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= Multiple Regression

m Generalized Linear Model

m Multivariate Analysis

m Time Series

m Other topics (Random variables)
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(a linear function of a set p predictors), I.e.,
Y=X[0+¢&, €~ N(O,azlnxn)

— (X'X)A=X'Y (Normal equation)

= f=(X'X)X'Y = AY.
(1If the Inverse can be solved.)

Note: The normal equation is hardly solved
directly, unless It Is necessary.

Multiple Regression
= In a multiple regression problem, we want
to approximate vector Y by fitted values Y
N



(or lower) triangular matrix, then the estimate
[ can be solved easily,

(8, @, a3 - Ay )
0 dy,, Ay h

o 0 . E | =

B [ (X)),
B, | | (XY),
* * p (XIY)n—l
(0 0 - 0 &y ,ép (XY),

m In other words, we need to be familiar with
matrix computation, such as matrix product
and matrix inverse, i.e., X’Yand (X' X)™.

m If the left hand side matrix (X' X)™is a upper

N
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(Matrix and Vector Space)
mAickA=ZX > Aimxn~Z: mxk~ X: kxn o




Gauss Elimination

® Gauss Elimination 1s a process of “row”
operation, such as adding multiples of rows
and interchanging rows, that produces a
triangular system in the end.

(X' X) XY = > U (XY

' m Gauss Elimination can be used to construct
o matrix inverse as well.

(X' X)[1]—> > |1 (X' X))
N




m An Example of Gauss Elimination:
(11 2 7)Y (2 5 -1 —4)
2 5 -1 —4|>|1 1 2 7

21 -1 0) (21 -1 0,
(1 5/2 -1/2 -2\ (1 5/2 -1/2 -2
-1 1 2 7 |—>|0 -3/2 5/2 9

2 1 -1 0) (0 -4 0 4
(1 5/2 -1/2 -2 (1 5/2 -1/2 -2)
—>0 -4 0 4 1—>10 1 0 -1
\0 -3/2 5/2 9) (0 -3/2 5/2 9,
(1 5/2 -1/2 -2\ (x) (2
—>(0 1 0 -1 |= |y|=|-1|
\0 0 5/2 15/2) \z) (3}




m The idea of Gauss elimination is fine, but it
would require a lot of computations.
-> For example, let X be an nx p matrix.

Then we need to compute X’ X first and
then find the upper triangular matrix for

(X
mul

P X

X). This requires a number of N2x p
tiplications for (X’ X) and about another

0(p-1)/2=0(p3) multiplications for the

upper triangular matrix.
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Cholesky Decomposition

m If A Is positive semi-definite, there exists an
lower triangular matrix L such that

LL'= A,
e, &; %Iikljk and so
k=1

i1
kz_:likljk :kz_lllikljk + 1,

sincel.,, =0 for r>c.



Notes: (1) If A 1s “positive semi-definite” if for
all vectors ve RP, we have v’Av >0, where A
Isapxpmatrix. Ifv’Av=20Iifandonly if
v =0, then A 1s “positive definite.”

(2) In R, Cholesky decomposition requires
symmetric and positive definite.

m Thus, the elements of L equal to
I _(a —E:ll I )1/2.
i — \%i ik'jk )

k=1

i—1
L =(a;; — Zh ) /i

k=1

I



m Regression
X'XB=X'y=LL'Sg=X"y
solve LO= X'y for 0=L'p

and backsolve L' =6 for .
= Determinant of a symmetric matrix, A= LL'

Applications of Cholesky decomposition:
m Simulation of correlated random variables
(and also multivariate distributions).
- det(A) = det(LL') = det(L)* =T1l°
l et(A) =det(LL’) = e()_gii



m Example of Cholesky decomposition
->We want to generate two random variables,

((/’lx) Gf paxgy
\Hy )\ po,o, 05

b 1

05 \@Olzj ChOI(A):ChOIE(oi OfD

( 3 E o Hos ol

Let p=0.5. We generate X1 & X2 from N(0,1).



m Cholesky decomposition (R-code)

->We shall demonstrate using R.
x=matrix(rnorm(2000),ncol=1000)
apply(x,1,var)
apply(x,1,summary)
cor(x[1,]1,xX[2,])
A=matrix(c(1,0.5,0.5,1),ncol=2)
a=t(chol(A))
Xx1=a%>*%x
apply(x1,1,var)
apply(x1,1,summary)
cor(x1[1,],x1[2,])
ks.test(x1/1,], ’pnorm?”)
ks.test(x//2,/, ’pnorm”)




m Cholesky decomposition (Conti.)
-> Another way to generate Is via

M b

and we have ( 452.,ph2_1
! ¢c°+d° =1
ad +bc=1/2
Possible solution includes
(1 1
a b _ J2 J2
c d \/§+\/6 \E—\@
. 4 4




QR Decomposition

m |f we can find matrices Q and R such that
X = QR, where Q 1s orthogonal (Q’Q =1)
and R 1s upper triangular matrices, then

(X' X)B=X"Y
< (QR)'(QR)A =(QR)'Y
< R'Q'QRA=R'Q'Y
< (R'R)B=R'Q'Y
< RA=Q'Y (if R is full rank)




Gram-Schmidt Algorithm
m Gram-Schmidt algorithm is a famous
algorithm for doing QR decomposition.
m Algorithm: (Qisnxpand Rispxp.)
for (jin1:p){
r[.j] € sart(sum(x[,j]"2))
x[i] € XLilrL.gl
If (j <p)for(kin(j+1):p){

r[i,k] € sum(x[,j]*x[,k])

X[,K] € XLKI = XLiI*rLiK]
__

Note Check the function “qr” in R and S-Plus.



QR#; 4 &Rk (£(QRin R)

BQREL L 2 AR r’ﬁ:}% F 5 Tagry, P R¢
3} EAErE mﬁ:ﬁx(Rank)ﬁ H v ApR2n g
ok F & RNQE REL > PR FHiE 4

qr.Q, % rqr-RJ °
A=matrix(c(1:9),ncol=3)
qr(A)
qr.Q(qr(A))%*%qr.R(qr(A))
qr.Q(qr(A))%*%t(qr.Q(qr(A)))
t(qr.Q(ar(A)))%*%qr.Q(qr(A))




m Notes:
(1) Since R is upper triangular, i.e., R™ is easy
to obtain, R =Q'y

< B=(R'R)R'Q'y=RYR)X"y.

(2) The idea of the preceding algorithm is
X =0R
< X' X=R'QQR=R'R.




m Notes: (continued)

(3) If X i1s not of full rank, one of the columns
will be very close to 0. Thus, r; ~0and so
there will be a divide-by-zero error.

(4) If we apply Gram-Schmidt algorithm to
the augmented matrix (X :Yy), the last
column will become the residuals of

e=y-—Y.




Y=XB+e< QY =Q'XB+Q'c

Y, X, g
(-6 bl
Thus, |Y = XB['=|Q'(Y - XB) ['=]Q"Y ~Q' XA [’
-Gl
YZ* X;,B
= Yl*—Xl*,B gt YZ*—X;,B|2
- =Y, =X, B +1Y, I,
l ie, A=(X)Y, and RSS=|Y, .




Other orthogonalization methods:

m Householder Transformation iIs a
computationally efficient and numerically
stable method for QR decomposition. The
Householder transformation we have
constructed are nx n matrices, and the
transformation Q is the product of p such
matrices.

m Given’s rotation: The matrix X 1s reduced to
. R .
upper triangular form (Oj by making

exactly subdiagonal element equal to zero at
each step.




Sweep Operator

m The normal equation is not solved directly
In the preceding methods. But sometimes
we need to compute sums of squares and
cross-products (SSCP) matrix.

m This is particularly useful in stepwise
regression, since we need to compute the
residual sum of squares (RSS) before and
after a certain variable is added or removed.




m Sweep algorithm is also known as “Gauss-
Jordan™ algorithm.

m Consider the SSCP matrix
(X 'X X yj
A=| |
yxX yvy
where X isnxp and y is px1.

m Applications of the Sweep operator to
columns 1 through p of A results in the

matrix .
Al (X'X)* g |
B’ RSS




Details of Sweep algorithm
Step 1: Row 1 (times (X'X)‘l)

X'x X'y 1], B oxx)?

Step 2: Row 2
VX Yy 0]%[0 y'(I-P)y —ﬂ'J

@2 The operation of Row 2 Is done via minus
l the right term of Row 1 times Y’ X.




m Notes:

(1) If you apply the Sweep operator to columns
11, I ..., Iy, you’ll receive the results from

regressing y on Kin Xiveea X

I

— the corresponding elements in the last

column will be the estimated regression

' coefficients, the (p+1, p+1) element will
contain RSS, and so forth.

N



symmetric, and any application of Sweep or
Its Inverse result in a symmetric matrix, so
one may take advantage of symmetric

m Notes: (continued)
(2) The Sweep operator has a simple inverse;
the two together make It very easy to do
stepwise regression. The SSCP matrix Is
' storage.

N



m Consider the Cholesky decomposition of V,
v=LL’ andlet S'=(L)™" =(L").
let y*=S'y, X*=S'X,and e*=S'e.

Then y* = X*B+ &~ with e~ N(0,5?),
and we may proceed with before.

General Least Square (GLS)
m Consider the model Y= X/ +é¢,
where &~ N(0,5%V) with V unknown.
B = Aspecial case (WLS): V = diag{vy,...,v,}.



a collection of uncorrelated r.v.’s formed by
linear combinations of a set of possibly
correlated r.v.’s.

m Idea: From eigenvalues and eigenvectors, I.e.,
If X and A are eigenvector and eigenvector of
a symmetric positive semidefinite matrix A,

then

Eigenvalues, Eigenvectors, and
Principal Component Analysis
m The notion of principal components refers to
o
l AX = JX.



m If A 1s a symmetric positive semi-definite
matrix (pxp), then we can find orthogonal
matrix /" such that A= 7"A I, where

/ﬂl 3\

A
A= - with 4, >4, >---> 1 >0.

D =

\ ﬁp/

m Note: This is called the spectral
decomposition of A. The ith row of /" Is the
eigenvector of A which corresponds to the
Ith eigenvalue 4.




Write 8~ =VAU'y where

We should note that the normal equation
X'Xﬁ _ X! d_oes not have a unique s_olutlon.
IS the so ution of the normal equations for
Z ,32 is minimized.

N

p

*




Power Method

= A nawve method for finding the eigenvalues
of a matrix Is via the fact that

AX = AZC Zc AV,

= A" X ZC/I”V’“Clﬂlv

In other words, the largest eigenvalue will
B dominate the product and eventually we can
l get approximate values of A, and V.

~




Singular VValue Decomposition
m In regression problem, we have

Y=XB+e=U'Y =U'"X[F+U'¢
or equivalently, (0 =V'B & X,V = D)

. [ X ' «
Y =| ' |f+es =| ' W'B+¢

JEEE
= 0+ ¢
0

B Note: SVD is often used for regression diagnostics,
l data reduction, and graphical clustering.




m The two orthogonal matrices U and V are
assoclated with the following result:

The Singular-Value Decomposition

—>Let X be an arbitrary nxp matrix with n>p.
Then there exists orthogonal matrices U: nxn
and V: pxpsuchthat |J'xy =D =

where D = . withd, >d, >--->d  >0.
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m Example of SVD:

=2 You can check if the command “svd” in R
returns correct OUtpUtS.

A=matrix(c(1:12),ncol=3)
aa=svd(A)
t(aadu)%*%A%*%aadv  # Diagonal!
aa$u%*%diag(c(aa$d))%*%t(aadv)
t(aadu)%*%A  # Upper triangular!




Application of SVD (Lee-Carter Model)

m Lee and Carter (1992) proposed a model to
forecast the mortality rates of U.S. :

In(m,,) =a, + Bk, + &,
where

K = change of mortality intensity

W& 3 > relative change rate of each age group

o, average mortality of each age group



Singular Value Decomposition (SVD)

he parameters of Lee-Carter model can be
estimated via

Minimize > (In(m,)-a, — B,x,)°
—>This Is done via decomposing the matrix
(In(m,)—ca, ) =UPV'
—>We can also use the approximation method,
or the PCA to achieve similar estimation.




SVD Interpretation of Lee-Carter Model

Applying the SVD, i.e., (In(m,)—e,)=UPV,
the matrix U represents the time component,

P is the singular values, and V Is the age
component.

= K Is derived from the first vector of the
time-component matrix and the first singular
value, and g, Is from the first vector of the
age-component matrix. Other vectors
correspond to the residuals.




m Example of SVD (Lee-Carter model)

—> Suppose there are three vectors and their
relationships to X-axis are similar. We want to
use only one vector to express the common
pattern in these three vectors. (Data Reduction!)




al=0.2+0.5*c(1:10)+0.1*rnorm(10)
a2=0.4+0.4*c(1:10)+0.1*rnorm(10)
a3=0.6+0.3*c(1:10)+0.1*rnorm(10)
A=cbind(al,a2,a3)
X0=cbind(1:10,1:10,1:10)
matplot(x0,A,type="1"xlab="X-Axis",ylab="Y-
AXIs")
aa=svd(A)
A
Al=aa$u%*%diag(c(aa$d[1],0,0))%*%t(aa$v)
Al
A2=A-Al
mean(abs(A2/A))
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(Image Processing)
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YWavelet compression using 5% observation

Fourier compression using 5% observation SWD compression using 5% observation

AR LS SRRl 2 (Comparing Dimension Reduction)

https://www.researchgate.net/profile/Md_Hossain402/publication/335134919/figure/figd/AS:826535288250368@1574072777453/Compression-
performance-among-wavelet-Fourier-and-SVD.png
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Time Series

m The time series analysis considered usually
IS ARIMA model, consisting of Auto-
regressive (AR) and Moving Average (MA).

-2 AR(1) model
Z. =¢Z , +e,e ~N(0,0°),t=12,..
Then the correlation coefflc:lent of Z. and Z
is Zji—j|, where 7, =¢"and k=|i-j|.

->General form AR(p):
I Zt:¢1Zt—1+¢2zt—2+"'+¢pZt—p+e
l :>7/k:¢17/k—1+¢27/k—2+"'+¢p7/k—p




Time Series (conti.)
Note: The coefficients of AR(p) can be solved
by the ordinary regression, with some minor
adjustments of variables.
éMA(l) model
=6 —0e_,,e, ~N(0,5°),t=12,..

Then the covariance of Z,and Z; Is 7ji_j,
1+6°, k=0
oS 7. =1 —0, k=1
l 0, k=>2




Time Series (conti.)
m The general form of ARMA(p,q) Is.
$(B)Z, =6(B)e,
where ¢(B) and 6(B) are polynomials of the
backward operator B, I.e., B(Zt)=Zt-u.
-e.g., MA(1) model
Then the covariance of Z,and Z; Is }ji_j , or

“1+6%7 -6 0 U
-8 14+6* -6 0
0 -8 1+6* -6
0 0 -6 1467




Time Series Estimation

m The parameters in AR(p) model can be
solved using the OLS, since

Zt :¢1 Zt—1+¢2 Zt—2 +"'+¢p Zt—p + €
— E(Zt |Zt—1""’Zt—p) :¢1 Zt—1+.“+¢p Zt—p

Then the parameters are derived by
minimizing (errors are normally distributed)

- S ) =Yl - 1) == 4,y 10




Estimation of AR(p) model

m The parameter estimation of AR model Is
easier (MA model requires iterations, since
the “error’” 1s not observable.)

- AR(2) model
Li=¢p L +¢, 2L ,+e,6 ~N(, o).
The coefficients ¢, and ¢,can be solved by
(1) OLS (Z._, and Z_,as independent variables)
(2) Plugging the related numbers (Moment?)

(3) Exact likelihood functions (usually are
very complicated)




Example: Estimation of AR(2) model

m Fit AR(2) model to the data “lynx” in R.

(1) OLS: (B,,4,4,) =(710.11,1.1542,—0.6062)
and by 4 = By ll=d,—9,) to give 1 .

(2) Moment:

Corr(Zi ’ Zi+1) — 1_¢1¢ , COI’r(Zi ’ Zi+2) = ¢2 + 1f1¢

' > (P o o h) = (0.7159,0.2177,1.1486, — 0.6046)
(3) Compare to the output from software

B > Minitab: (&, £,, . 6,) = (1545.4,699.84,1.1575,—0.6106)
leR(arima):(ﬁ,&l,&z) = (1545.45,1.1474,—0.5997)




Example: AR(2) model (conti.)
m R also has a lot of options.
—>Several choices in the function “AR”
ar(lynx, method="0ols”, 2)
(1) OLS: (¢,4,)=(1.0320,—-0.6288)
(2) MLE: (4,4,) = (1.0555,—0.6298)
' (3) Default: (4,¢,) = (1.0379,—0.6063)
(4) Burg: (¢,4,) = (1.0634,—0.6379)

5= 5) YW: (4,4,)=(1.0379,—0.6063)
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Note: There are some handouts from the
references regarding “Matrix Computation™

® “Numerical Linear Algebra” from Internet

oters 3 to 6 In Monohan (2001)
oter 3 In Thisted (1988)
oter 2 In Gentle et al. (2004)

oter 2 In Numerical Recipes In Fortran 77

Students are required to read and understand
all these materials, in addition to the

l powerpoint notes.



