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Data Analysis

m Data analysis can be separated into two parts:
Exploratory Data Analysis (EDA) and
Confirmatory Data Analysis (CDA).

—>EDA 1s to explore the basic characteristics
and CDA Is to apply proper methods/models
for the study goal.

—>We tend to use tables & graphs to summarize
basic properties of data, which are often
crucial in the stage of CDA.




Data Distribution

m Distribution probably Is the most essential
iInformation of data, we can use it to derive
Important quantities (e.g., mean & variance).

-> Density estimation can be treated as an
EDA approach of exploring distribution.

-> Bayesian computing (e.g., MCMC) Is
another approach and it is like Monte Carlo
Integration, requiring further assumption
about the data.




Density Estimation

m Estimate the density functions without the
assumption that the p.d.f. has a particular
form.

E -> The idea of estimating c.d.f. (i.e., F(Xp)) IS
to count the number of observations not
larger than x,. Since the p.d.f. is the
derivative of c.d.f., the natural estimate of
the p.d.f. would be f(x,) =Y 1{x; = x,}/n.

mm  However, this is likely not a good estimate

l since most points have zero density.



Therefore, we may want to assign a nonzero
welght to points near points with
observations. Intuitively, the weight should
be larger if a point is close to a observation,
but this Is not necessary to be true.
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m Smoothing, a process of obtaining a
corresponding smooth set of values from
Irregular set of observed values, Is closely
linked computationally to density estimation.

o |
-

0.8

0.6

—— Smooth 1
——~" Smooth 2

0.4

0.2

0.5 1.0 15 2.0 25 3.0



Empirical Examples

m A population of women who were at least
21 years old, of Pima Indian heritage and
living near Phoenix, Arizona, was tested for
diabetes mellitus according to WHO criteria.

-> Three density estimates are constructed for
“glu” (plasma glucose concentration), based
on 532 complete records collected by the
US National Institute of Diabetes and

B Digestive and Kidney Diseases.

l 0 Paflw #, & MASS package

https://en.wikipedia.org/wiki/Density _estimation#Example _of density estimation
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Logistic Regression

m How can we analyze these data?

7a

0.98 -

Mormal Quantile

* Means and Std Deviations
Level HNumber Mean 5tdDev Std

I 5 381754 102018
1 43 512N 8497483
" t Test

1-0

Azzuming unequal variances

Difference 12.1036 tRatio 504727
Gtd Err Dif 2.0352 DF 91.61987
Upper CLOW  16.145% Prob={f  <.0001*
Lower CLDIf  8.0614 Prob=t  <0001*
Confidence 095 Prob<t  1.0000

Non-pooled t-test

The mean age of the individuals with some signs of
coronary heart disease Is 51.28 years vs. 39.18 years for
Individuals without signs (t = 5.95, p <.0001).



B Old Faithful Geyser (Yellowstone National Park)
-> It is a highly predictable geothermal feature, & has

Wailing im= o naexi arepion (min)

S0

B0

rad

G0
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o ¥ ggp
8 g
0 ; 5]
':E “ o E
uwﬂﬂa
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erupted every 44 minutes to two hours since 2000.

faithful data: Eruptions of Old Faithful
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Eruption fime [min)
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Eruption ime [sec)



Path of Tropical Storms

(Typhoon, Cyclone, ...)

—->We want to know the
hot spot areas!

1897~2012 | 4
4 R T Sopat.
| T4 50%
| e ol . t'fif! %
. i T Figure 6: Paths of 40 tropical cyclones in the North Atlantie.
+ - B https://www.stat.cmu.edu/~larry/=sml/densityestimation.pdf
% VN Yy
+ FEACTLLEG ko’ dr i
-t a\‘ s et S iy 'u.‘ '
@ m !
- (3]
I 4 %
] Q
75 |
. 19% S 4e 28 C 1.06% )
http://epaper.wra.gov.tw/Article_Detail.aspx?s=9BDE169D87C509CE 1911~2019 5 r& Re A 3L 18818 9.




m Histogram
—> The histogram is the simplest and most

familiar method of a density estimator.

—> Break the interval [a,b] into m bins of

equal width h, say a=a,<a, <---<a_,<a_=h.
Then the density estimate of x e[a,b] IS

A 1.8, N,

T (x) :_ZFJ' I{xela . a;]}

n j:]_
where N; IS the number of observations In
the interval xe[a; ;,a;].
(Note: h = (a-b)/m)



Notes:

(1) The histogram density estimate looks like
the sample c.d.f. and is a step function.

(2) The smaller h Is, the smoother the density
estimate will be. However, given a finite
number of observations, when h is smaller
than most of the distances between two
points, the density estimate would become
more discrete.

g Q: What is the “optimal” choice of h?
l (Optimal bin = 1.322*logN = Sturge’s Rule)
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m The Nawe Density Estimator
-> Instead of rectangle, allow the weight is

centered on X. From Silverman (1986),

o1& (XX
f(x):ﬁzﬁw(x hx'j,

=1

where (1 | X |< 1
w(x) =< *' o
0, Otherwise.
Because the estimate Is constructed from a
moving window of width 2h, it is also

called a moving-window histogram.




Dotplot of N(0,1), n=26
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Histogram Estimate (n=26, N(0,1))
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also has jumps (similar to the histogram
estimate) at the observation points. By
modifying the weight function w(.) to be
more continuous, the raggedness of the

m Kernel Estimator:
—> The na've estimator Is better than the
histogram, since weight is based on distance
between observations and x. However, It
- nawe estimate can be overcome.



—> The kernel estimate Is as following:

f(X) ii (X;Xij’

1=1

where j K(t)dt =1 is the kernel of the
estimator.

-> Usual choices of kernel functions:
Guassian (i.e., normal), Cosine, Rectangular,

Triangular, Lapalce.

Note: The choice of the bandwidth (i.e., h) Is
more critical than the kernel function.




)

(x

000 005 010 015 020 025 030 035

f

| ——

—1 0

Example of a Kernel Estimator



1.0

|

< kernel functions
—— Rectangular

© - Tnanguj.llar

o -------  (Gaussian

0.4

0.2

0.0

......

‘‘‘‘‘

I | I
-3 -2 -1

7 e % o g@c(Kernel Function) st fix




Freguency

o.M 0.02 0.03 0.04

0.00

7 e 1% S e i) (5)

Gaussian kernel Eeatangular kernel Triangular kernel
_ 3 _ & N
ﬂ = o
(| ) ‘
— i o R
= = ~
g g
_ 58 g o
g = g =
LL LL
_ o o
= =
i = 2
I_uu.ltuu.l.ui.mlml.umufuumlm.l_l o I_Luu.truu.l.u1.tuutlruuuu11uuu1uu.|_l - I_Luu,lmuml_uumtuuuuruuw[um_l
40 60 a0 100 40 60 a0 100 40 &0 g0 100
Waiting times (in min.) Waiting times (in min.) Waiting times (in min_)



0.08p

Pypelx); h=5.0

0.08}
0.o7h
0.06
E=]
W p.0s
%
0.04
g
[vH
0.03}
0.02
0.1}
10
X
0.035; 0.03
0.0 0.025¢
0.025
o.02}
o
n.o2f =
L
- D015
bad
0.015} B
e
i
oot
0.01
0.005 0.005¢ ,#—W fd?%{“i‘:;:._:xﬂ.ﬂ
T e S Tl
= e




1.5

1.0

0.5

0.0

Nonparametric Density Estimates (n=26, N{0,1))

- e

0.0

0.2

0.4

0.5

0.3

1.0




Density

0.06
|

—— Fitted two—component mixture density
- - - Fitted single normal density

0.05
I

002 003
| |

0.01
|

0.00
I

40 20 60 70 80 90 100 110

Waiting times (in min.)
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observations. But, instead of distance, the
nearness Is measured according to the
number of other observations between a
point and the specified observation.

For example, If X, and x are adjacent In
the ordering, then x is said to be 1-neighbor
of xy. If another observation between x, and

m Nearest-neighbor Estimator: (NNE)
—> Another usage of observations Is to use the
concept of “nearness” between points and
N
l X, then x Is said to be 2-neighbor of x,.



—> The nearest-neighbor density estimates are
based on averages of the k nearest neighbors
In the sample to the point x:

A 1- 1 X=X
=20 0 K[hkmj’

where h, (X) is the half-width of the smallest
Interval centered at x containing k data points.

Note: Unlike kernel estimates, the NNE use

B variable-width window.
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About Density Estimation

m Basically, there are two major concern in
density estimation:

—>Local vs. Global

Using more observations might incur bias
but fewer observations have larger variance,
l.e., a dilemma between (Bias)* vs. Variance.

-> Edge Effect

The end points have very few observations
and the estimates may have larger variance.




m Linear Smoother:

- The goal is the smooth estimates M of a
regression function M(x) =E(Y | X =x). A
well-known example is the ordinary linear
regression, where the fitted values are

¥ =Hy, where H =X (X'X)™*X"

-> A Linear Smoother Is the one which the
smooth estimate satisfies the following form:

y=3Y,
where S IS an n x n matrix depending on X.




m Running Means:

—> The simplest case Is the running-mean
smoother which computes ¥; by averaging
yj’s for which x; falls in a neighborhood of X;.

—> One possible choice of the neighborhood N;
IS to adapt the idea in Nearest-neighbor where
N; 1s the one with points x; for which |i—J| <k.
Such a neighborhood contains k points to the
left and k points to the right. (Note: The two
tails have fewer points and could be less
smooth.)




Note: The parameter k, called the span of the
smoother, controls the degree of smoothing.

m Example 2. We will use the following data to
demonstrate the linear smooth methods
Introduced In this handout. Suppose that

Y, =sin X, +¢, 0<X <,

where the noise & 1s normally distributed with
mean 0 and variance 0.04. Also, the setting of
X 1s 15 points on [0,0.3x], 10 points on
[0.3 =,0.7] and 15 points on [0.7mw,x].




Running means (y=sinx)
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m Kernel Smoothers

-> The product of a running-mean smoother Is
usually quite unsmooth, since observations
are getting equal weight regardless their
distance to the point to be estimated. The
kernel smoother with kernel K and window

2h uses .
Yi = ZWiijw

JeN;

S GO O G

where




Notes:

(1) If the kernel I1s smooth, then the resulting
output will also be smooth. The kernel
smoother estimate can thus be treated as a
welighted sum of the (smooth) kernels,

(2) The kernel smoothers also cannot correct
the problem of bias in the corners, unless the
welight of observations can be negative.
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m Spline Smoothing:

-> For the linear smoothers discussed previously,
the smoothing matrix S Is symmetric, has
eigenvalues no greater than unity, and produce
linear functions.

- The smoothing spline is to select M so as to
minimize the following objective function:

S,(M) == DIy, ~M()F + 2[TM" O ot

where A > 0 and M e C3.



m What are Splines?

-> Spline functions, often called splines, are
smooth approximating functions that behave
very much like polynomials.

-> Splines can be used for two purposes:
(1) Approximate a given function (Interpolation)

(2) Smooth values of a function observed with
noise

g Note: We use terms “interpolating splines” and
l “smoothing splines” to distinguish.



—> Loosely speaking, a spline Is a piecewise
polynomial function satisfying certain
smoothness at the joint points. Consider a
set of points, also named the set of knots,
K ={X,, X, ..., X, JWith X, <X, <---<X_..

-> Plecewise-polynomial representations:

S(X) =+

-

.

0y (X) = p(X) X<X
0, (X) X, <X <X,
pm (X) Xm—l S X< Xm

P (X) X <X



1[][][][] 50[][]

15[]0[]

I I i T i I I
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X

E An Example of Cubic Splines

Q: Is it possible to use a polynomial to do the job?



Prob. of death {log scale)

-12

age

Heligman-Pollard #-3] # % # & 2 a7v = & 5
(A,B,C,D,E,F,G,H) = (.000544,.0170,.101,.000158.10.72,18.67,.0000183,1.11)
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m Example 2. (continued)
- We shall use cubic splines with knots at

{0,21/3,4%/3,27} and compare the results of
smoothing for different methods.

Note: There are also other smoothing methods
avallable, such as LOWESS (LOESS for an
updated version) and running median (l.e.,
nonlinear smoothers), but we won’t cover
these topics in this class.
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LOWESS (Locally-weighted Polynomial Regression)
or LOESS (Local Polynomial Regression Fitting)
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smoothers differ from the original
observations.

—> The second term, also known as roughness
penalty, measures the smoothness of the
smoothers.

Note: Methods which minimize the objective

Note: Two terms of the right-hand side of the
objective function usually represent
constraints opposite to each other.

—> The first term measures how far the

N
l function are called penalized LS methods.



Example 3 ~ 1988~2002-+# England % Welsh
e e = :%1ﬂaL 0

2>t * Rigtenze 2450 gss) e > %
T4 P ¥ K WWW.r-project.org™ i\  dp £
LR HE AT o B [

t<-sqrt ((0:74));

pois.fit <- gssanova((d/e)~t,family="poisson",weights=e);
est <- predict(pois.fit,data.frame(t=t),se=TRUE);
plot((0:74),1log(d/e) ,type="1",xlab="Age", ylab="Log Mortality");
lines((0:74), (est$fit),col=2);
lines((0:74), (est$fit+1.96*est$se),col=3);
lines((0:74), (est$fit-1.96*estPse),col=4):



http://www.r-project.org/

English and Welsh Mortality Data
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Figure 1 Raw Data (Black), Upper 95%, Lower 95% and Bayes Estimate.




m Example 4. Taiwan 1998-2001 Male Life
Tables (Data can be downloaded from
https://www.moi.gov.tw/cl.aspx?n=4404)

m First, we combine the numbers of deaths and
population from 1998 to 2001, and then
compute the age-specific mortality rates

—> There are 3 knots in Spline smoothing

=2 We can also use “Generalized Additive
Model”( " gam ; in R).
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o
....... LS
— Splinef#=rfEk=1020 30}
— P-5plinef#595% EIE
— P-Splinef#=95% TR
‘E!' —
:
[s]
©
f_l’.'TJ -

0 20 40 60

Age

80




logiax)

Taiwan Male 1998-2001 (Spline vs. GAM)
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2d density plot with ggplot?2

> Try the following commands

2d distribution with
geom_density 2d or
stat_density 2d;

2d Histogram with geom_bin2d()

count
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Small Area Life Table (2014 Penghu Male)
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An Example of Taiwan Life Table




