
統計計算與模擬

政治大學統計系余清祥

2023年3月21日～27日

第三單元：矩陣運算

http://csyue.nccu.edu.tw

矩陣運算(Matrix Computation)

矩陣運算在統計分析上扮演非常重要的角
色，包括以下方法：

◼ Multiple Regression

◼ Generalized Linear Model

◼ Multivariate Analysis

◼ Time Series

◼ Other topics (Random variables)

註：建議同學複習線性代數，可以幫助瞭
解本次講義。

Multiple Regression

◼ In a multiple regression problem, we want
to approximate vector Y by fitted values
(a linear function of a set p predictors), i.e.,

(if the inverse can be solved.)

Note: The normal equation is hardly solved
directly, unless it is necessary.

Ŷ

.')'(ˆ

)('ˆ)'(

),0(~,

1

2

AYYXXX

equationNormalYXXX

INXY nn

=

=

+=

−









◼ In other words, we need to be familiar with

matrix computation, such as matrix product

and matrix inverse, i.e., X’Y and

◼ If the left hand side matrix is a upper

(or lower) triangular matrix, then the estimate

can be solved easily,

.)'(1−XX

̂























=













































−−−−−

n

n

p

p

pn

npnp

n

n

YX

YX

YX

YX

a

aa

aaa

aaaa

)'(

)'(

)'(

)'(

ˆ

ˆ

ˆ

ˆ

000

00

0

1

2

1

1

2

1

1,1,1

22322

1131211





















1)'(−XX

矩陣與向量空間
(Matrix and Vector Space)
◼如果A = ZX，A: m n、Z: m k、X: k n。

以向量的角度而言，A矩陣的行向量是Z

矩陣行向量的線性組合：



















=

















=

















=

knkk

n

n

kn

xxx

xxx

xxx

X

ZZZZAAAA









21

22221

11211

2121 ,

|||

|||

,

|||

|||

i

k

i

ijj ZXA
~~

1


=

=

Gauss Elimination

◼ Gauss Elimination is a process of “row”

operation, such as adding multiples of rows

and interchanging rows, that produces a

triangular system in the end.

◼ Gauss Elimination can be used to construct

matrix inverse as well.

   1)'(||)'(−→→ XXIIXX 

 ])'(|['|)'(*1 YXUYXXX →→− 

◼ An Example of Gauss Elimination:

.

3

1

2

2/152/500

1010

22/12/51

92/52/30

1010

22/12/51

92/52/30

4040

22/12/51

4040

92/52/30

22/12/51

0112

7211

22/12/51

0112

7211

4152

0112

4152

7211

















−=

































−

−−

→

















−

−

−−

→
















−

−

−−

→

















−

−

−−

→
















−

−−

→

















−

−−

→
















−

−−

z

y

x

◼ The idea of Gauss elimination is fine, but it

would require a lot of computations.

→ For example, let X be an n p matrix.

Then we need to compute X’X first and

then find the upper triangular matrix for

(X’X). This requires a number of n2 p

multiplications for (X’X) and about another

p p(p-1)/2 O(p3) multiplications for the

upper triangular matrix.

何謂大O及小O？

◼大O (big o)及小O (little o)

→常見的定義為

註：大O代表同樣的收斂速度，小O代表
較快的收斂的速度。

→→=

=

−

−

nasannoa

boundedisannOa

nn

nn

0)(

)(





Cholesky Decomposition

◼ If A is positive semi-definite, there exists an

lower triangular matrix L such that

since lcr = 0 for r > c.

,' ALL =

,

.,.

1

11

1

jiii

i

k
kjki

i

k
kjkiij

p

k
kjkiij

lllllla

soandllaei

+==

=





−

==

=

◼ Thus, the elements of L equal to

Notes: (1) If A is “positive semi-definite” if for

all vectors v Rp, we have v’Av  0, where A

is a p p matrix. If v’Av = 0 if and only if

v = 0, then A is “positive definite.”

(2) In R, Cholesky decomposition requires

symmetric and positive definite.

./)(

;)(

1

1

1

1

2/1

ii

i

k
kjkijiji

i

k
kjkiiiii

lllal

llal





−

=

−

=

−=

−=

Applications of Cholesky decomposition:

◼ Simulation of correlated random variables

(and also multivariate distributions).

◼ Regression

◼ Determinant of a symmetric matrix,

.ˆˆ'

ˆ''

'ˆ''ˆ'







forLbacksolveand

LforyXLsolve

yXLLyXXX

=

==

==

'LLA =

===
i

iilLLLA 22)det()'det()det(

◼ Example of Cholesky decomposition

→We want to generate two random variables,

Let =0.5. We generate X1 & X2 from N(0,1).


















































2

2

,~
yyx

yxx

y

x
N

Y

X

























=
















=









2

1

2

1

2/35.0

01

X

X

X

X

dc

ba

Y

X

() 




















==








=









15.0

5.01

2/35.0

01
cholAchol

dc

ba

◼ Cholesky decomposition (R-code)

→We shall demonstrate using R.
x=matrix(rnorm(2000),ncol=1000)
apply(x,1,var)

apply(x,1,summary)
cor(x[1,],x[2,])

A=matrix(c(1,0.5,0.5,1),ncol=2)
a=t(chol(A))
x1=a%*%x
apply(x1,1,var)

apply(x1,1,summary)
cor(x1[1,],x1[2,])
ks.test(x1[1,],”pnorm”)
ks.test(x1[2,],”pnorm”)

◼ Cholesky decomposition (Conti.)

→Another way to generate is via

and we have

Possible solution includes

















=









2

1

X

X

dc

ba

Y

X









=+

=+

=+

2/1

1

1
22

22

bcad

dc

ba



















−+
=









4

62

4

62

2

1

2

1

dc

ba

QR Decomposition

◼ If we can find matrices Q and R such that

X = QR, where Q is orthogonal (Q’Q = I)

and R is upper triangular matrices, then

)('ˆ

''ˆ)'(

''ˆ''

)'(ˆ)()'(

'ˆ)'(

rankfullisRifYQR

YQRRR

YQRQRQR

YQRQRQR

YXXX

=

=

=

=

=











Gram-Schmidt Algorithm

◼ Gram-Schmidt algorithm is a famous

algorithm for doing QR decomposition.

◼ Algorithm: (Q is n p and R is p p.)
for (j in 1:p) {

r[j,j]  sqrt(sum(x[,j]^2))

x[,j]  x[,j]/r[j,j]

if (j < p) for (k in (j+1):p) {

r[j,k]  sum(x[,j]*x[,k])

x[,k]  x[,k] – x[,j]*r[j,k]

}

}

Note: Check the function “qr” in R and S-Plus.

QR指令在R的操作(QR in R)

◼ QR矩陣分解在 R 的指令為「qr」，R會

提供矩陣的秩數(Rank)及其它相關訊息；

如果需要求出Q及R矩陣，則要透過指令

「qr.Q」及「qr.R」。

A=matrix(c(1:9),ncol=3)

qr(A)

qr.Q(qr(A))%*%qr.R(qr(A))

qr.Q(qr(A))%*%t(qr.Q(qr(A)))

t(qr.Q(qr(A)))%*%qr.Q(qr(A))

◼ Notes:

(1) Since R is upper triangular, i.e., is easy

to obtain,

(2) The idea of the preceding algorithm is

1−R

.')'('')'(ˆ

'ˆ

111 yXRRyQRRR

yQR

−−− ==

=





.'''' RRQRQRXX

QRX

==

=

◼ Notes: (continued)

(3) If X is not of full rank, one of the columns

will be very close to 0. Thus, and so

there will be a divide-by-zero error.

(4) If we apply Gram-Schmidt algorithm to

the augmented matrix , the last

column will become the residuals of

0jjr

):(yX

.ˆˆ yy −=














+













=















+=+=

*

2

*

1

*

1

*

2

*

1

0

'''








X

Y

Y

QXQYQXY

,||||

||||

|''||)('|||,

2*

2

2*

1

*

1

2*

2

*

2

2*

1

*

1

2

*

2

*

1

*

2

*

1

222

YXY

XYXY

X

X

Y

Y

XQYQXYQXYThus

+−=

−+−=














−












=

−=−=−











.||)(ˆ.,. 2*

2

*

1

1*

1 YRSSandYXei == −

Other orthogonalization methods:

◼ Householder Transformation is a
computationally efficient and numerically
stable method for QR decomposition. The
Householder transformation we have
constructed are n n matrices, and the
transformation Q is the product of p such
matrices.

◼ Given’s rotation: The matrix X is reduced to

upper triangular form by making

exactly subdiagonal element equal to zero at
each step.










0

R

Sweep Operator

◼ The normal equation is not solved directly

in the preceding methods. But sometimes

we need to compute sums of squares and

cross-products (SSCP) matrix.

◼ This is particularly useful in stepwise

regression, since we need to compute the

residual sum of squares (RSS) before and

after a certain variable is added or removed.

◼ Sweep algorithm is also known as “Gauss-

Jordan” algorithm.

◼ Consider the SSCP matrix

where X is np and y is p1.

◼ Applications of the Sweep operator to

columns 1 through p of A results in the

matrix









=

yyXy

yXXX
A

''

''

.
'ˆ

ˆ)'(~ 1













−
=

−

RSS

XX
A





   1)'(ˆ'' −→ XXIIyXXX pp 

   'ˆ)('00'' −−→ yPIyyyXy X

Details of Sweep algorithm

Step 1: Row 1

Step 2: Row 2

The operation of Row 2 is done via minus

the right term of Row 1 times .' Xy

))'((1−XXtimes

◼ Notes:

(1) If you apply the Sweep operator to columns

i1, i2, …, ik, you’ll receive the results from

regressing y on

— the corresponding elements in the last

column will be the estimated regression

coefficients, the (p+1, p+1) element will

contain RSS, and so forth.

kiii XXX ,,,
21


◼ Notes: (continued)

(2) The Sweep operator has a simple inverse;

the two together make it very easy to do

stepwise regression. The SSCP matrix is

symmetric, and any application of Sweep or

its inverse result in a symmetric matrix, so

one may take advantage of symmetric

storage.

General Least Square (GLS)

◼ Consider the model

where with V unknown.

◼ Consider the Cholesky decomposition of V,

V = LL’, and let

let

Then y* = X*+* with

and we may proceed with before.

◼ A special case (WLS): V = diag{v1,…,vn}.

, += Xy

),0(~ 2VN 

).()(' 11 −− == LLS
.'*,'*,'*  SandXSXySy ===

),,0(~* 2 N

Eigenvalues, Eigenvectors, and

Principal Component Analysis

◼ The notion of principal components refers to

a collection of uncorrelated r.v.’s formed by

linear combinations of a set of possibly

correlated r.v.’s.

◼ Idea: From eigenvalues and eigenvectors, i.e.,

if x and  are eigenvector and eigenvector of

a symmetric positive semidefinite matrix A,

then
.xAx =

◼ If A is a symmetric positive semi-definite

matrix (pp), then we can find orthogonal

matrix  such that A =   ’, where

◼ Note: This is called the spectral

decomposition of A. The ith row of  is the

eigenvector of A which corresponds to the

ith eigenvalue i.

.0, 21

2

1























= p

p

with 










Write where

We should note that the normal equation

does not have a unique solution.

is the solution of the normal equations for

which is minimized.

yUV 'ˆ* +=



















=
−

−

+

00

0
1

1

1

k





yXXX 'ˆ' =

*̂
= j j

2
2

ˆˆ 

Power Method

◼ A naïve method for finding the eigenvalues

of a matrix is via the fact that

In other words, the largest eigenvalue will

dominate the product and eventually we can

get approximate values of 1 and .

~
111

1 ~~

1 ~1 ~~

vcvcxA

vcvcAxA

n
k

i

i

n

ii

n

k

i

iii

k

i

ii





=

==





=

==

~
1v

Singular Value Decomposition
◼ In regression problem, we have

or equivalently,

Note: SVD is often used for regression diagnostics,

data reduction, and graphical clustering.

 ''' UXUYUXY +=+=

*

*
*

1*
*

1*

0

'
00





+







=

+









=+










=

D

VV
XX

Y

)&'(*

1 DVXV == 

◼ The two orthogonal matrices U and V are

associated with the following result:

The Singular-Value Decomposition

→Let X be an arbitrary np matrix with n p.

Then there exists orthogonal matrices U: nn

and V: pp such that ,
0

~
' 








==

D
DXVU

.021

2

1























= p

p

dddwith

d

d

d

Dwhere 


◼ Example of SVD:

→You can check if the command “svd” in R

returns correct outputs.

A=matrix(c(1:12),ncol=3)

aa=svd(A)

t(aa$u)%*%A%*%aa$v # Diagonal!

aa$u%*%diag(c(aa$d))%*%t(aa$v)

t(aa$u)%*%A # Upper triangular!

Application of SVD (Lee-Carter Model)

◼ Lee and Carter (1992) proposed a model to

forecast the mortality rates of U.S.：

where

→ change of mortality intensity

→ average mortality of each age group

→ relative change rate of each age group

xttxxxtm  ++=)ln(

t

x

x

Singular Value Decomposition (SVD)

The parameters of Lee-Carter model can be

estimated via

Minimize

→This is done via decomposing the matrix

→We can also use the approximation method,

or the PCA to achieve similar estimation.

 −−
xt txxxtm 2))(ln(

(ln()) T

xt xm UPV− =

SVD Interpretation of Lee-Carter Model

Applying the SVD, i.e., ,

the matrix U represents the time component,

P is the singular values, and V is the age

component.

→ is derived from the first vector of the

time-component matrix and the first singular

value, and is from the first vector of the

age-component matrix. Other vectors

correspond to the residuals.

x

(ln()) T

xt xm UPV− =

t

◼ Example of SVD (Lee-Carter model)

→Suppose there are three vectors and their

relationships to X-axis are similar. We want to

use only one vector to express the common

pattern in these three vectors. (Data Reduction!)

a1=0.2+0.5*c(1:10)+0.1*rnorm(10)

a2=0.4+0.4*c(1:10)+0.1*rnorm(10)

a3=0.6+0.3*c(1:10)+0.1*rnorm(10)

A=cbind(a1,a2,a3)

x0=cbind(1:10,1:10,1:10)

matplot(x0,A,type="l",xlab="X-Axis",ylab="Y-

Axis")

aa=svd(A)

A

A1=aa$u%*%diag(c(aa$d[1],0,0))%*%t(aa$v)

A1

A2=A-A1

mean(abs(A2/A))

43

Mortality Imporment Rate in Taiwan(2000-2017)

Age

b
x
*k

t

0 1-4 10-14 20-24 30-34 40-44 50-54 60-64 70-74 80+

-0
.1

0
-0

.0
8

-0
.0

6
-0

.0
4

-0
.0

2
0

.0

Experience(Male)
Experience(Female)
Population(Male)
Population(Female)

SVD與影像處理
(Image Processing)

⚫ 左邊為原圖
→比較3~300個SVD

的影像顯示差異。

3個SVD 88個SVD

300個SVD

45個SVD

https://rpubs.com/aaronsc32/image-compression-svd

資料壓縮方法的比較(Comparing Dimension Reduction)
https://www.researchgate.net/profile/Md_Hossain402/publication/335134919/figure/fig4/AS:826535288250368@1574072777453/Compression-

performance-among-wavelet-Fourier-and-SVD.png

https://ars.els-cdn.com/content/image/1-s2.0-

S0262885606002083-gr1.jpg

Time Series
◼ The time series analysis considered usually

is ARIMA model, consisting of Auto-

regressive (AR) and Moving Average (MA).

→AR(1) model

Then the correlation coefficient of Zi and Zj

is , where and k=|i-j|.

→General form AR(p):

ntNeeZZ tttt ,,2,1),,0(~, 2

1 =+= − 

k

k  =

pkpkkk

tptpttt eZZZZ

−−−

−−−

+++=

++++=









2211

2211

|| ji−

Time Series (conti.)

Note: The coefficients of AR(p) can be solved

by the ordinary regression, with some minor

adjustments of variables.

→MA(1) model

Then the covariance of Zi and Zj is ,

ntNeeeZ tttt ,,2,1),,0(~, 2

1 =−= − 











=−

=+

=

2,0

1,

0,1 2

k

k

k

k 





|| ji−

Time Series (conti.)
◼ The general form of ARMA(p,q) is.

where (B) and (B) are polynomials of the

backward operator B, i.e., B(Zt)=Zt−1.

→e.g., MA(1) model

Then the covariance of Zi and Zj is , or

tt eBZB)()( =

|| ji−

Time Series Estimation
◼ The parameters in AR(p) model can be

solved using the OLS, since

Then the parameters are derived by

minimizing (errors are normally distributed)

 
2

1

11)()()
~

,(
=

−− −−−−−−=
n

t

ptptt zzzS  

ptptpttt

tptpttt

ZZZZZE

eZZZZ

−−−−

−−−

++=

++++=









111

2211

),,|(

Estimation of AR(p) model

◼ The parameter estimation of AR model is

easier (MA model requires iterations, since

the “error” is not observable.)

→AR(2) model

The coefficients 1 and 2 can be solved by

(1) OLS (Zt−1 and Zt−2 as independent variables)

(2) Plugging the related numbers (Moment?)

(3) Exact likelihood functions (usually are

very complicated)

).,0(~, 2

2211  NeeZZZ ttttt ++= −−

Example: Estimation of AR(2) model

◼ Fit AR(2) model to the data “lynx” in R.

(1) OLS:

and by to give .

(2) Moment:

→

(3) Compare to the output from software

→Minitab:

→R(arima):

)6062.0,1542.1,11.710()ˆ,ˆ,ˆ(210 −=

)1/(210  −−= ̂

,
1

),(
2

1
1





−
=+ii ZZcorr

2

2

1
22

1
),(






−
+=+ii ZZcorr

)6046.0,1486.1,2177.0,7159.0()ˆ,ˆ,ˆ,ˆ(2121 −=

)6106.0,1575.1,84.699,4.1545()ˆ,ˆ,ˆ,ˆ(210 −=

)5997.0,1474.1,45.1545()ˆ,ˆ,ˆ(21 −=

Example: AR(2) model (conti.)

◼ R also has a lot of options.

→Several choices in the function “AR”

ar(lynx, method=“ols”, 2)

(1) OLS:

(2) MLE:

(3) Default:

(4) Burg:

(5) YW:

)6288.0,0320.1()ˆ,ˆ(21 −=

)6298.0,0555.1()ˆ,ˆ(21 −=

)6063.0,0379.1()ˆ,ˆ(21 −=

)6379.0,0634.1()ˆ,ˆ(21 −=

)6063.0,0379.1()ˆ,ˆ(21 −=

Note: There are some handouts from the

references regarding “Matrix Computation”

◼ “Numerical Linear Algebra” from Internet

◼ Chapters 3 to 6 in Monohan (2001)

◼ Chapter 3 in Thisted (1988)

◼ Chapter 2 in Gentle et al. (2004)

◼ Chapter 2 in Numerical Recipes in Fortran 77

Students are required to read and understand

all these materials, in addition to the

powerpoint notes.

