Section 4.4

2.

If xe R, then Theorem 4.24 with I =R and n=6 implies that there is a point z strictly be-

(€) o
tween x, and x with p(x)= pG—SZ)(x -x,)°. But our assumption on p implies that

P =0,s0that p(x)=0.

4/ Let uyve [a,b]. If u =v, then both sides of the proposed inequality are 0, and so the ine-

N

N

quality holds. Otherwise we may assume without loss of generality that ¥ <v. In this case
the Cauchy Mean Value Theorem applies to /and g over the interval [u,v] to show that there

exists x, €(u,v) with ‘;E:;:;((:)) = gg:; , Or f(u)—f(v)=%:3[g(u)—-g(v)].
Thus lf(u)——f(v)l =||-§-g°—;ll|g(u)—g(v)] . Our assumption that |f'(x)l Z]g'(x)l >0 forall
xe (a,b) implies that M 21, which gives the result.

]g'(xo )|

6. Welet S(n) denote the assertion that £ (0) = f'(0)=---= *(0)=0 whenever

[ (—1,1) — R satisfies the given assumptions. First, if /is differentiable and there is a posi-
tive number M such that [ f (x)[ < M|x| forall x e(-1,1), then choosing x=0 implies that
|7 (0)< M[0]=0 , so that £ (0)=0, proving S(1). Next, we choose a natural number k and
suppose that §(k) is true. If £:(~1,1) >R has k +1 derivatives and there is a positive
oumber M such that | (x)|< M| forall x & (-1,1), then |7 (x)|< M|x|" for ail

x€(-1,1) as well, since %™ < |x|k for such x. The truth of S{k) then implies that
f{0)=£'(0)=..= &0 (0)=0. But now by Theorem 4.24, for each x € (~1,1)\{0} there

(k)
exists z(x) strictly between x and 0 with f(x) =I_[kzl(x_):]x,‘ » OF f(k] [Z(x)] =k_!f@;
! x

thus our assumption on £ gives

If(k) [z(x)]l:k!lf(x)l <‘,’:!x’lf.f|.7c|

W

k+1

=M—k!~lx‘.

Therefore, if {x,} is any sequence in (~L1)\{0} that converges to 0, the sequence

{ f ® [z(x,, )J} converges to 0 also, by the Comparison Lemma, which means that

lim,_, f® [z(x)] =0. Moreover, the assumption that fhas % +1 derivatives implies that
f *) is differentiable, and hence continuous, on (-—l,l); altogether, then,

0=tim, ,, f¥[z(x)]=/*(0). Therefore £(0)=f'(0)=. = E0(0)= ®(0)=0,

proving S(k+1). It follows from the Principle of Mathematical Induction that S

(n) is true
for all natural numbers ».



. We let S(n) denote the assertion that Leibnitz’s formula is true whenever fand g have n de-
rivatives. Then S(1) states that

(j@)' (x)= g(:{}f“’ (x)g"* (x)= f(x)g'(x)+ f'(x)g(x), which is true by the Product

Rule. Next we assume that S(m) is true for some natural number m, and we assume that
f:1>R and g:I — R have m+1 derivatives. The truth of S(m) gives

(/&) ( ] (x)= Z( ] (*)( () (x), and then by Theorem 4.6(ii) (the “product rule™),
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k=0
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the thu'd line resulis from replacing the index k in the underlined summation with k1. Now

m m m+1
it was proved in Exercise 21 of Section 1.3 that [k] (k 1] [ X ] for all natural num-

bers k with k <m. Thus, isolating the terms corresponding to k=0 and k =m+1 shows

that ()" (x) is
e 5T R @ 7,08 @ £ (e

k=|
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which proves S(m +1) . We conclude from the Principle of Mathematical Induction that
8(n) is true for all natural numbers 7.



