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The 10 examples of Discrete Random Variables are the following;

. The number of outcomes of tossing a fair coin.

. The number of students inside the classroom.

The number of honors during the school year.

. The number of covid cases on a daily basis.

The number of patients in a ward.

. The number of vaccine dosages.

. The number of eggs sold in a day.

. The number of recoveries from Novel Corona Virus 19 in a weelk.
. The number of equations used to solve a problem.

COONDU HWN

—

. The number of items during the examination.

The 10 examples of Continuous Random Variables are the following;

. The distance from your school to yvour home.

. The minimum salary of an employee.

The height requirement to become a flight attendant.
The minimum weight before obesity.

. The average grades you during a semester.

The amount yvou invested for the future.

The temperature during the wet season.

The minimum temperature to store the vaccines.

The amount of water that a box can contain.

COONODIHAWN o

—

. The amount of air pressure in a tank. https://brainly.ph/question/2493362
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(Random Numbers from certain Distribution)
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m Inverse Transform Method

m Composition Method

m Rejection (and Acceptance) Method

m Alias Method

m Table Method
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Normal Distribution
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(Random numbers from normal distribution is

one of the popular choices for simulation.)

12
> YU, -6 (@& % 1702 > only approximation)
=1

- Box-Muller
- Polar
- Ratio-of-uniforms
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(Bivariate and Multivariate Normal Distribution)
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12
E(Y)=E(Q_ U;)-6=6-6=0
1=1

Var(Y)=12-Var(U.) :12-$ =1
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1. Generate U,, U, ~ U(0,1)
2. Let 6= 27U,
=_logU, & R= V2E
3. Then X =R coséd and Y =R sing are
Independent standard normal variables.

m Box and Muller(1958)
—> The best known “exact” method for the
normal distribution.
m Algorithm
]
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Scatter Plot of Box-Muller

¥ Bivariate Normal
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m Note: Using Box-Muller method with
congruential generators must be careful. It
IS found by several researchers that

a (3k #c) =131
c (¥ £)=0
m (K’/f ﬁi) = 235
would have X € (-3.3,3.6). See Neave

(1973) and Ripley (1987, p.55) for further
Information.




a=131, c=0, m=2"35 Box-Muller
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| use 123,456 and 3,456 as seeds but did not find problems.




m Polar Method (recommended!)

-> Rejection method for generating two
Independent normal variables.

m Algorithm
1. Generate V,, V, ~ U(-1,1)
retain if W =V,*+V,; <1
2.Let c=./—2w " logW
B 3. ThenX=CV,; and Y =CV, are
l Independent standard normal variables.
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m Ratio-of-uniforms (recommended!)

- Similar to Polar method, Ratio-of-uniforms is
a rejection method.

m Algorithm
1. Generate U, ,U, ~ U(0,1),
and let V =+2/e(2U,-1)
2.LetX=V/U,,Z=X4
3. Retain iIf Z <1 - U, - Suggest deleting this step!

B 4.Retainif Z2<0259/U,+0.35&Z <-logU,
lE. Then X 1s normally distributed.
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m Ratio of Uniform (Cauchy Distribution)

—> Ratio-of-uniforms can also be used to create
random variables from Cauchy Distribution.

m Algorithm
1. Generate U,, U, ~ U(0,1), and V=2U, -1
retain if U +V?° <1.

' 2. Then X =V /U, ~ Cauchy(0,1), i.e.
N

1 1
f(x)= .
(X) 7 1+ X°

e.g. 10,000 runs -> p-value=0.9559
(Acceptance rate = 0.7819)
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Inverse Transformation Method

Generates a random number from a probability
density function by solving the probability.
Density function's variable in terms of randomly
generated numbers. This is achieved as follows:

m \We solve the inverse of the integral of our
probability density function at an arbitrary point
a F(a), in terms of a random number r.

m \We generate a unique random variable a, as
B follows: a=F(r). The foundation of this

l method i1s F(X) ~ U(0,1) for all X.




m Note: Usually, we only use Inversion to
create simpler r.v.’s, such as exponential
distribution (i.e. Exp(1) = — 4 log(U(0,1)).
Although Inversion is a universal method, it
may be too slow (unless subprograms to
calculate F*are available).

—> In other words, although theoretically it is
possible to create any r.v.’s, usually there
are simpler methods.




mExample 1. F(X) = x4, 0 <x < 1= X = U2,
1.1.d.
m Example 2. Let X, X,,..., X, ~ F(X)

and we want to generate the minimum
and maximum of X’s.

- Since Y =max( X,,...,X. ) &Y, =min( X,,..., X )

which means £ (y) =[F(y)' &F, (y) =1-[1- F(y)T',
we can generate these two r.v.’s by

Y =F'UY") &Y, =F*'1-U"").
Or, Y, =U""&Y,=1-U""if X ~U(0,).




m Example 3. Generate X ~ Poisson(A), 1.e.
F(i—-1)=P(X <i—-1)<u<P(X <i)=F(i),
where1 €{0, 1, 2,...}.

m Algorithm:

1. Generate U; ~ U(0,1) and let 1 = 0.

2.1fU, >F(), leti=1+1;
Otherwise X = 1.

Note: This method can be used to generate
any discrete distributions.




Notes:

(1) If total number of classes > 30, we start
from the middle (or mode).

(2) The expected number of trials Is E(X)+1.

(3) We can use “Indexed Search” to increase
the efficiency:

Step 1.Generate U~U(0,1), let k=[mU] & I=q,
Step 2.1f U > F(i), leti =i+ 1;
Otherwise X = 1.



m Example 4. X ~ Poisson(10)
(1) Usual method: 11 comparisons on average

(2) Mode: Reduced to about 3.54 comparisons
(3) Indexed search: we choose m =5, I.e.

9,=0,09,=/,9,=9,0,=11, q, =13.

Under 10,000 simulation runs (S-Plus), |

found that one check on the table plus 2.346
comparisons =» 3.346

(Comparing to 3.3 in Ripley’s book)




Composition Method

m We can generate complex distribution from
simpler distributions, I.e.

F(0= e F(x)

where F;(x) are d.f. of other variables.
->Or, from a conditional distribution,

f()=2_p 9(x]y=i)

f(x)=[g(x|y)dR ().




m Example 1. To simulate x, where

0.05, i=12,345

0.15, 1=6,7,89,10

We independently generate x, eU{1,2,...,10}

and x, eU{6,7,...,10}. Let X=X, or X, with
probability 0.5.

P(x=1)=x

(0.3277,i=0

m Example 2. X ~ B(5,0.2) 0.4096.i =1

- Sampling on each digit: 0.2048. i = 2
P(X =i)=4 "~

0.0512,1=3

0.0064,1=4

0.0003,i =5




m Table method: (Composition)

Example 1. X ~ B(3,1/3)
=% 10+ 10—~ 10

P(X=0)=0.296 2 9 6
P(X=1)=0.445 4 4 5
P(X=2)=0.222 2 2 2
P(X=3)=0.037 0 3 7

Rk 8 18 20




m Algorithm:

1. Generate U ~ U(0,1)

2. If 0<U <038, letl =[10U]+1, X =a,[1]
0.8<U <0.98, let | =[100U]-80+1, X =a,[I]
0.98<U, let | =[1000U]-980+1, X = a,[I]

H ¢

—

a,[.] = 00 1111 22
a,[.] = 000000000 1111 22 333
a,[.] = 00000 11111 22 3333333




m Example 3. Generate an r.v. X from

f()=nf y'e?dy, O<x<o

where dF, (y) = 1%
y"

1<y<oo,n2x>1.

m Algorithm:
1. Generate U, U, from U(0,1)

l 2. LetY € (U)h

o 3. Return X € -log(U,)/y
ndy 1

Note: dF, (y)= = ~U(0)).
y"™ y"




Rejection Method

Generates random numbers for a
distribution function f(x). This Is achieved
as follows:

m  Define a comparison function h(x) such
that i1t encloses the desired function f(x).

Choose uniformly distributed random
points under h(x).

If a point lies outside the area under f(x)
reject it and choose another point.




[llustration of the Rejection Method

SR S The following
IS an illustration
of the rejection
method using

a square
function for the
comparison
function.




to create f(x).
Note: 100 =20X(1-X)* < I _cs (0.4741).
g(x) 64
m Algorithm:
1. Generate X, U; ~ U(0,1).

m Example 1. X ~ Beta(2,4), 1.e. E(X)=1/3,
f(x)=20x(1-x)°>, O0<x<l1.
Then we use g(x)=1, 0 <x <1 as “envelop”
]

2.1fF U <) return Y = X. (Q: Rejection

l ate’)} C 9 (X)




f()

Theoretic and simulated f(x)'s for Beta(2,4)

Simulated
Theoretic

23,721 out of 50,000 runs are accepted

Acceptance rate = 0.47442, K-S test p-value=0.5621
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m Example 2. Generate Gamma(3/2,1), I.e.
1
f(x)= —x2 ", x>0.

\/7
" 2 —2x/3

We want to generate X from g(x) = =
The max. of f(x)/g(x) is obtained when

E yY20-x/3 _ l xY207X/3 — y — E’
2 3 2
since f (X) _ 3 WU2g-x/3
g(x) z
(= )“2 iz _ 3V3 ~1.257317.

\/7 27T €




m Algorithm:
1. Generate U, U, ~ U(0,1)
Let X =-3log U /2.

- f(y)
2. ReturnY = X if U, < .
P Chg(y)

m Question: Why do we choose Y ~ Exp(2/3)?
- Gamma(3/2,1) and Exp(2/3) have the same
mean!




f()

0.4

0.8

0.6

0.2

0.0

Simulated f(x)'s for Gamma(3/2,1)

47,830 out of 50,000 runs are accepted
Acceptance rate = 0.9566, K-S test p-value=0.6859
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® Alias method: Looks like “rejection” but it
1s indeed “composition”.

m Example 1. X ~ B(3,1/3), I.e.
8 12 6 1

P(X=1)=—,—,—, for1=0,12,3.
27 27 27 27
P(X=O)=1+[2/27+3/27}:£;
4 4 4 108
P(X :1):§+{23/27}:4_8;
108 4 108
24
P(X=2)=—;
( ) 108
P(X =3)= -

108
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