統計計算與模擬

政治大學統計系余清祥2023年2月28日

第二單元:隨機變數模擬

http://csyue.nccu.edu.tw

以下分配的亂數如何產生?

The 10 examples of *Discrete Random Variables* are the following;

- 1. The number of outcomes of tossing a fair coin.
- 2. The number of students inside the classroom.
- 3. The number of honors during the school year.
- The number of covid cases on a daily basis.
- The number of patients in a ward.
- 6. The number of vaccine dosages.
- 7. The number of eggs sold in a day.
- The number of recoveries from Novel Corona Virus 19 in a week.
- 9. The number of equations used to solve a problem.
- The number of items during the examination.

The 10 examples of *Continuous Random Variables* are the following;

- 1. The distance from your school to your home.
- 2. The minimum salary of an employee.
- The height requirement to become a flight attendant.
- The minimum weight before obesity.
- The average grades you during a semester.
- 6. The amount you invested for the future.
- The temperature during the wet season.
- The minimum temperature to store the vaccines.
- 9. The amount of water that a box can contain.
- 10. The amount of air pressure in a tank.

常見的隨機變數產生方式

(Random Numbers from certain Distribution)

均勻分配以外的隨機變數通常藉由下列方法,透過均勻亂數產生。

- Inverse Transform Method
- Composition Method
- Rejection (and Acceptance) Method
- Alias Method
- Table Method

註:二維以上變數的模擬也類似,但需要矩陣的輔助,將在下一單元介紹。

Normal Distribution

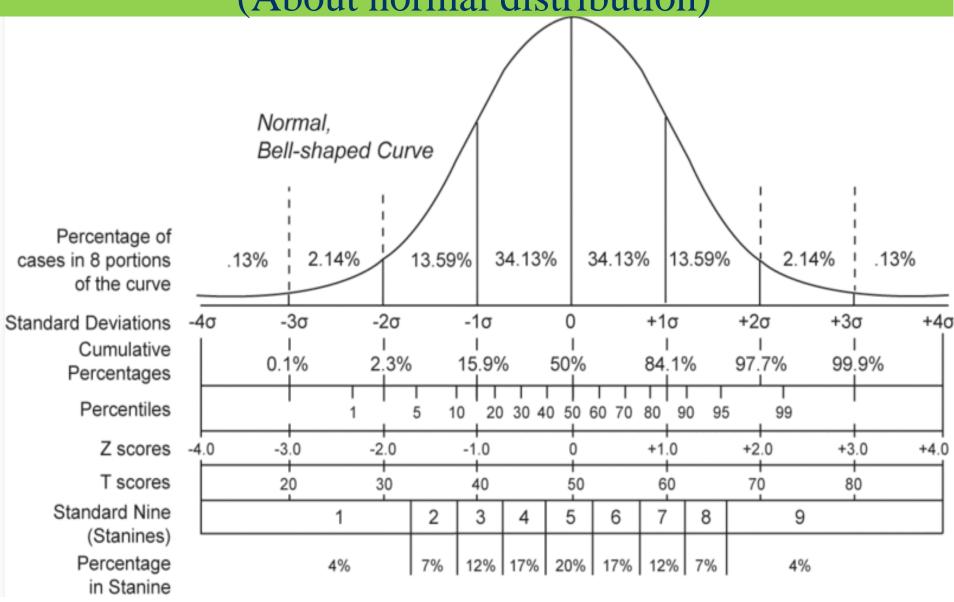
■與均勻分配類似,常態分配是最常用到的分配,常見的常態分配亂數產生法:

(Random numbers from normal distribution is one of the popular choices for simulation.)

- $\rightarrow \sum_{i=1}^{12} U_i 6$ (僅為近似,only approximation)
- → Box-Muller
- → Polar
- → Ratio-of-uniforms

常態分配的重要特性

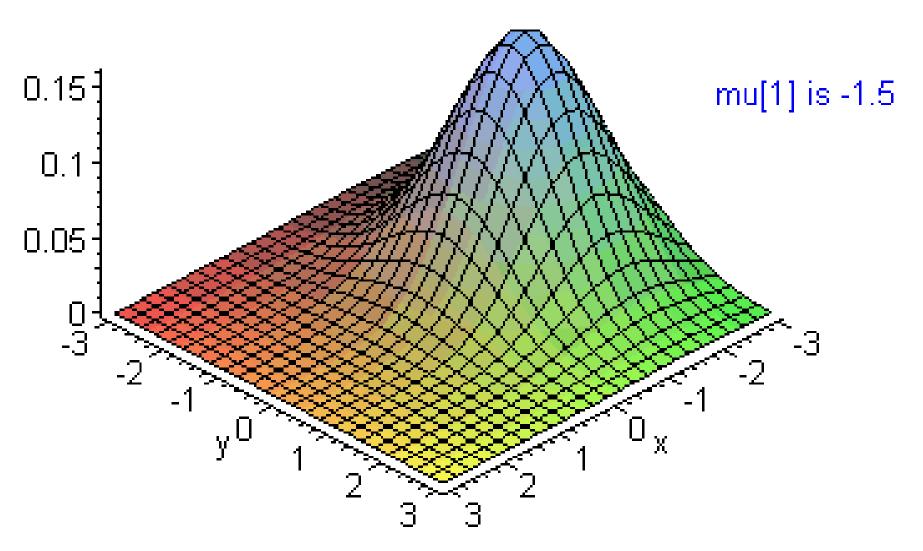
(About normal distribution)



https://upload.wikimedia.org/wikipedia/commons/b/bb/Normal_distribution_and_scales.gif

二維與多維常態分配

(Bivariate and Multivariate Normal Distribution)



https://www.statisticshowto.com/wp-content/uploads/2015/09/Bivariate41.gif

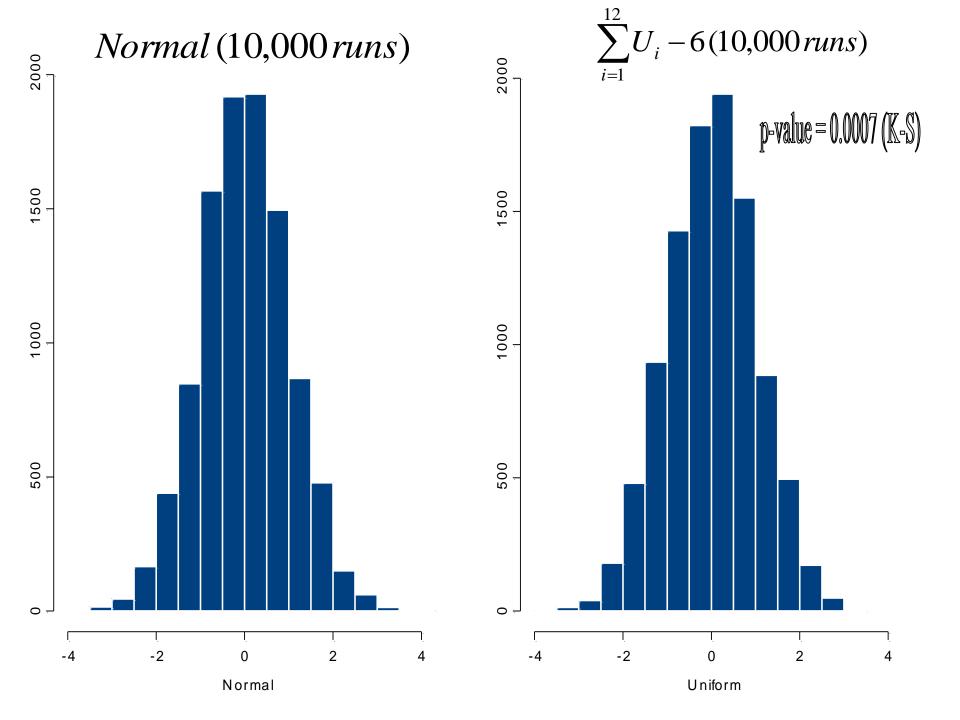
$$Y = \sum_{i=1}^{12} U_i - 6 \quad (近似法)$$

→因為Y的期望值與變異數等於

$$E(Y) = E(\sum_{i=1}^{12} U_i) - 6 = 6 - 6 = 0$$

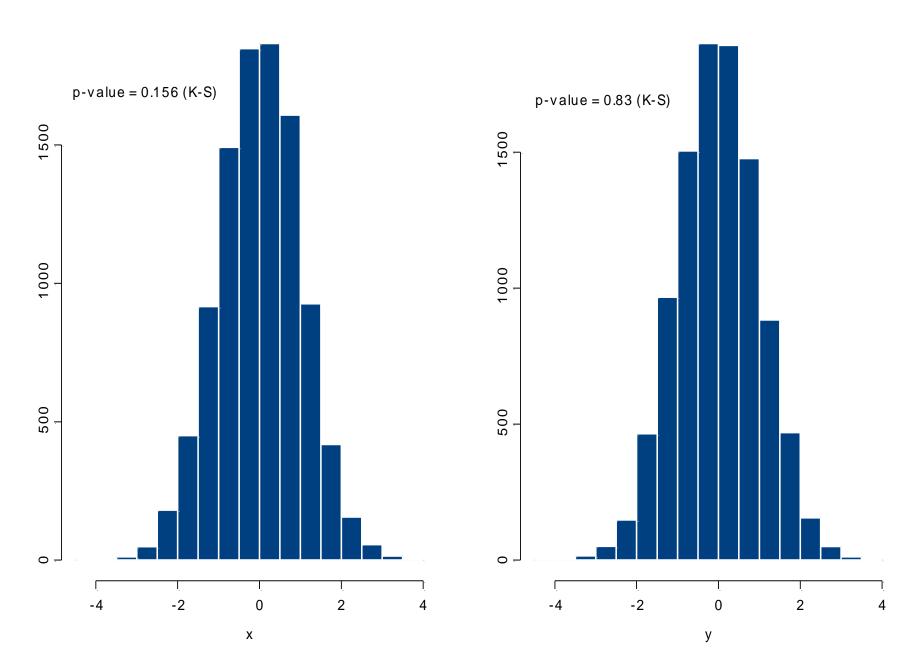
$$Var(Y) = 12 \cdot Var(U_i) = 12 \cdot \frac{1}{12} = 1$$

與標準常態分配相同。

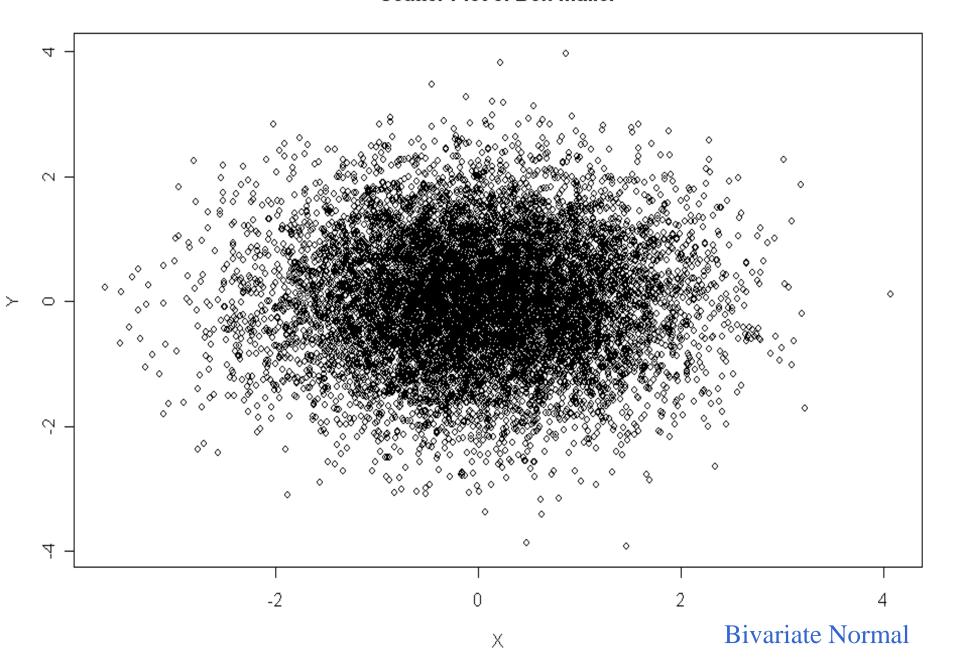


- Box and Muller(1958)
- → The best known "exact" method for the normal distribution.

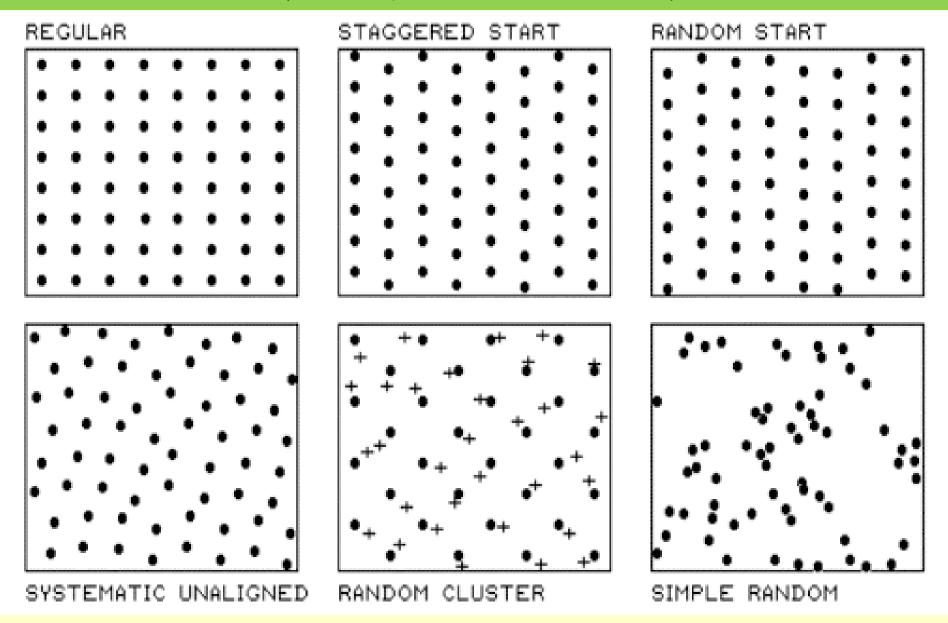
- Algorithm
- 1. Generate U_1 , $U_2 \sim U(0,1)$
- 2. Let $\theta = 2\pi U_1$ $E = -log U_2 \& R = \sqrt{2E}$
- 3. Then $X = R \cos \theta$ and $Y = R \sin \theta$ are independent standard normal variables.



Scatter Plot of Box-Muller



二維觀察值的可能特性



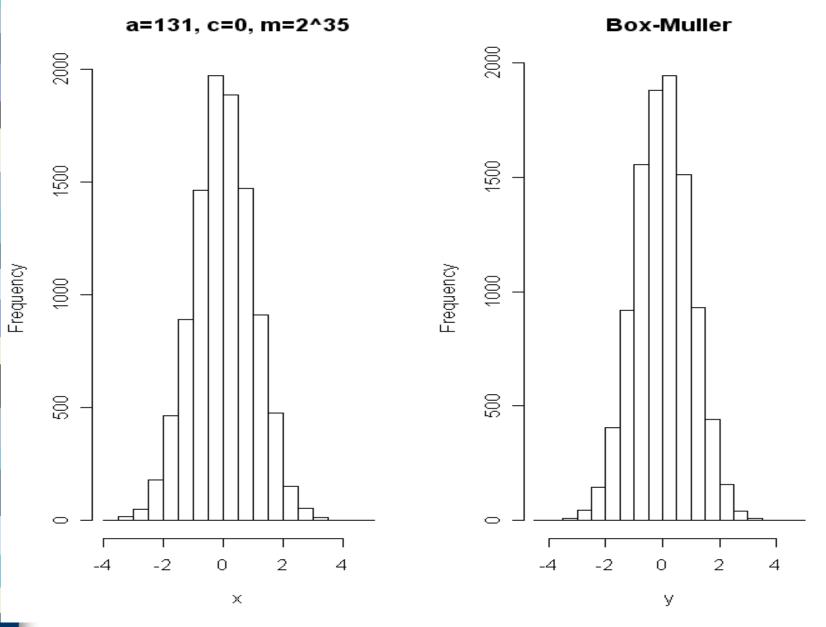
 $https://lh3.googleusercontent.com/proxy/Y_bqJ5dNr3BMtfYSiabax1jiqY3MuwnHxVK590HoXbemgZsAaFThDRiivGT_qp_jOS2E4JikO1eYm-yFgmVqfDvIjXWqleUQ4U-lWMJ8oSNO_6E$

Note: Using Box-Muller method with congruential generators must be careful. It is found by several researchers that

$$a(乘數) = 131$$

 $c(增量) = 0$
 $m(除數) = 235$

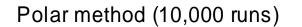
would have $X \in (-3.3,3.6)$. See Neave (1973) and Ripley (1987, p.55) for further information.



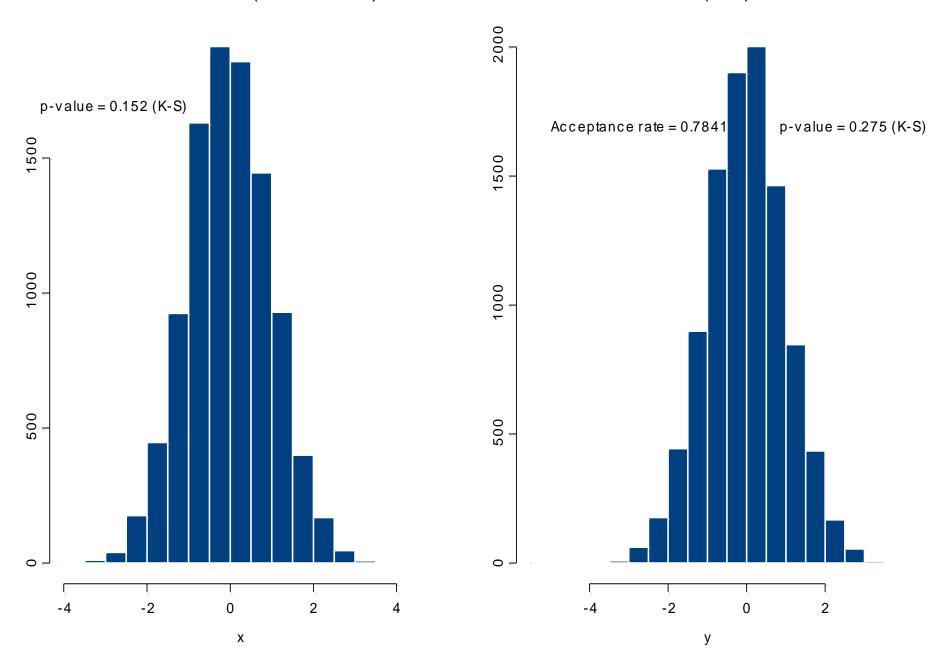
I use 123,456 and 3,456 as seeds but did not find problems.

- Polar Method (recommended!)
- → Rejection method for generating two independent normal variables.

- Algorithm
- 1. Generate V_1 , $V_2 \sim U(-1,1)$ retain if $W = V_1^2 + V_2^2 < 1$
- 2. Let $C = \sqrt{-2W^{-1} \log W}$
- 3. Then $X = CV_1$ and $Y = CV_2$ are independent standard normal variables.

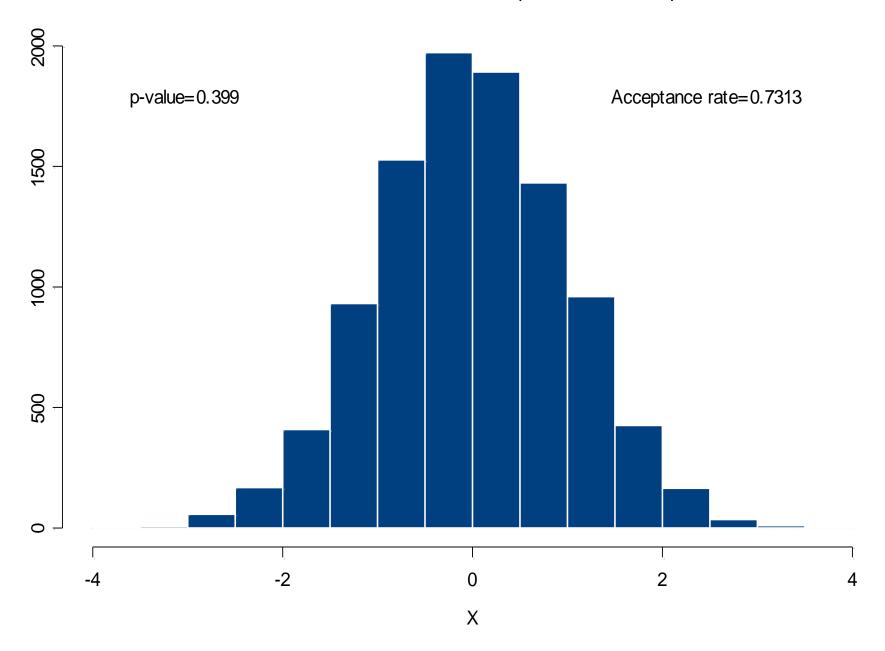


Correlation(X,Y)=0.0087



- Ratio-of-uniforms (recommended!)
- →Similar to Polar method, Ratio-of-uniforms is a rejection method.
- Algorithm
- 1. Generate $U_1, U_2 \sim U(0, 1)$, and let $V = \sqrt{2/e} (2U_2 1)$
- 2. Let $X = V / U_1$, $Z = X^2/4$
- 3. Retain if $Z < I U_I \rightarrow$ Suggest deleting this step!
- 4. Retain if $Z \le 0.259 / U_1 + 0.35 \& Z \le -\log U_1$
- 5. Then *X* is normally distributed.

Ratio-of-uniforms (10,000 runs)



- ■問題:隨機變數有不同產生方法時,你/ 妳會選擇哪一種?(Choices of Generation) (有哪些判斷標準可供參考?)
- →產生效率(e.g.成功接受率)?
- →方法的複雜/方便程度?
- →方法是否有瑕疵?(例如:與線性同餘法 配合時是否有瑕疵?)
- →取得的方便/廣為接受的方法?
- →如何綜合判斷及考量?

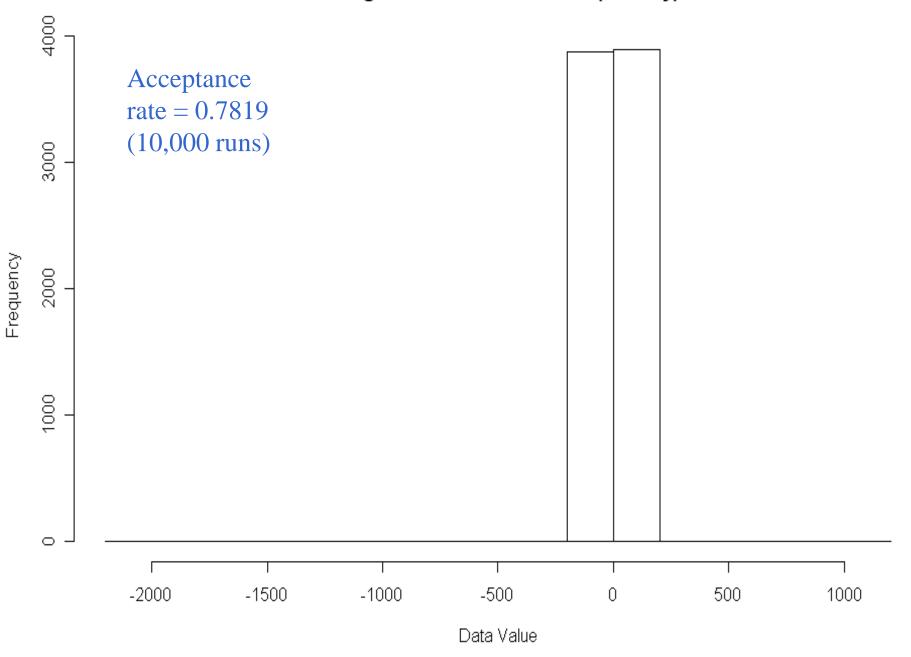
- ■是否有需要開發新的隨機變數產生方法?
- →除非有特別需求(例如:學術研究、軟體配合等),或是目標的隨機變數較為特殊,建議採用已經廣為大家認可的方法,可省卻驗證方法是否有效,也較不易遭受質疑。註:如果其他軟體可以產生需要的變數,或者自接由該軟體輸出亂數,或者參考該軟
- 註:如果其他軟體可以產生需要的變數,或者直接由該軟體輸出亂數,或者參考該軟體產生亂數的語法。(但可能會遭遇問題!)

- Ratio of Uniform (Cauchy Distribution)
- →Ratio-of-uniforms can also be used to create random variables from Cauchy Distribution.
- Algorithm
- 1. Generate U_1 , $U_2 \sim U(0,1)$, and $V = 2U_2 1$ retain if $U_1^2 + V_1^2 < 1$.
- 2. Then $X = V/U_1 \sim Cauchy(0,1)$, i.e.

$$f(x) = \frac{1}{\pi} \frac{1}{1+x^2}.$$

e.g. 10,000 runs \rightarrow p-value=0.9559 (Acceptance rate = 0.7819)

Histogram of Ratio-of-Uniform (Cauchy)



Inverse Transformation Method

Generates a random number from a probability density function by solving the probability. Density function's variable in terms of randomly generated numbers. This is achieved as follows:

- We solve the inverse of the integral of our probability density function at an arbitrary point a F(a), in terms of a random number r.
- We generate a unique random variable a, as follows: $a = F^{-1}(r)$. The foundation of this method is $F(X) \sim U(0,1)$ for all X.

- Note: Usually, we only use Inversion to create simpler r.v.'s, such as exponential distribution (i.e. $Exp(\lambda) = -\lambda \log(U(0,1))$. Although Inversion is a universal method, it may be too slow (unless subprograms to calculate F⁻¹ are available).
- → In other words, although theoretically it is possible to create any r.v.'s, usually there are simpler methods.

Example 1. $F(x) = x^2$, $0 < x < 1 \rightarrow X = U^{1/2}$.

- Example 2. Let $X_1, X_2, ..., X_n \sim F(x)$ and we want to generate the minimum and maximum of X's.
- ⇒ Since $Y_n = \max(X_1, ..., X_n) \& Y_1 = \min(X_1, ..., X_n)$ which means $F_{y_n}(y) = [F(y)]^n \& F_{y_1}(y) = 1 - [1 - F(y)]^n$, we can generate these two r.v.'s by $Y_n = F^{-1}(U^{1/n}) \& Y_1 = F^{-1}(1 - U^{1/n})$.

Or,
$$Y_n = U^{1/n} & Y_1 = 1 - U^{1/n} \text{ if } X \sim U(0,1).$$

Example 3. Generate $X \sim Poisson(\lambda)$, i.e. $F(i-1) = P(X \le i-1) < u \le P(X \le i) = F(i)$,

where $i \in \{0, 1, 2, ...\}$.

- Algorithm:
- 1. Generate $U_1 \sim U(0,1)$ and let i = 0.
- 2. If $U_1 \ge F(i)$, let i = i + 1; Otherwise X = i.

Note: This method can be used to generate any discrete distributions.

Notes:

- (1) If total number of classes \geq 30, we start from the middle (or mode).
- (2) The expected number of trials is E(X)+1.
- (3) We can use "*Indexed Search*" to increase the efficiency:

⇒Fix
$$m$$
, let $q_j = \min\{i \mid F(i) \ge \frac{j}{m}\}, j = 0,...,m-1$
Step 1.Generate $U \sim U(0,1)$, let $k = \lfloor mU \rfloor \& i = q_k$
Step 2.If $U \ge F(i)$, let $i = i + 1$;
Otherwise $X = i$.

- Example 4. $X \sim Poisson(10)$
- (1) <u>Usual method</u>: 11 comparisons on average
- (2) Mode: Reduced to about 3.54 comparisons
- (3) Indexed search: we choose m = 5, i.e.

$$q_0 = 0$$
, $q_1 = 7$, $q_2 = 9$, $q_3 = 11$, $q_4 = 13$.

Under 10,000 simulation runs (S-Plus), I found that one check on the table plus 2.346 comparisons → 3.346

(Comparing to 3.3 in Ripley's book)

Composition Method

■ We can generate complex distribution from simpler distributions, i.e.

$$F(x) = \sum_{i=1}^{m} \alpha_i F_i(x),$$

where $F_i(x)$ are d.f. of other variables.

→Or, from a conditional distribution,

$$f(x) = \sum_{i} p_{i} g(x | y = i)$$

$$f(x) = \int g(x \mid y) dF_Y(y).$$

$$\blacksquare$$
 Example 1. To simulate x , where

$$P(x=i) = \begin{cases} 0.05, & i = 1,2,3,4,5 \\ 0.15, & i = 6,7,8,9,10 \end{cases}$$

We independently generate $x_1 \in U\{1, 2, ..., 10\}$ and $x_2 \in U\{6,7,...,10\}$. Let $X=X_1$ or X_2 with probability 0.5. $\begin{cases} 0.3277, i = 0 \\ 0.4096, i = 1 \end{cases}$

- **Example 2.** $X \sim B(5,0.2)$
- → Sampling on each digit:

$$P(X = i) = \begin{cases} 0.1056, i = 2\\ 0.2048, i = 2\\ 0.0512, i = 3\\ 0.0064, i = 4\\ 0.0003, i = 5 \end{cases}$$

■ Table method: (Composition)

Example 1. $X \sim B(3, 1/3)$

- Algorithm:
- 1. Generate $U \sim U(0,1)$
- 2. If $0 \le U < 0.8$, let I = [10U] + 1, $X = a_1[I]$ $0.8 \le U < 0.98$, let I = [100U] - 80 + 1, $X = a_2[I]$ $0.98 \le U$, let I = [1000U] - 980 + 1, $X = a_3[I]$

其中
$$a_1[.] = 00\ 1111\ 22$$
 $a_2[.] = 0000000000\ 1111\ 22\ 333$
 $a_3[.] = 00000\ 11111\ 22\ 3333333$

Example 3. Generate an r.v. *X* from

$$f(x) = n \int_{1}^{\infty} y^{-n} e^{-xy} dy, \quad 0 < x < \infty,$$

where
$$dF_Y(y) = \frac{n \, dy}{y^{n+1}}, 1 < y < \infty, n \ge 1.$$

- Algorithm:
- 1. Generate U_1 , U_2 from U(0,1)
- 2. Let $Y \leftarrow (U_1)^{-1/n}$
- 3. Return $X \leftarrow -log(U_2)/y$

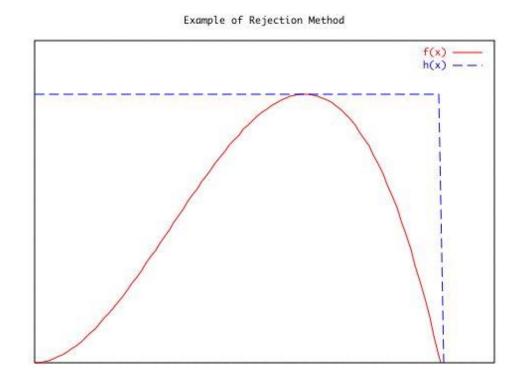
Note:
$$dF_Y(y) = \frac{n \, dy}{y^{n+1}} \Rightarrow F_Y(y) = \frac{1}{y^n} \sim U(0,1).$$

Rejection Method

Generates random numbers for a distribution function f(x). This is achieved as follows:

- Define a comparison function h(x) such that it encloses the desired function f(x).
- Choose uniformly distributed random points under h(x).
- If a point lies outside the area under f(x) reject it and choose another point.

Illustration of the Rejection Method



The following is an illustration of the rejection method using a square function for the comparison function.

Example 1. $X \sim \text{Beta}(2,4)$, i.e. E(X) = 1/3,

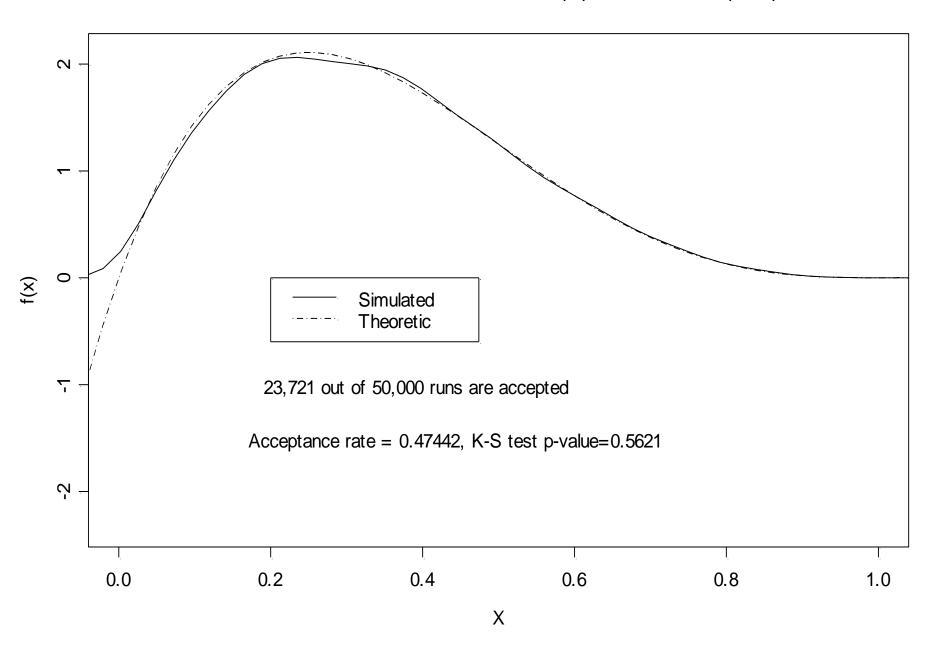
$$f(x) = 20x(1-x)^3$$
, $0 < x < 1$.

Then we use g(x)=1, 0 < x < 1 as "envelop" to create f(x).

Note:
$$\frac{f(x)}{g(x)} = 20x(1-x)^3 \le \frac{135}{64} = C \approx (0.4741)^{-1}$$
.

- Algorithm:
- 1. Generate X, $U_1 \sim U(0,1)$.
- 2. If $U_1 \le \frac{f(x)}{C \cdot g(x)}$ return Y = X. (Q: Rejection rate?)

Theoretic and simulated f(x)'s for Beta(2,4)



Example 2. Generate Gamma(3/2,1), i.e.

$$f(x) = \frac{2}{\sqrt{\pi}} x^{\frac{1}{2}} e^{-x}, x > 0.$$

We want to generate X from $g(x) = \frac{2}{3}e^{-2x/3}$.

The max. of f(x)/g(x) is obtained when

$$\frac{1}{2}x^{-1/2}e^{-x/3} = \frac{1}{3}x^{1/2}e^{-x/3} \Rightarrow x = \frac{3}{2},$$

since
$$\frac{f(x)}{g(x)} = \frac{3}{\sqrt{\pi}} x^{1/2} e^{-x/3}$$
.

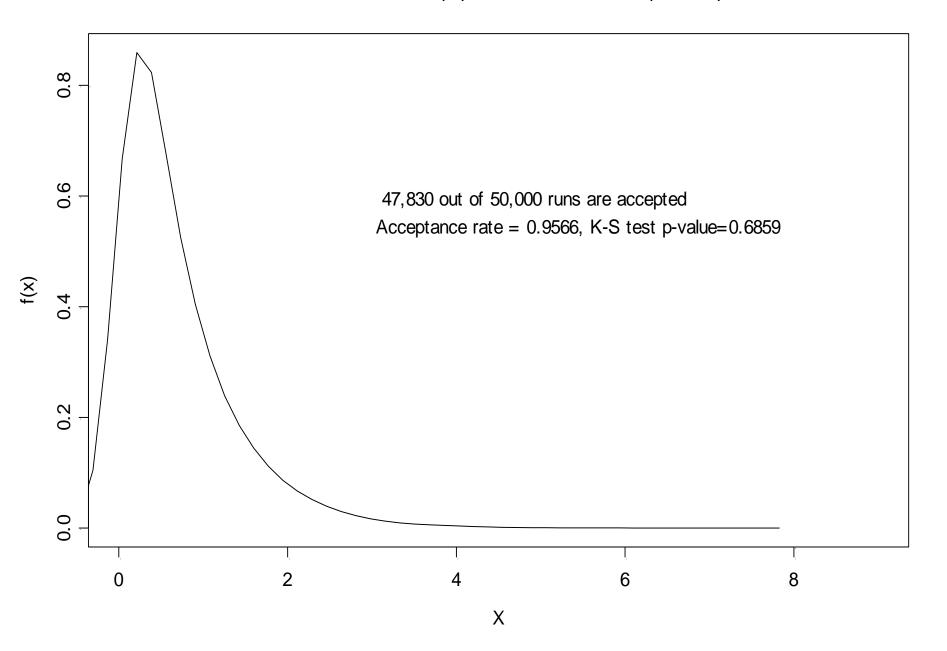
$$\therefore C = \frac{3}{\sqrt{\pi}} \left(\frac{3}{2}\right)^{1/2} e^{-1/2} = \frac{3\sqrt{3}}{\sqrt{2\pi e}} \cong 1.257317.$$

- Algorithm:
- 1. Generate U, $U_1 \sim U(0,1)$ Let $X = -3log\ U/2$.

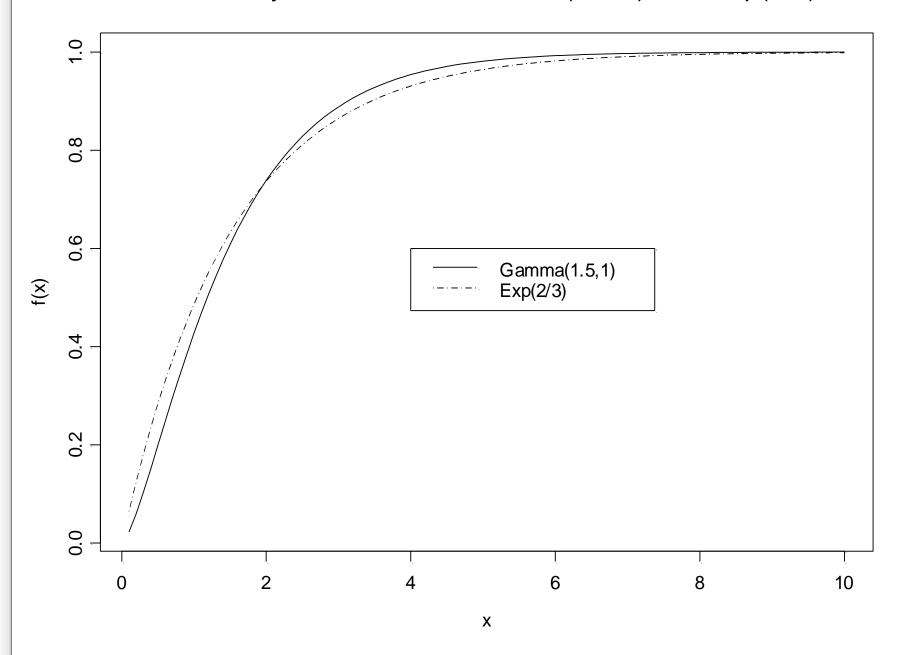
2. Return
$$Y = X$$
 if $U_1 \le \frac{f(y)}{C \cdot g(y)}$.

- Question: Why do we choose $Y \sim Exp(2/3)$?
- \rightarrow Gamma(3/2,1) and Exp(2/3) have the same mean!

Simulated f(x)'s for Gamma(3/2,1)



Density functions of Gamma(1.5,1) and Exp(2/3)



- Alias method: Looks like "rejection" but it is indeed "composition".
- **Example** 1. $X \sim B(3, 1/3)$, i.e.

$$P(X = i) = \frac{8}{27}, \frac{12}{27}, \frac{6}{27}, \frac{1}{27}$$
 for $i = 0, 1, 2, 3$.

$$P(X = 0) = \frac{1}{4} + \left[\frac{2/27}{4} + \frac{3/27}{4} \right] = \frac{32}{108};$$

$$P(X=1) = \frac{25}{108} + \left\lceil \frac{23/27}{4} \right\rceil = \frac{48}{108};$$

$$P(X=2) = \frac{24}{108};$$

$$P(X=3) = \frac{4}{108}$$
.

108a
$$32 \ 48 \ 24 \ 4$$

A - - - - - - 1

27Q 27 27 27 27 \longrightarrow 27 27 27 27

Ind. T T T T T T T T

Move 1-4/27=23/27

Move 1-24/27=3/27

1 27 27 27 27 27 27 27 27

27 27 27 27 27 27 27

28 29 25 24 4

- - 0 1 - 0 0 1

27 27 27 27 27 27

T T T F F F F F F F F F

Move 1-25/27=2/27