l_{i i} .
\end{aligned}
$$

Notes: (1) If A is "positive semi-definite" if for all vectors $v \in R^{p}$, we have $v^{\prime} A v \geq 0$, where A is a $p \times p$ matrix. If $v^{\prime} A v=0$ if and only if $v=0$, then A is "positive definite."
(2) In R, Cholesky decomposition requires symmetric and positive definite.

Applications of Cholesky decomposition:
\square Simulation of correlated random variables (and also multivariate distributions).

- Regression

$$
X^{\prime} X \hat{\beta}=X^{\prime} y \Rightarrow L L^{\prime} \hat{\beta}=X^{\prime} y
$$

$$
\text { solve } L \theta=X^{\prime} y \text { for } \theta=L^{\prime} \hat{\beta}
$$

and backsolve $L^{\prime} \hat{\beta}=\theta$ for $\hat{\beta}$.
\square Determinant of a symmetric matrix, $A=L L^{\prime}$

$$
\operatorname{det}(A)=\operatorname{det}\left(L L^{\prime}\right)=\operatorname{det}(L)^{2}=\prod_{i} l_{i i}^{2}
$$

- Example of Cholesky decomposition
\rightarrow We want to generate two random variables,

$$
\binom{X}{Y} \sim N\left(\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{cc}
\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\
\rho \sigma_{x} \sigma_{y} & \sigma_{y}^{2}
\end{array}\right)\right)
$$

Let $\rho=0.5$. We generate $X_{1} \& X_{2}$ from $N(0,1)$.

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0.5 & \sqrt{3} / 2
\end{array}\right)=\operatorname{chol}(A)=\operatorname{chol}\left(\left(\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right)\right) \\
& \binom{X}{Y}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{X_{1}}{X_{2}}=\left(\begin{array}{cc}
1 & 0 \\
0.5 & \sqrt{3} / 2
\end{array}\right)\binom{X_{1}}{X_{2}}
\end{aligned}
$$

\square Cholesky decomposition (R-code)
\rightarrow We shall demonstrate using R . $x=$ matrix (rnorm(2000),ncol=1000)
$\operatorname{apply}(x, 1, v a r)$
$\operatorname{apply}(x, 1$, summary $)$
$\operatorname{cor}(x[1],, x[2]$,
$A=$ matrix $(c(1,0.5,0.5,1), n c o l=2)$
$a=t(\operatorname{chol}(A))$
$x 1=a \% * \% x$
$\operatorname{apply}(x 1,1, v a r)$ $\operatorname{apply}(x 1,1$, summary $)$ $\operatorname{cor}(x][1], x],[2]$,
ks.test(xl[1,], "pnorm") ks.test(xl[2,], "pnorm'")
\square Cholesky decomposition (Conti.)
\rightarrow Another way to generate is via

$$
\binom{X}{Y}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{X_{1}}{X_{2}}
$$

and we have

$$
\left\{\begin{array}{c}
a^{2}+b^{2}=1 \\
c^{2}+d^{2}=1 \\
a d+b c=1 / 2
\end{array}\right.
$$

Possible solution includes

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{\sqrt{2}+\sqrt{6}}{4} & \frac{\sqrt{2}-\sqrt{6}}{4}
\end{array}\right)
$$

QR Decomposition

- If we can find matrices Q and R such that $\mathrm{X}=\mathrm{QR}$, where Q is orthogonal $\left(\mathrm{Q}^{\prime} \mathrm{Q}=\mathrm{I}\right)$ and R is upper triangular matrices, then

$$
\begin{aligned}
& \left(X^{\prime} X\right) \hat{\beta}=X^{\prime} Y \\
\Leftrightarrow & (Q R)^{\prime}(Q R) \hat{\beta}=(Q R)^{\prime} Y \\
\Leftrightarrow & R^{\prime} Q^{\prime} Q R \hat{\beta}=R^{\prime} Q^{\prime} Y \\
\Leftrightarrow & \left(R^{\prime} R\right) \hat{\beta}=R^{\prime} Q^{\prime} Y \\
\Leftrightarrow & R \hat{\beta}=Q^{\prime} Y \quad \text { (if } R \text { is full rank) }
\end{aligned}
$$

Gram-Schmidt Algorithm

■ Gram-Schmidt algorithm is a famous algorithm for doing QR decomposition.

- Algorithm: (Q is $n \times p$ and R is $p \times p$.) for (j in 1:p) \{

```
r[j,j] \leftarrow sqrt(sum(x[,j]^2))
x[,j]}\leftarrowx[,j]/r[j,j
if (j< p) for (k in (j+1):p) {
r[j,k]}\leftarrow\operatorname{sum}(\textrm{x}[\textrm{j}]*\textrm{x}[,\textrm{k}]
x[,k]}\leftarrowx[,k]-x[,j]*r[j,k
```

\}
\}
Note: Check the function " $q r$ " in R and S-Plus.

QR 指令在 R 的操作 $(\mathrm{QR}$ in R$)$

$\square \mathrm{QR}$ 矩陣分解在 R 的指令為「 qr 」， R 會提供矩陣的秩數（Rank）及其它相關訊息；如果需要求出 Q 及 R矩陣，則要透過指令「 qr ．Q」及「qr．R」

$$
A=\operatorname{matrix}(c(1: 9), \text { ncol=3) }
$$

$$
q r(A)
$$

$$
\begin{aligned}
& q r . Q(q r(A)) \% * \% q r . R(q r(A)) \\
& q r . Q(q r(A)) \% * \% t(q r \cdot Q(q r(A))) \\
& t(q r . Q(q r(A))) \% * q q \cdot Q(q r(A))
\end{aligned}
$$

- Notes:
(1) Since R is upper triangular, i.e., R^{-1} is easy to obtain, $R \hat{\beta}=Q^{\prime} y$

$$
\Leftrightarrow \hat{\beta}=\left(R^{\prime} R\right)^{-1} R^{\prime} Q^{\prime} y=R^{-1}\left(R^{-1}\right)^{\prime} X^{\prime} y .
$$

(2) The idea of the preceding algorithm is

$$
\begin{aligned}
& X=Q R \\
\Leftrightarrow & X^{\prime} X=R^{\prime} Q^{\prime} Q R=R^{\prime} R .
\end{aligned}
$$

■ Notes: (continued)
(3) If X is not of full rank, one of the columns will be very close to 0 . Thus, $r_{j j} \approx 0$ and so there will be a divide-by-zero error.
(4) If we apply Gram-Schmidt algorithm to the augmented matrix $(X: y)$, the last column will become the residuals of $\hat{\varepsilon}=y-\hat{y}$.

$$
\begin{aligned}
Y=X \beta+\varepsilon & \Leftrightarrow Q^{\prime} Y=Q^{\prime} X \beta+Q^{\prime} \varepsilon \\
& \Leftrightarrow\binom{Y_{1}^{*}}{Y_{2}^{*}}=\binom{X_{1}^{*}}{0} \beta+\binom{\varepsilon_{1}^{*}}{\varepsilon_{2}^{*}}
\end{aligned}
$$

Thus, $|Y-X \beta|^{2}=\left|Q^{\prime}(Y-X \beta)\right|^{2}=\left|Q^{\prime} Y-Q^{\prime} X \beta\right|^{2}$

$$
\begin{aligned}
&=\left|\binom{Y_{1}^{*}}{Y_{2}^{*}}-\binom{X_{1}^{*} \beta}{X_{2}^{*} \beta}\right|^{2} \\
&=\left|Y_{1}^{*}-X_{1}^{*} \beta\right|^{2}+\left|Y_{2}^{*}-X_{2}^{*} \beta\right|^{2} \\
&=\left|Y_{1}^{*}-X_{1}^{*} \beta\right|^{2}+\left|Y_{2}^{*}\right|^{2}, \\
& \text { i.e., } \hat{\beta}=\left(X_{1}^{*}\right)^{-1} Y_{1}^{*} \text { and } R S S=\left|Y_{2}^{*}\right|^{2} .
\end{aligned}
$$

Other orthogonalization methods:

\square Householder Transformation is a computationally efficient and numerically stable method for QR decomposition. The Householder transformation we have constructed are $n \times n$ matrices, and the transformation Q is the product of p such matrices.
$■$ Given's rotation: The matrix X is reduced to upper triangular form $\binom{R}{0}$ by making exactly subdiagonal element equal to zero at each step.

Sweep Operator

- The normal equation is not solved directly in the preceding methods. But sometimes we need to compute sums of squares and cross-products (SSCP) matrix.
- This is particularly useful in stepwise regression, since we need to compute the residual sum of squares (RSS) before and after a certain variable is added or removed.

■ Sweep algorithm is also known as "GaussJordan" algorithm.
$■$ Consider the SSCP matrix

$$
A=\left(\begin{array}{cc}
X^{\prime} X & X^{\prime} y \\
y^{\prime} X & y^{\prime} y
\end{array}\right)
$$

where X is $n \times p$ and y is $p \times 1$.

- Applications of the Sweep operator to columns 1 through p of A results in the matrix

$$
\tilde{A}=\left(\begin{array}{cc}
-\left(X^{\prime} X\right)^{-1} & \hat{\beta} \\
\hat{\beta}^{\prime} & R S S
\end{array}\right) .
$$

Details of Sweep algorithm Step 1: Row 1 (times $\left(X^{\prime} X\right)^{-1}$) $\left[\begin{array}{lll}X^{\prime} X & X^{\prime} y & I_{p}\end{array}\right] \rightarrow\left[\begin{array}{lll}I_{p} & \hat{\beta} & \left(X^{\prime} X\right)^{-1}\end{array}\right]$

Step 2: Row 2
$\left[\begin{array}{lll}y^{\prime} X & y^{\prime} y & 0\end{array}\right] \rightarrow\left[\begin{array}{lll}0 & y^{\prime}\left(I-P_{X}\right) y & -\hat{\beta}^{\prime}\end{array}\right]$
The operation of Row 2 is done via minus the right term of Row 1 times $y^{\prime} X$.

- Notes:

(1) If you apply the Sweep operator to columns $i_{1}, i_{2,}, \ldots, i_{k}$, you'll receive the results from regressing y on $X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{k}}$ - the corresponding elements in the last column will be the estimated regression coefficients, the $(p+1, p+1)$ element will contain RSS, and so forth.
\square Notes: (continued)
(2) The Sweep operator has a simple inverse; the two together make it very easy to do stepwise regression. The SSCP matrix is symmetric, and any application of Sweep or its inverse result in a symmetric matrix, so one may take advantage of symmetric storage.

General Least Square (GLS)

- Consider the model $y=X \beta+\varepsilon$, where $\varepsilon \sim N\left(0, \sigma^{2} V\right)$ with V unknown.
■ Consider the Cholesky decomposition of V, $V=L L^{\prime}$, and let $S^{\prime}=(L)^{-1}=\left(L^{-1}\right)$. let $y^{*}=S^{\prime} y, X^{*}=S^{\prime} X$, and $\varepsilon^{*}=S^{\prime} \varepsilon$. Then $y^{*}=X^{*} \beta+\varepsilon^{*}$ with $\varepsilon^{*} \sim N\left(0, \sigma^{2}\right)$, and we may proceed with before.
■ A special case (WLS): $V=\operatorname{diag}\left\{v_{l}, \ldots, v_{n}\right\}$.

Eigenvalues, Eigenvectors, and Principal Component Analysis

- The notion of principal components refers to a collection of uncorrelated r.v.'s formed by linear combinations of a set of possibly correlated r.v.'s.
- Idea: From eigenvalues and eigenvectors, i.e., if x and λ are eigenvector and eigenvector of a symmetric positive semidefinite matrix A, then

$$
A x=\lambda x
$$

- If A is a symmetric positive semi-definite matrix ($p \times p$), then we can find orthogonal matrix Γ such that $A=\Gamma \Lambda \Gamma^{\prime}$, where

$$
\Lambda=\left(\begin{array}{cccc}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{p}
\end{array}\right) \text {, with } \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p} \geq 0
$$

- Note: This is called the spectral decomposition of A. The ith row of Γ is the eigenvector of A which corresponds to the ith eigenvalue λ_{i}.

Write $\hat{\beta}^{*}=V \Lambda^{+} U^{\prime} y$ where

$$
\Lambda^{+}=\left(\begin{array}{cccc}
\lambda_{1}^{-1} & & & \\
& \ddots & & 0 \\
& & \lambda_{k}^{-1} & \\
& 0 & & 0
\end{array}\right)
$$

We should note that the normal equation $X^{\prime} X \hat{\beta}=X^{\prime} y$ does not have a unique solution.
$\hat{\beta}^{*}$ is the solution of the normal equations for which $\|\hat{\beta}\|^{2}=\sum_{j} \hat{\beta}_{j}^{2}$ is minimized.

Power Method

- A naïve method for finding the eigenvalues of a matrix is via the fact that

$$
\begin{aligned}
& A \underset{\sim}{x}=A \sum_{i=1}^{k} c_{i} \underset{\sim}{v} \\
\Rightarrow & A^{n} \underset{\sim}{x}=\sum_{i=1}^{k} c_{i} c_{i} \lambda_{i} \underset{\sim}{v_{i}}{\underset{\sim}{i}}_{i}^{n} \underset{\sim}{v} \cong c_{1} \lambda_{1}^{n} \underset{\sim}{v}
\end{aligned}
$$

In other words, the largest eigenvalue will dominate the product and eventually we can get approximate values of λ_{I} and v_{1}.

Singular Value Decomposition

\square In regression problem, we have

$$
Y=X \beta+\varepsilon \Rightarrow U^{\prime} Y=U^{\prime} X \beta+U^{\prime} \varepsilon
$$

$$
\text { or equivalently, }\left(\theta=V^{\prime} \beta \& X_{1}^{*} V=D\right)
$$

$$
\begin{aligned}
Y^{*} & =\binom{X_{1}^{*}}{0} \beta+\varepsilon^{*}=\binom{X_{1}^{*}}{0} V V^{\prime} \beta+\varepsilon^{*} \\
& =\binom{D}{0} \theta+\varepsilon^{*}
\end{aligned}
$$

Note: SVD is often used for regression diagnostics, data reduction, and graphical clustering.
\square The two orthogonal matrices U and V are associated with the following result:

The Singular-Value Decomposition

\rightarrow Let X be an arbitrary $n \times p$ matrix with $n \geq p$. Then there exists orthogonal matrices $U: n \times n$ and $V: p \times p$ such that $U^{\prime} X V=\widetilde{D}=$
where $D=\left(\begin{array}{llll}d_{1} & & & \\ & d_{2} & & \\ & & \ddots & \\ & & & d_{p}\end{array}\right)$ with $d_{1} \geq d_{2} \geq \cdots \geq d_{p} \geq 0$.

Term-document matrix

Term contributions
to themes

■ Example of SVD:
\rightarrow You can check if the command "svd" in R returns correct outputs. $\mathrm{A}=$ matrix (c(1:12),ncol=3) $\mathrm{a}=\operatorname{svd}(\mathrm{A})$ $\mathrm{t}(\mathrm{aa} \$ \mathrm{u}) \% * \% \mathrm{~A} \% * \% \mathrm{aa} \mathrm{v}$ \# Diagonal! aa\$u\%*\%diag(c(aa\$d))\%*\%t(aa\$v) $\mathrm{t}(\mathrm{aa} \$ \mathrm{u}) \% * \% \mathrm{~A} \quad$ \# Upper triangular!

Application of SVD (Lee-Carter Model)

- Lee and Carter (1992) proposed a model to forecast the mortality rates of U.S. :

$$
\ln \left(m_{x t}\right)=\alpha_{x}+\beta_{x} \kappa_{t}+\varepsilon_{x t}
$$

where
$\kappa_{t} \rightarrow$ change of mortality intensity
$\alpha_{x} \rightarrow$ average mortality of each age group
$\beta_{x} \rightarrow$ relative change rate of each age group

Singular Value Decomposition (SVD)

The parameters of Lee-Carter model can be estimated via
Minimize $\sum_{x t}\left(\ln \left(m_{x t}\right)-\alpha_{x}-\beta_{x} \kappa_{t}\right)^{2}$
\rightarrow This is done via decomposing the matrix

$$
\left(\ln \left(m_{x t}\right)-\alpha_{x}\right)=U P V^{T}
$$

\rightarrow We can also use the approximation method, or the PCA to achieve similar estimation.

SVD Interpretation of Lee-Carter Model Applying the SVD, i.e., $\left(\ln \left(m_{x t}\right)-\alpha_{x}\right)=U P V$, the matrix U represents the time component, P is the singular values, and V is the age component.
$\rightarrow \kappa_{t}$ is derived from the first vector of the time-component matrix and the first singular value, and β_{x} is from the first vector of the age-component matrix. Other vectors correspond to the residuals.
\square Example of SVD (Lee-Carter model)
\rightarrow Suppose there are three vectors and their relationships to X-axis are similar. We want to use only one vector to express the common pattern in these three vectors. (Data Reduction!)

$\mathrm{a} 1=0.2+0.5 * \mathrm{c}(1: 10)+0.1 *$ rnorm (10)
a2 $=0.4+0.4 * \mathrm{c}(1: 10)+0.1 * \operatorname{rnorm}(10)$
a3 $=0.6+0.3 * \mathrm{c}(1: 10)+0.1 *$ rnorm (10)
$\mathrm{A}=$ cbind(a1, $\mathrm{a} 2, \mathrm{a} 3$)
$\mathrm{x} 0=\operatorname{cbind}(1: 10,1: 10,1: 10)$
matplot(x0,A,type="l",xlab="X-Axis",ylab="Y-
Axis")
$\mathrm{a}=\operatorname{svd}(\mathrm{A})$
A
$\mathrm{A} 1=\mathrm{aa} \$ \mathrm{u} \% * \% \operatorname{diag}(\mathrm{c}(\mathrm{a} a \$ \mathrm{~d}[1], 0,0)) \% * \% \mathrm{t}(\mathrm{aa} \$ \mathrm{v})$
A1
$\mathrm{A} 2=\mathrm{A}-\mathrm{A} 1$
mean(abs(A2/A))
kt in Lee-Carter Model

bx in Lee-Carter Model

Mortality Imporment Rate in Taiwan(2000-2017)

Original Image

Fourier compression using 5% observation

Wavelet compression using 5\％observation

SVD compression using 5\％observation

資料壓縮方法的比較（Comparing Dimension Reduction）

https://ars.els-cdn.com/content/image/1-s2.0-S0262885606002083-gr1.jpg
 approximation

$\mathscr{S} V D$ rank-8 approximation

$\mathscr{S} S V D$ rank-8 approximation

$\mathscr{P} V D$ rank-14 approximation

SPSVD rank-14 approximation

$\mathscr{S} V D$ rank-20 approximation

SPSVD rank-20 approximation

Time Series

- The time series analysis considered usually is ARIMA model, consisting of Autoregressive (AR) and Moving Average (MA).
\rightarrow AR(1) model

$$
Z_{t}=\phi Z_{t-1}+e_{t}, e_{t} \sim N\left(0, \sigma^{2}\right), t=1,2, \ldots, n
$$

Then the correlation coefficient of Z_{i} and Z_{j}
is $\gamma_{|i-j|}$, where $\gamma_{k}=\phi^{k}$ and $k=|i-j|$.
\rightarrow General form AR(p):

$$
\begin{aligned}
& Z_{t}=\phi_{1} Z_{t-1}+\phi_{2} Z_{t-2}+\cdots+\phi_{p} Z_{t-p}+e_{t} \\
& \Rightarrow \gamma_{k}=\phi_{1} \gamma_{k-1}+\phi_{2} \gamma_{k-2}+\cdots+\phi_{p} \gamma_{k-p}
\end{aligned}
$$

Time Series (conti.)

Note: The coefficients of $\operatorname{AR}(\mathrm{p})$ can be solved by the ordinary regression, with some minor adjustments of variables.
\rightarrow MA(1) model

$$
Z_{t}=e_{t}-\theta e_{t-1}, e_{t} \sim N\left(0, \sigma^{2}\right), t=1,2, \ldots, n
$$

Then the covariance of Z_{i} and Z_{j} is $\gamma_{|i-j|}$,

$$
\gamma_{k}=\left\{\begin{array}{cc}
1+\theta^{2}, & k=0 \\
-\theta, & k=1 \\
0, & k \geq 2
\end{array}\right.
$$

Time Series (conti.)

\square The general form of $\operatorname{ARMA}(p, q)$ is.

$$
\phi(B) Z_{t}=\theta(B) e_{t}
$$

where $\phi(\mathrm{B})$ and $\theta(\mathrm{B})$ are polynomials of the backward operator B, i.e., $B\left(Z_{t}\right)=Z_{t-1}$.
\rightarrow e.g., MA(1) model
Then the covariance of Z_{i} and Z_{j} is $\gamma_{|i-j|}$, or

$$
\mathbf{A}=\left[\begin{array}{cccc}
1+\theta^{2} & -\theta & 0 & 0 \\
-\theta & 1+\theta^{2} & -\theta & 0 \\
0 & -\theta & 1+\theta^{2} & -\theta \\
0 & 0 & -\theta & 1+\theta^{2}
\end{array}\right]
$$

Time Series Estimation

- The parameters in $\operatorname{AR}(\mathrm{p})$ model can be solved using the OLS, since

$$
\begin{aligned}
& Z_{t}=\phi_{1} Z_{t-1}+\phi_{2} Z_{t-2}+\cdots+\phi_{p} Z_{t-p}+e_{t} \\
& \Rightarrow E\left(Z_{t} \mid Z_{t-1}, \cdots, Z_{t-p}\right)=\phi_{1} Z_{t-1}+\cdots+\phi_{p} Z_{t-p}
\end{aligned}
$$

Then the parameters are derived by minimizing (errors are normally distributed)

$$
S(\mu, \tilde{\phi})=\sum_{t=1}^{n}\left[z_{t}-\mu-\phi_{1}\left(z_{t-1}-\mu\right)-\cdots-\phi_{p}\left(z_{t-p}-\mu\right)\right]^{2}
$$

Estimation of $\mathrm{AR}(\mathrm{p})$ model

\square The parameter estimation of AR model is easier (MA model requires iterations, since the "error" is not observable.)
$\rightarrow \mathrm{AR}(2)$ model

$$
Z_{t}=\phi_{1} Z_{t-1}+\phi_{2} Z_{t-2}+e_{t}, e_{t} \sim N\left(0, \sigma^{2}\right)
$$

The coefficients ϕ_{1} and ϕ_{2} can be solved by
(1) OLS ($\mathrm{Z}_{\mathrm{t}-1}$ and $\mathrm{Z}_{\mathrm{t}-2}$ as independent variables)
(2) Plugging the related numbers (Moment?)
(3) Exact likelihood functions (usually are very complicated)

Example: Estimation of AR(2) model

\square Fit AR(2) model to the data "lynx" in R.
(1) OLS: $\left(\hat{\beta}_{0}, \hat{\phi}_{1}, \hat{\phi}_{2}\right)=(710.11,1.1542,-0.6062)$ and by $\mu=\beta_{0} /\left(1-\phi_{1}-\phi_{2}\right)$ to give $\hat{\mu}$.
(2) Moment:

$$
\begin{aligned}
& \operatorname{corr}\left(Z_{i}, Z_{i+1}\right)=\frac{\phi_{1}}{1-\phi_{2}}, \quad \operatorname{corr}\left(Z_{i}, Z_{i+2}\right)=\phi_{2}+\frac{\phi_{1}^{2}}{1-\phi_{2}} \\
\rightarrow & \left(\hat{\rho}_{1}, \hat{\rho}_{2}, \hat{\phi}_{1}, \hat{\phi}_{2}\right)=(0.7159,0.2177,1.1486,-0.6046)
\end{aligned}
$$

(3) Compare to the output from software
\rightarrow Minitab: $\left(\hat{\mu}, \hat{\beta}_{0}, \hat{\phi}_{1}, \hat{\phi}_{2}\right)=(1545.4,699.84,1.1575,-0.6106)$
$\rightarrow \mathrm{R}($ arima $):\left(\hat{\mu}, \hat{\phi}_{1}, \hat{\phi}_{2}\right)=(1545.45,1.1474,-0.5997)$

Example: AR(2) model (conti.)

$\square \mathrm{R}$ also has a lot of options.
\rightarrow Several choices in the function "AR"
ar(lynx, method="ols", 2)
(1) OLS: $\left(\hat{\phi}_{1}, \hat{\phi}_{2}\right)=(1.0320,-0.6288)$
(2) MLE: $\left(\hat{\phi}_{1}, \hat{\phi}_{2}\right)=(1.0555,-0.6298)$
(3) Default: $\left(\hat{\phi}_{1}, \hat{\phi}_{2}\right)=(1.0379,-0.6063)$
(4) Burg: $\left(\hat{\phi}_{1}, \hat{\phi}_{2}\right)=(1.0634,-0.6379)$
(5) YW: $\left(\hat{\phi}_{1}, \hat{\phi}_{2}\right)=(1.0379,-0.6063)$

Note: There are some handouts from the references regarding "Matrix Computation"
■ "Numerical Linear Algebra" from Internet
■ Chapters 3 to 6 in Monohan (2001)
\square Chapter 3 in Thisted (1988)
■ Chapter 2 in Gentle et al. (2004)
■ Chapter 2 in Numerical Recipes in Fortran 77
Students are required to read and understand all these materials, in addition to the powerpoint notes.

