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矩陣運算(Matrix Computation)

矩陣運算在統計分析上扮演非常重要的角
色，包括以下方法：

◼ Multiple Regression

◼ Generalized Linear Model 

◼ Multivariate Analysis 

◼ Time Series 

◼ Other topics (Random variables) 

註：建議同學複習線性代數，可以幫助瞭
解本次講義。



Multiple Regression

◼ In a multiple regression problem, we want 
to approximate vector Y by fitted values     
(a linear function of a set p predictors), i.e.,

(if the inverse can be solved.)

Note: The normal equation is hardly solved 
directly, unless it is necessary.
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◼ In other words, we need to be familiar with 

matrix computation, such as matrix product 

and matrix inverse, i.e., X’Y and               

◼ If the left hand side matrix              is a upper 

(or lower) triangular matrix, then the estimate                               

can be solved easily,   
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矩陣與向量空間
(Matrix and Vector Space)
◼如果A = ZX，A: m n、Z: m k、X: k n。

以向量的角度而言，A矩陣的行向量是Z

矩陣行向量的線性組合：
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Gauss Elimination

◼ Gauss Elimination is a process of “row” 

operation, such as adding multiples of rows 

and interchanging rows, that produces a 

triangular system in the end.

◼ Gauss Elimination can be used to construct 

matrix inverse as well. 
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◼ An Example of Gauss Elimination:
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◼ The idea of Gauss elimination is fine, but it 

would require a lot of computations. 

→ For example, let X be an n p matrix. 

Then we need to compute X’X first and 

then find the upper triangular matrix for 

(X’X). This requires a number of n2 p 

multiplications for (X’X) and about another

p p(p-1)/2 O(p3) multiplications for the 

upper triangular matrix. 



何謂大O及小O？

◼大O (big o)及小O (little o)

→常見的定義為

註：大O代表同樣的收斂速度，小O代表
較快的收斂的速度。
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Cholesky Decomposition

◼ If A is positive semi-definite, there exists an 

lower triangular matrix L such that 

since lcr = 0 for  r > c.
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◼ Thus, the elements of L equal to 

Notes: (1) If A is “positive semi-definite” if for 

all vectors v Rp, we have v’Av  0, where A 

is a p p matrix.    If v’Av = 0 if and only if    

v = 0, then A is “positive definite.” 

(2) In R, Cholesky decomposition requires 

symmetric and positive definite. 

./)(

;)(

1

1

1

1

2/1

ii

i

k
kjkijiji

i

k
kjkiiiii

lllal

llal





−

=

−

=

−=

−=



Applications of Cholesky decomposition:

◼ Simulation of correlated random variables 

(and also multivariate distributions). 

◼ Regression

◼ Determinant of a symmetric matrix, 
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◼ Example of Cholesky decomposition

→We want to generate two random variables,

Let =0.5. We generate X1 & X2 from N(0,1).
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◼ Cholesky decomposition (R-code)

→We shall demonstrate using R. 
x=matrix(rnorm(2000),ncol=1000)
apply(x,1,var) 

apply(x,1,summary) 
cor(x[1,],x[2,])

A=matrix(c(1,0.5,0.5,1),ncol=2)
a=t(chol(A))
x1=a%*%x
apply(x1,1,var) 

apply(x1,1,summary) 
cor(x1[1,],x1[2,])
ks.test(x1[1,],”pnorm”)
ks.test(x1[2,],”pnorm”)



◼ Cholesky decomposition (Conti.)

→Another way to generate is via  

and we have 

Possible solution includes 
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QR Decomposition

◼ If we can find matrices  Q and R  such that 

X = QR, where Q is orthogonal (Q’Q = I) 

and R is upper triangular matrices, then   
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Gram-Schmidt Algorithm

◼ Gram-Schmidt algorithm is a famous 

algorithm for doing QR decomposition. 

◼ Algorithm: (Q is n p and R is p p.)
for (j in 1:p) { 

r[j,j]  sqrt(sum(x[,j]^2))

x[,j]  x[,j]/r[j,j] 

if (j < p) for (k in (j+1):p) {

r[j,k]  sum(x[,j]*x[,k])

x[,k]  x[,k] – x[,j]*r[j,k]

}

}

Note: Check the function “qr” in R and S-Plus. 



QR指令在R的操作(QR in R)

◼ QR矩陣分解在 R 的指令為「qr」，R會

提供矩陣的秩數(Rank)及其它相關訊息；

如果需要求出Q及R矩陣，則要透過指令

「qr.Q」及「qr.R」。

A=matrix(c(1:9),ncol=3) 

qr(A) 

qr.Q(qr(A))%*%qr.R(qr(A))

qr.Q(qr(A))%*%t(qr.Q(qr(A)))

t(qr.Q(qr(A)))%*%qr.Q(qr(A))



◼ Notes: 

(1) Since R is upper triangular, i.e.,       is easy 

to obtain, 

(2) The idea of the preceding algorithm is 

1−R
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◼ Notes: (continued)

(3) If X is not of full rank, one of the columns 

will be very close to 0. Thus,            and so 

there will be a divide-by-zero error. 

(4) If we apply Gram-Schmidt algorithm to 

the augmented matrix             , the last 

column will become the residuals of 
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Other orthogonalization methods:

◼ Householder Transformation is a 
computationally efficient and numerically 
stable method for QR decomposition. The 
Householder transformation we have 
constructed are n n matrices, and the 
transformation Q is the product of p such 
matrices.

◼ Given’s rotation: The matrix X is reduced to 

upper triangular form         by making 

exactly subdiagonal element equal to zero at 
each step. 
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Sweep Operator

◼ The normal equation is not solved directly 

in the preceding methods. But sometimes 

we need to compute sums of squares and 

cross-products (SSCP) matrix. 

◼ This is particularly useful in stepwise 

regression, since we need to compute the 

residual sum of squares (RSS) before and 

after a certain variable is added or removed.  



◼ Sweep algorithm is also known as “Gauss-

Jordan” algorithm. 

◼ Consider the SSCP matrix

where X is np and y is p1.

◼ Applications of the Sweep operator to 

columns 1 through p of A results in the 

matrix  
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Details of Sweep algorithm 

Step 1: Row 1

Step 2: Row 2

The operation of Row 2 is done via minus 

the right term of Row 1 times .' Xy
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◼ Notes: 

(1) If you apply the Sweep operator to columns 

i1, i2, …, ik, you’ll receive the results from 

regressing y on

— the corresponding elements in the last 

column will be the estimated regression 

coefficients, the (p+1, p+1) element will 

contain RSS, and so forth. 
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◼ Notes: (continued)

(2) The Sweep operator has a simple inverse; 

the two together make it very easy to do 

stepwise regression. The SSCP matrix is 

symmetric, and any application of Sweep or 

its inverse result in a symmetric matrix, so 

one may take advantage of symmetric 

storage. 



General Least Square (GLS)

◼ Consider the model

where                         with V unknown.

◼ Consider the Cholesky decomposition of V, 

V = LL’, and let 

let 

Then y* = X*+* with                           

and we may proceed with before.

◼ A special case (WLS): V = diag{v1,…,vn}.

, += Xy

),0(~ 2VN 

).()(' 11 −− == LLS
.'*,'*,'*  SandXSXySy ===

),,0(~* 2 N



Eigenvalues, Eigenvectors, and 

Principal Component Analysis

◼ The notion of principal components refers to 

a collection of uncorrelated r.v.’s formed by 

linear combinations of a set of possibly 

correlated r.v.’s. 

◼ Idea: From eigenvalues and eigenvectors, i.e., 

if x and  are eigenvector and eigenvector of 

a symmetric positive semidefinite matrix A, 

then   
.xAx =



◼ If A is a symmetric positive semi-definite 

matrix (pp), then we can find orthogonal 

matrix  such that A =   ’, where

◼ Note: This is called the spectral 

decomposition of A. The ith row of  is the 

eigenvector of A which corresponds to the  

ith eigenvalue i.
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Write                        where 

We should note that the normal equation 

does not have a unique solution. 

is the solution of the normal equations for 

which                        is minimized.            
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Power Method

◼ A naïve method for finding the eigenvalues 

of a matrix is via the fact that 

In other words, the largest eigenvalue will 

dominate the product and eventually we can 

get approximate values of  1 and     .
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Singular Value Decomposition
◼ In regression problem, we have 

or equivalently,

Note: SVD is often used for regression diagnostics, 

data reduction, and graphical clustering.
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◼ The two orthogonal matrices U and V are 

associated with the following result:

The Singular-Value Decomposition

→Let X be an arbitrary np matrix with n p. 

Then there exists orthogonal matrices U: nn 

and V: pp such that ,
0
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◼ Example of SVD:

→You can check if the command “svd” in R 

returns correct outputs. 

A=matrix(c(1:12),ncol=3)

aa=svd(A)

t(aa$u)%*%A%*%aa$v # Diagonal!

aa$u%*%diag(c(aa$d))%*%t(aa$v)

t(aa$u)%*%A     # Upper triangular! 



Application of SVD (Lee-Carter Model)

◼ Lee and Carter (1992) proposed a model to 

forecast the mortality rates of U.S.：

where  

→ change of mortality intensity

→ average mortality of each age group

→ relative change rate of each age group

xttxxxtm  ++=)ln(

t

x

x



Singular Value Decomposition (SVD)

The parameters of Lee-Carter model can be 

estimated via 

Minimize 

→This is done via decomposing the matrix

→We can also use the approximation method, 

or the PCA to achieve similar estimation. 

 −−
xt txxxtm 2))(ln( 

(ln( ) ) T

xt xm UPV− =



SVD Interpretation of Lee-Carter Model

Applying the SVD, i.e.,                                   ,

the matrix U  represents the time component,

P is the singular values, and V is the age

component.

→ is derived from the first vector of the 

time-component matrix and the first singular 

value, and       is from the first vector of the 

age-component matrix. Other vectors 

correspond to the residuals.  

x

(ln( ) ) T

xt xm UPV− =

t



◼ Example of SVD (Lee-Carter model)

→Suppose there are three vectors and their 

relationships to X-axis are similar.  We want to 

use only one vector to express the common 

pattern in these three vectors. (Data Reduction!) 



a1=0.2+0.5*c(1:10)+0.1*rnorm(10)

a2=0.4+0.4*c(1:10)+0.1*rnorm(10)

a3=0.6+0.3*c(1:10)+0.1*rnorm(10)

A=cbind(a1,a2,a3)

x0=cbind(1:10,1:10,1:10)

matplot(x0,A,type="l",xlab="X-Axis",ylab="Y-

Axis")

aa=svd(A)

A

A1=aa$u%*%diag(c(aa$d[1],0,0))%*%t(aa$v)

A1

A2=A-A1

mean(abs(A2/A))
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SVD與影像處理
(Image Processing) 

⚫ 左邊為原圖
→比較3~300個SVD

的影像顯示差異。

3個SVD 88個SVD

300個SVD

45個SVD

https://rpubs.com/aaronsc32/image-compression-svd



資料壓縮方法的比較(Comparing Dimension Reduction)
https://www.researchgate.net/profile/Md_Hossain402/publication/335134919/figure/fig4/AS:826535288250368@1574072777453/Compression-

performance-among-wavelet-Fourier-and-SVD.png



https://ars.els-cdn.com/content/image/1-s2.0-

S0262885606002083-gr1.jpg



Time Series
◼ The time series analysis considered usually 

is ARIMA model, consisting of Auto-

regressive (AR) and Moving Average (MA).  

→AR(1) model

Then the correlation coefficient of Zi and Zj

is   , where             and k=|i-j|.

→General form AR(p):

ntNeeZZ tttt ,,2,1),,0(~, 2

1 =+= − 

k

k  =

pkpkkk

tptpttt eZZZZ

−−−

−−−

+++=

++++=









2211

2211

|| ji−



Time Series (conti.)

Note: The coefficients of AR(p) can be solved 

by the ordinary regression, with some minor 

adjustments of variables. 

→MA(1) model

Then the covariance of Zi and Zj is         ,
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Time Series (conti.)
◼ The general form of ARMA(p,q) is. 

where (B) and (B) are polynomials of the 

backward operator B, i.e., B(Zt)=Zt−1.

→e.g., MA(1) model

Then the covariance of Zi and Zj is          , or

tt eBZB )()(  =

|| ji−



Time Series Estimation
◼ The parameters in AR(p) model can be 

solved using the OLS, since 

Then the parameters are derived by 

minimizing (errors are normally distributed)
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Estimation of AR(p) model

◼ The parameter estimation of AR model is 

easier (MA model requires iterations, since 

the “error” is not observable.)  

→AR(2) model

The coefficients 1 and 2 can be solved by 

(1) OLS (Zt−1 and Zt−2 as independent variables)

(2) Plugging the related numbers (Moment?)

(3) Exact likelihood functions (usually are 

very complicated)

).,0(~, 2

2211  NeeZZZ ttttt ++= −−



Example: Estimation of AR(2) model

◼ Fit AR(2) model to the data “lynx” in R.  

(1) OLS:

and by                                 to give    . 

(2) Moment:

→

(3) Compare to the output from software

→Minitab:

→R(arima):

)6062.0,1542.1,11.710()ˆ,ˆ,ˆ( 210 −=

)1/( 210  −−= ̂

,
1

),(
2

1
1





−
=+ii ZZcorr

2

2

1
22

1
),(






−
+=+ii ZZcorr

)6046.0,1486.1,2177.0,7159.0()ˆ,ˆ,ˆ,ˆ( 2121 −=

)6106.0,1575.1,84.699,4.1545()ˆ,ˆ,ˆ,ˆ( 210 −=

)5997.0,1474.1,45.1545()ˆ,ˆ,ˆ( 21 −=



Example: AR(2) model (conti.)

◼ R also has a lot of options. 

→Several choices in the function “AR” 

ar(lynx, method=“ols”, 2)

(1) OLS:

(2) MLE:

(3) Default:

(4) Burg:

(5) YW:

)6288.0,0320.1()ˆ,ˆ( 21 −=

)6298.0,0555.1()ˆ,ˆ( 21 −=

)6063.0,0379.1()ˆ,ˆ( 21 −=

)6379.0,0634.1()ˆ,ˆ( 21 −=

)6063.0,0379.1()ˆ,ˆ( 21 −=



Note: There are some handouts from the 

references regarding “Matrix Computation”

◼ “Numerical Linear Algebra” from Internet 

◼ Chapters 3 to 6 in Monohan (2001)

◼ Chapter 3 in Thisted (1988) 

◼ Chapter 2 in Gentle et al. (2004)

◼ Chapter 2 in Numerical Recipes in Fortran 77

Students are required to read and understand 

all these materials, in addition to the 

powerpoint notes.   


