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METHODOLOGY

A modification to geographically 
weighted regression
Yin‑Yee Leong and Jack C. Yue*

Abstract 

Background: Geographically weighted regression (GWR) is a modelling technique designed to deal with spatial 
non‑stationarity, e.g., the mean values vary by locations. It has been widely used as a visualization tool to explore 
the patterns of spatial data. However, the GWR tends to produce unsmooth surfaces when the mean parameters 
have considerable variations, partly due to that all parameter estimates are derived from a fixed‑ range (bandwidth) 
of observations. In order to deal with the varying bandwidth problem, this paper proposes an alternative approach, 
namely Conditional geographically weighted regression (CGWR).

Methods: The estimation of CGWR is based on an iterative procedure, analogy to the numerical optimization 
problem. Computer simulation, under realistic settings, is used to compare the performance between the traditional 
GWR, CGWR, and a local linear modification of GWR. Furthermore, this study also applies the CGWR to two empirical 
datasets for evaluating the model performance. The first dataset consists of disability status of Taiwan’s elderly, along 
with some social‑economic variables and the other is Ohio’s crime dataset.

Results: Under the positively correlated scenario, we found that the CGWR produces a better fit for the response 
surface. Both the computer simulation and empirical analysis support the proposed approach since it significantly 
reduces the bias and variance of data fitting. In addition, the response surface from the CGWR reviews local spatial 
characteristics according to the corresponded variables.

Conclusions: As an explanatory tool for spatial data, producing accurate surface is essential in order to provide a first 
look at the data. Any distorted outcomes would likely mislead the following analysis. Since the CGWR can generate 
more accurate surface, it is more appropriate to use it exploring data that contain suspicious variables with varying 
characteristics.

Keywords: Geographically weighted regression, Modifiable areal unit problem (MAUP), Generalized additive model, 
Computer simulation, Cross validation
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Background
The data collected nowadays are diversified and many 
of them possess the records of locations, namely spatial 
data. Spatial regression is a popular tool for analysing 
the spatial data [2, 35] and the first-order stationarity is 
a common assumption, which means that the expected 
(mean) values are fixed at different locations. The error 
terms of spatial regression are usually not independ-
ent and, like in time series analysis, their covariance 
is assumed to follow some spatial models, such as the 

simultaneous autoregressive (SAR) and moving average 
(MA) models [12, 30, 34]. However, the first-order sta-
tionarity is a questionable assumption in practice and 
the modifiable areal unit problem (MAUP) often occurs 
[5, 13, 22]. The MAUP is a spatial version of the Simpson 
paradox, where the trends appearing in individual groups 
of data are different to those in the aggregate data. The 
biased estimates might be a consequence of the param-
eter values not being identical in the study area and the 
inclusion of data with different attributes.

Because the parameter values are not identical at dif-
ferent locations, estimation via the ordinary least squares 
(OLS) with all observations would likely distort the local 
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distinctness. One possible solution is to include only 
the locations of data with similar attributes (i.e., homo-
geneity). However, it is difficult to decide the number of 
groups with different attributes and identify the loca-
tions of data in each group. Moreover, the mean value of 
a non-stationary process is usually a step function [8] or 
is continuous across space, and it is difficult to find the 
exact boundary of appropriate locations. The other possi-
bility is to use the varying coefficient model [10], allowing 
the coefficient terms to vary according to locations. Then, 
the model is a form of local linear models [15] and can 
be used to explore the dynamic property of spatial data. 
Based on the concept of the varying coefficient model, 
geographically weighted regression (GWR) is modified to 
solve the MAUP [6].

The GWR allows the regression coefficients to vary 
across space, and the coefficient estimates of all vari-
ables are obtained from a moving data window, which is 
analogous to kernel regression for obtaining a smooth-
ing estimate. It is also a popular tool for exploratory data 
analysis (EDA) on spatial data [19, 32]. In particular, the 
GWR is often a popular visualization tool in geographi-
cal information system, to explore possible patterns of a 
study region and acquire valuable information for further 
data analysis (such as clusters detection) [11, 36]. Note 
that the optimal width (or bandwidth) of the moving win-
dows in a GWR is determined by cross-validation (CV) 
or Akaike’s information criterion (AIC) [16]. The OLS 
can be treated as a special case of the GWR with a win-
dow of infinite width (although the local distinctness is 
likely to be lost by averaging all observations).

Most of the modifications to the GWR are on the selec-
tion and testing of the bandwidth. For example, using 
the CV and AIC for the bandwidth selection is a data-
driven method, similar to the kernel regression method, 
wherein the estimates are sensitive to outliers [16]. In 
addition, the data variations are not necessarily the same 
and a fixed bandwidth is likely to create discrepancy in 
parameters’ estimates at different locations. On the other 
hand, the hypothesis testing of the parameters depends 
on the bandwidth as well. For example, Leung et al. [21] 
proposed goodness-of-fit tests and found that the degree 
of freedom of GWR residuals is a function of the band-
width, and this makes bandwidth selection somewhat 
subjective.

Determining the bandwidth probably is the focus of 
modifying GWR over the years. Brunsdon et al. [7] intro-
duced a mixed GWR model with vector bandwidths, 
allowing the coefficients having different bandwidths (via 
a backfitting algorithm) and the bandwidths being func-
tions of data density. Shi et al. [27] suggested the weight 
of data determined by their attributes, rather than by the 
distance between observations. Furthermore, Farber and 

Páez [16] found that it is possible to reduce the bias by 
modifying the CV procedure. Subsequently, Wang et al. 
[31] introduced local linear estimation, or a polyno-
mial fitting technique, to reduce the bias in parameters’ 
estimates.

The reason for considering different bandwidth is that 
the GWR tends to produce ragged surfaces, in addition to 
biased estimates. Suppose the true surfaces are linear or 
ridged. As shown in Fig. 1, there are (false) hot spots and 
(false) cold spots in the GWR estimation, and they are 
especially obvious at edges and corners, where the true 
values and the estimated surfaces are in the first and sec-
ond rows, respectively. The bias of GWR becomes larger 
for ridge surfaces (and other non-linear surfaces) and the 
GWR seems to provide misleading interpretations. The 
detailed discussions of GWR estimates are given later in 
this manuscript.

In this study, our focus is also on the bandwidth selec-
tion for each variable, using the correlations between 
independent variables. The idea of the proposed approach 
is to use the correlations to improve the estimation via an 
iteration algorithm, similar to the method of control vari-
ate in variance reduction [24]. The empirical analyses of 
GWR showed that correlations often exist between GWR 
coefficients. For example, Bivand and Brunstad [4] found 
the coefficients to be highly correlated in a case study. 
We found the rough coefficient surfaces can be smoother 
(Fig. 1) if the coefficients are positively correlated.

For the rest of this manuscript, we first introduce the 
GWR and the proposed modification of GWR, condi-
tional GWR (CGWR), and its theoretical results. Then, 
we use simulation to evaluate the proposed method 
and compare it with the basic GWR and the local lin-
ear method proposed by Wang et al. [31]. In addition to 
simulations, we also apply the proposed method to two 
data sets for empirical study. Finally, we conclude with 
discussions on the limitations and future applicability of 
the proposed method.

Methods
The GWR models a dependent variable y via a linear 
function of a set of p independent variables, x1, x2, . . . , xp , 
or

where βik and xik are the parameters and observed values 
of the independent variable k (k = 1, . . . , p) for observa-
tion i;εi is the error term for observation i, which is gen-
erally assumed to be from a normal distribution with 
zero mean and constant variance σ 2(i.e., εi ∼ N (0, σ 2)).  
The subscript i represents the spatial location of the 

(1)Yi = βi0 +

p∑

k=1

βikxik + εi
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observation i (i = 1, . . . , n). In other words, each loca-
tion has its own regression model in the GWR model. 
The idea behind Eq. (1) is that nearby data of each loca-
tion usually possess similar attributes. Thus, choosing an 
appropriate range (which is referred to as “bandwidth” in 
this study) is plausible to obtain a fine local regression.

The parameter set βi of observation i is derived by 
matrix algebra, or

where β̂i = (β̂i0, β̂i1, . . . , β̂ip)
T ,X = (1, x1, . . . , xp)

T , 
 Y = (Y1, . . . , Yn)

T , and Wi is (diagonal) weight matrix 
with its weight wij of row i and column j defined as:

(2)β̂i =
(
X
T
WiX

)−1
X
T
WiY

(3)wij = exp

[
−
1

2
(dij/h)

2

]

As mentioned earlier, the bandwidth selection is gener-
ally calibrated by minimizing the CV score or the AIC. 
However, if the data locations are sparse in the study area, 
the distance-weighted kernel might not be appropriate 
due to insufficient information. Brunsdon et al. [8] intro-
duced rank-based and k-nearest neighbourhood methods 
to deal with sparse data. In addition to the GWR, we also 
consider one of its modifications by Wang et  al. [31]. It 
is a local linear approach, or a Taylor expansion version 
of the GWR, and is expected to have better fitting if the 
geographical surface is linear-shaped.

Using a single bandwidth in GWR is likely to create 
unsatisfactory estimates if the attributes of independent 
variables are not similar. For example, independent vari-
ables with larger variations require a larger bandwidth 
(and more observations). On the other hand, locally sam-
pling (i.e. narrower bandwidth) is preferable over global 

Fig. 1 True surfaces and GWR mean surface. The figure compares the true surfaces and the estimated GWR respond surface (linear and ridge 
surface)
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sampling (i.e. wider bandwidth) for the areas with larger 
gradient changes. The concept is similar to widely rec-
ognized importance sampling [25], which assigns more 
sampling weight on informative area. Therefore, allow-
ing different bandwidths for each independent variable 
seems to be a desirable modification to the GWR. Unfor-
tunately, the varying bandwidths cannot be managed by 
the weighted least squares or Eq. (2). Brunsdon et al. [7] 
proposed a backfitting algorithm for selecting different 
bandwidths, but the selection of bandwidths is somewhat 
objective and it usually require lots of computation time.

In this study, we introduce an approach (Conditional 
GWR; CGWR) to determine the bandwidth for each 
independent variable by iteration, which is inspired by 
the vector bandwidth method of Brunsdon et al. [7] and 
the kernel smoothing method in the varying-coefficient 
model of Wu and Chiang [33]. For the proposed method, 
we adapt the ideas of the Generalized Addictive Model 
(GAM) and Jacobi iteration [17, 20, 23, 28] to determine 
the appropriate bandwidths. Using the format of the 
GAM, the GWR model can be re-expressed as

where fik = βik × xik and βik is the parameter coefficient 
of the variable k at location i. If fik is the intercept, then 
xik is set to 1. Then, we can use the Jacobi iteration to 
solve the Eqs.  (4), one-by-one, for parameter fik. Again, 
we assume that f k{l} denotes the lth iteration vector of 
f k, and f k{l} denotes an n × 1 vector composed of fk . 
Then, the proposed method can be summarized itera-
tively as follows:

Step 1. Set the initial solution of f k to be zero, i.e. 
f k{0} = 0, where k = 1, . . . , p, and let l = 1.
Step 2. For each element f k{l}, apply the basic GWR 
model with only one independent variable, xk . The value 
of the dependent variable is y∗ = y −

∑p
j=1
j �=k

f j{l − 1}, 

i.e. we regress 

(
y −

∑p
j=1
j �=k

f j{l − 1}

)
 on the variable xk 

without a fitting intercept. The bandwidth is obtained 
by minimizing the cross-validated sum of squares 
(CVSS) or the AIC.
Step 3. Repeat Step 2 until the given stopping criterion 
is reached.

There are at least two reasons for finding optimal band-
width solutions individually using the Jacobi iteration. 
First, although more complex numerical methods (such 
as the quasi-Newton method) could be used, the Jacobi 
iteration usually requires less computation time. Second, 
although there are algorithms that converge faster than 

(4)Yi = fi1 + · · · + fik + · · · + fip + εi

the Jacobi iteration, they are likely to produce biased esti-
mates. For example, in the Gauss–Seidel iteration pro-
cess, the estimate of one variable is updated based on 
the simultaneous estimates of other variables. If the esti-
mates of some variables have severe biases, it might con-
taminate the estimates of other variables.

We think that the proposed estimation process can 
guarantee the convergence of the CGWR. In particular, 
if the bandwidth is predetermined during the iteration, 
then the GWR coefficients will converge to a constant for 
each location. We should use the case of two coefficients 
to demonstrate the convergence and the outline proof is 
given in Appendix A in Additional File 1. Note that the 
method of Brunsdon et al. [7] can be treated as a special 
case of the CGWR method when the bandwidths are 
never updated. In the next section, we will use computer 
simulation to evaluate the stability of the CGWR and 
compare it with basic GWR and its local linear modifica-
tion by Wang et al. [31].

Results and discussion
Simulated data
The computer simulation is separated into two parts: 
scenarios without clusters and with a cluster. For the 
latter scenario, a cluster is added into the intercept to 
exhibit the mean shift intervention. The cluster sce-
nario is to evaluate the performance of estimation meth-
ods under the influence of a systematic change (or hot 
spots) in space, such as sources of pollution. Moreover, 
the coefficients are assumed to follow one of the follow-
ing four surfaces: linear, quadratic, ridge, or hillside, and 
these settings are to check which would cause ragged-
ness in the estimated surfaces. For the former scenario, 
we also examine two types of surfaces: single-type and 
mixed-type. The difference between these two types of 
surfaces is whether the coefficients follow same type 
of surfaces (single-type) or different types of surfaces 
(mixed-type). We want to know if the coefficients follow 
different types of surface would cause biased estimation 
of coefficients.

To simplify the discussion, suppose there are only two 
coefficients, i.e. one intercept and one independent vari-
able in the spatial regression, or

where i is a natural number which indicates the loca-
tion of the observation. Next, we define the signal versus 
noise ratio, i.e. the S/N ratio, where the signal represents 
the variations on the surface of the coefficients and the 
noise is the random fluctuation of observations. Larger 
S/N ratios are associated with larger variations in the 
coefficient surfaces, in which case the coefficient’s pat-
tern is easier to be detected. In particular, we assume 

(5)Yi = βi0 + βi1xi + εi,
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that signal  =  3×
(∑

i (βik−β̄k )
2

n−1

)1/2
 and the noise is 

equal to the standard deviation of the error term. Here, 
it is 0.5. The bias and variance of the estimates can be 
used together to evaluate the accuracy of the proposed 
CGWR. We define the average discount rate as follows:

where MSE refers to the mean square error, i.e. the sum 
of variance and the squared bias. Note that the MSE of 
the OLS estimate is used as a benchmark for compari-
son in Eq. (6) and it can be computed for all locations by 
using the weighted mean given by:

(6)
n−1

∑
i (MSEmethod)

n−1
∑

i (MSEOLS)
,

There are four types of surfaces for the coefficients, as 
shown in Fig. 2. Surfaces 1 and 2 are polynomial functions 
(related to linear functions) of the independent variables, 
and surfaces 3 and 4 are non-linear. Similar settings also 
appear in previous studies on GWR [30], and these have 
practical implications. For example, the quadratic surface 
(surface 2) often occurs in  situations involving housing 
prices, where prices are significantly higher for locations 
near a town centre or a transportation centre [14, 31]. 
In addition, the relationship between the environmental 
factor and real estate price can be different in urban areas 

(7)

∑
i

[
(MSEOLS)location i × (MSEmethod/MSEOLS)location i

]
∑

i (MSEOLS)location i
.

Fig. 2 Four coefficient surfaces. The figure illustrates different kinds of surfaces in simulation settings (1 and 2 are Polynomial, and 3 and 4 are non‑
polynomial)
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than in the countryside [9]. Furthermore, the relationship 
between disease and environmental factors might appear 
as non-linear on geographic surface. For instance, inci-
dence rate of Dengue disease are highly correlated with 
population density but the relationship seems to fade 
out if there is proper disease prevention policy [26]. As 
a result, the surface of coefficients can be non-linear. For 
every non-stationary surface, we assume that there are 
10 × 10 regular lattice points (i.e. 100 locations). 

For a scenario without clusters, several cases are tested 
under different S/N ratios. The first case is the single-type 
surface, where both intercept and independent variable 
follow the same type of surface. The second case, namely 
mixed-type surface, assumes that the intercept and the 
independent variable follow different types of surfaces. 
For the second case, we only examine two combinations: 
linear-quadratic (a polynomial surface) and ridge-hillside 
(a non-polynomial surface).

For the scenario with clusters, we add two clusters in 
an intercept. The clusters are circular and occupy 18% of 
space in the study area. The circular assumption is quite 
usual in geographical studies, and literature proves that 
10–20% of clustered area is a common phenomenon [29]. 
Two levels of mean shifts, such as 1σ and 2σ,are also added 
at the cluster locations. The simulation settings of both 
scenarios are in Table  1. For all scenarios, the errors are 
drawn from a normal distribution with a mean of 0 and 
a standard deviation of 0.5. The reason for choosing the 
standard deviation 0.5 is to incorporate the values of the 
S/N ratio. All results are based on 100 simulation runs.

For CGWR, the Gaussian kernel is chosen, and the 
optimal bandwidth is the one with the minimum CVSS. 
Furthermore, we require a reasonable range of band-
width to prevent the estimation from being too localized 
or globalized for extremely small or large bandwidths, 
respectively. The upper bound of the range is the maxi-
mum length on the map, and the lower bound has to have 
at least five data points each of 1/5th weight. The preced-
ing setting is also used in the ‘spgwr’ package [3] (version 
0.5–4) of R, a free statistical software.

We will first show the simulation results of the sce-
nario without clusters. In particular, we will compare 
three GWR estimations with the smoothness of the mean 
surface, the average discount rate, average bandwidth, 
average variance, and average bias of estimates. The stop-
ping criterion for the CGWR is reached when the aver-
age absolute relative change rate of β0 and β1 is less than 
0.005% of the previous step. The simulation results are 
similar if adopting smaller stopping criteria.

To simplify the notation, we will use β0 and β1 to denote 
the coefficients of the intercept and slope of the inde-
pendent variable x, respectively. In the case of single-type 
surfaces and mixed-type surfaces, the two coefficients are 
assumed to be perfectly positively correlated and close 
to uncorrelated, respectively. We have not considered 
the negative correlation because the proposed algorithm 
does not work when the coefficients are not positively 
correlated. Nonetheless, we will consider a two-stage 
modification for CGWR when the coefficients are not 
positively correlated.

Single‑type surfaces
We first compare the smoothness of the three different 
GWR methods. For instance, the mean surfaces from 100 
simulation runs for quadratic and hillside surfaces with 
the S/N ratio of β0 = β1 = 5 are shown in Figs. 3 and 4. 
Obviously, the CGWR produces the best fit, and the 
mean surfaces are almost identical to the true surfaces as 
shown in Figs.  2, 3, and 4. The GWR tends to produce 
bumpy surfaces, which are more ragged for the β1 sur-
faces. The edge effect of the GWR is obvious; this may be 
because fewer observations were used in the estimation. 
On the other hand, the local linear method tends to pro-
duce linear-like surfaces and provides distorted informa-
tion for the non-linear surfaces and for the β1 surfaces. 
In contrast, the CGWR produces a remarkable fit even in 
complex surfaces and provides valuable information for 
further data analysis.  

Table  2 shows the results of the discount rates in the 
case where β0 and β1 follow a linear surface. We can 

Table 1 The scenario settings of simulation study

There are totally 6, 4, and 2 scenarios in the Single-type surface, Mixed-type surface, and Two-Stage Fitting procedure, respectively. The bracket in the Mixed-type 
surface scenario indicates the surfaces of intercept and variable x1 separately

Mean shift intervention

No cluster Cluster

Surfaces type

I. Single‑type surface 1. Linear, 2. quadratic, 3. ridge, 4. hillside 1. Linear, 2. hillside

II. Mixed‑type surface 1. (Linear, quadratic) 2. (ridge, hillside) –

Fitting method

Two‑stage fitting procedure 1. Linear, 2. hillside –
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see that both the proposed CGWR and the local linear 
method have significant improvements over the basic 
GWR method. Interestingly, the local linear method is 
better (with respect to smaller discount rates) than the 
GWR when the S/N ratio is large, but the basic GWR is 
better when the S/N is small. The reason might be that 
larger noises produce larger fluctuations, and thus the 
average tangent line in the local linear method is inac-
curate or unstable. Similar results are also found for the 
other three surfaces, as evidenced in Tables 3, 4, and 5. 
This suggests that the local linear method might not be 
very stable if the S/N ratio is small.    

The CGWR and the local linear method again outper-
form the basic GWR method in the case of a quadratic 
surface. However, the CGWR appears to be the best, and 
the advantage is more obvious when the S/N is increased. 
For the non-linear surfaces, the CGWR continues to 
work satisfactorily, whereas the local linear model does 
not. In fact, the local linear model might even produce 
worse results than the basic GWR. The CGWR is still 
reliable for the non-linear surfaces, and it performs much 
better than the other two methods.

Intuitively, we expect that the bandwidth to be small if 
the S/N is large because distant observations can be very 

different and cause biased estimations. In general, all 
three GWR methods have significant drops in bandwidth 
when the S/N ratio increases from one to three. Moreo-
ver, the bandwidths for a linear surface should be larger 
than those for a non-linear surface under the same S/N 
ratio because the surface change is quite homogenous in 
any direction.

The bandwidth results can also be used to explain why 
the CGWR outperforms the other two methods. We will 
choose two surfaces (linear and hillside) to discuss these 
results. Table 6 shows the average bandwidths. The local 
linear method often yields larger bandwidths. If the true 
surface is close to linear, we can rely on observations 
within a larger bandwidth and, thus, have smaller vari-
ances than those for non-linear surfaces. Since the shape 
of a hillside is close to linear, the bandwidths in the case 
of the hillside are very similar to those in the linear case. 
They are also much larger than those of the quadratic and 
ridge cases. For more details, see Appendix B in Addi-
tional File 1.

The bandwidths of the CGWR seem to be related to the 
signal strength. For example, if the S/N ratio is small, the 
bandwidth is expected to be large in order to provide a 
stable estimate. If we fix the S/N ratio of β1, then the β0 

Basic GWR Local linear method CGWR

Quadratic

Hillside

Fig. 3 β0 Mean surface. Estimated intercept respond surface derived from different method (quadratic and hillside surfaces, S/N ratio of 
β0 = β1 = 5)
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bandwidth of the CGWR decreases as the S/N ratio of β0 
increases for all four surfaces (Appendix B in Additional 
file  1). Similar results hold for the β1 bandwidths if we 
fix the S/N ratio of β0. The simulation results of CGWR 
match our expectations.

The variances and biases of the estimates from the 
three GWR methods can also be used for making com-
parisons. Again, we will use the cases of linear and ridge 
surfaces for a detailed discussion. Further, because there 
are many combinations for the S/N ratios of β0 and β1, 

Basic GWR Local linear method CGWR

Quadratic 

Hillside

Fig. 4 β1 Mean surface. Estimated intercept respond surface derived from different method (quadratic and hillside surfaces, S/N ratio of β0 = β1 = 5)

Table 2 Average discount rates on a linear surface (single-type)

The values (1, 3, 5) indicate the signal/noise ratio

S/N ratio β0 β1

β0 1 3 5 1 3 5

β1

Basic GWR 1 1.064 0.312 0.158 1.815 1.589 1.328

3 1.348 0.321 0.173 0.598 0.663 0.755

5 1.775 0.382 0.199 0.329 0.397 0.459

Local linear 1 1.317 0.192 0.078 2.111 1.033 0.686

3 1.107 0.164 0.069 0.403 0.347 0.284

5 1.299 0.188 0.059 0.197 0.179 0.126

CGWR 1 0.664 0.195 0.082 1.076 0.775 0.412

3 0.880 0.202 0.086 0.400 0.366 0.286

5 0.899 0.227 0.092 0.198 0.207 0.178
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Table 3 Average discount rates on a quadratic surface (single-type)

The values (1, 3, 5) indicate the signal/noise ratio

S/N ratio β0 β1

β0 1 3 5 1 3 5

β1

Basic GWR 1 1.955 0.791 0.510 2.877 7.729 7.542

3 3.217 0.896 0.570 1.418 2.332 3.650

5 4.334 1.108 0.639 0.844 1.316 1.819

Local linear 1 3.279 0.914 0.535 5.159 8.900 7.941

3 5.177 1.119 0.599 2.039 2.634 3.481

5 6.147 1.196 0.602 1.001 1.169 1.488

CGWR 1 1.168 0.324 0.146 1.529 1.612 0.928

3 1.491 0.380 0.166 0.675 0.713 0.730

5 1.709 0.429 0.183 0.374 0.451 0.430

Table 4 Average discount rates on a ridge surface (single-type)

The values (1, 3, 5) indicate the Signal/Noise Ratio

S/N ratio β0 β1

β0 1 3 5 1 3 5

β1

Basic GWR 1 1.740 0.571 0.383 2.642 2.325 2.249

3 2.623 0.728 0.401 1.150 1.375 1.321

5 2.892 0.824 0.433 0.591 0.810 0.894

Local linear 1 2.890 1.023 0.621 4.745 4.374 3.672

3 4.340 1.206 0.618 1.960 2.255 2.023

5 5.385 1.386 0.677 1.081 1.326 1.344

CGWR 1 0.884 0.203 0.111 1.029 0.428 0.258

3 1.048 0.239 0.116 0.529 0.385 0.250

5 0.854 0.221 0.107 0.253 0.208 0.159

Table 5 Average discount rates on a hillside surface (single-type)

The values (1, 3, 5) indicate the signal/noise ratio

Signal/noise ratio β0 β1

β0 1 3 5 1 3 5

β1

Basic GWR 1 1.075 0.315 0.153 1.697 1.905 1.359

3 1.353 0.340 0.173 0.583 0.603 0.668

5 1.152 0.343 0.185 0.234 0.278 0.360

Local linear 1 1.339 0.243 0.149 2.187 1.549 1.239

3 1.403 0.289 0.188 0.617 0.529 0.722

5 1.113 0.339 0.209 0.266 0.307 0.421

CGWR 1 0.726 0.170 0.077 1.098 0.761 0.473

3 0.926 0.199 0.079 0.384 0.348 0.239

5 0.578 0.192 0.079 0.159 0.158 0.140



Page 10 of 18Leong and Yue  Int J Health Geogr  (2017) 16:11 

we have only shown the results when the S/N ratio equals 
one and five. The results are shown in Tables  7 and 8. 
Unlike the previous comparisons, we also provide the 

variances and biases of the OLS estimates. In general, a 
larger S/N ratio tends to produce a larger bias. Moreo-
ver, the OLS estimates fail to capture the spatial trend 

Table 6 The average bandwidths for linear and hillside surfaces (single-type)

The value (1, 3, 5) indicate the signal/noise ratio. For CGWR, the first and second values are the average bandwidths of β0 and β1, respectively

S/N Linear surface Hillside surface

Method Basic GWR Local linear CGWR Basic GWR Local linear CGWR

1 2.35 9.73 4.16; 7.24 2.25 9.78 4.72; 7.45

3 1.46 10.8 1.65; 2.31 1.47 9.01 1.57; 2.80

5 1.2 10.34 1.25; 1.47 1.24 6.04 1.25; 1.66

Table 7 Average variances and biases of β0 and β1 on a linear surface (single-type)

The values (1, 5) indicate the signal/noise ratio

S/N of β0: OLS Basic GWR Local linear CGWR

1 5 1 5 1 5 1 5

(i) β0
Conditional on S/N of β1 = 1

Variance 0.009 0.011 0.039 0.067 0.051 0.052 0.024 0.036

Bias 0.029 0.028 0.002 0.004 0.0003 0.0002 0.001 0.0002

Conditional on S/N of β1 = 5

Variance 0.010 0.009 0.090 0.107 0.057 0.043 0.048 0.057

Bias 0.723 0.719 0.026 0.038 0.0005 0.0002 0.012 0.009

(ii) β1
Conditional on S/N of β1 = 1

Variance 0.031 0.036 0.113 0.190 0.146 0.145 0.071 0.117

Bias 0.038 0.695 0.013 0.051 0.001 0.0005 0.004 0.028

Conditional on S/N of β1 = 5

Variance 0.030 0.027 0.248 0.294 0.152 0.114 0.088 0.152

Bias 0.191 0.880 0.048 0.124 0.001 0.0002 0.004 0.010

Table 8 Average variances and biases of β0 and β1 on a hill-side surface (single-type)

The values (1, 5) indicate the signal/noise ratio

S/N of β0 OLS Basic GWR Local linear CGWR

1 5 1 5 1 5 1 5

(i) β0
Conditional on S/N of β1 = 1

Variance 0.008 0.008 0.031 0.060 0.044 0.053 0.026 0.040

Bias 0.028 0.702 0.003 0.033 0.002 0.033 0.002 0.009

Conditional on S/N of β1 = 5

Variance 0.009 0.008 0.053 0.080 0.048 0.061 0.025 0.046

Bias 0.027 0.703 0.003 0.042 0.003 0.041 0.001 0.008

(ii) β1
Variance 0.023 0.021 0.090 0.183 0.115 0.178 0.054 0.084

Bias 0.034 0.129 0.013 0.107 0.007 0.031 0.004 0.009

Conditional on S/N of β1 = 5

Variance 0.024 0.022 0.168 0.239 0.159 0.192 0.110 0.106

Bias 0.068 0.811 0.049 0.179 0.045 0.097 0.013 0.033
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causing the largest bias, but it uses all the observations in 
the estimation (i.e. infinite bandwidth) and thus has the 
smallest variance. As for the three GWR estimations, the 
variances of the estimators are generally larger than the 
biases.

The results of the linear surface are in Table 7. As men-
tioned earlier, the average bandwidths of the local lin-
ear method are the largest, which possibly indicates the 
smallest variances. In addition, the local linear method 
has the smallest bias and the smallest discount rates 
for linear surfaces (Table  2). Although the CGWR has 
a larger bias than the local linear method in the case of 
linear surface, it dominates the basic GWR method with 
respect to both the variance and bias. The CGWR per-
forms the best with ridge surfaces, outperforming the 
basic GWR and the local linear method with respect to 
both variance and bias.

Mixed‑type surfaces
Next, we repeat the same comparisons for the three GWR 
estimation methods with the mixed-type surfaces. The 
results are similar to those in the single-type surfaces, and 
thus we will only show the results of the discount rates. As 
mentioned earlier, there are two cases in this scenario: lin-
ear-quadratic (a polynomial surface) and ridge-hillside (a 
non-polynomial surface). In the first case, the underlying 
surface of intercept is linear, and the slope is quadratic. In 
the second case, all surfaces are of non-polynomial type, 
and it is more complex than the first one.

Basically, the CGWR also has smaller discount 
rates than the basic GWR for the mixed-type surfaces 
(Tables  9, 10). We will focus on the results that differ 
from those of the single-type surfaces. Although the local 
linear estimation is better than the GWR for linear-quad-
ratic surfaces, it performs adversely for the ridge-hillside 

surfaces. It is inadequate to use the linear fitting method 
to approximate non-linear surfaces, such as the ridge-
hillside case. On the contrary (similar to the single-type 
cases) the CGWR dominates the other two methods in 
both cases.

Two‑stage fitting procedure
We found that the CGWR works well when there is a 
positive correlation. However, in reality, there is a great 
likelihood of variables not being positively correlated. 
To overcome this difficulty, the CGWR can be modified 
into a two-stage process. In the first stage, we divide the 
variables into two groups. In both groups, the variables 
are non-negatively (or positively) correlated within the 
group. Any two variables are non-positively (or nega-
tively) correlated if they are from different groups. We 
choose one group of variables and apply the basic GWR 
method to this group. In the second stage, we apply the 
CGWR method to the other group of variables by treat-
ing the first group of variables (chosen in the first stage) 
as constants.

We use an example to demonstrate the two-stage fit-
ting. Let us assume there are two independent variables 
and an intercept. Let the coefficients of the two independ-
ent variables be negatively correlated. In other words, let 
the coefficients of variables x1 and x2 be negatively cor-
related, and the coefficients between x1 and intercepts be 
positively correlated. We first apply the basic GWR on x2 
in the first stage, and then apply the CGWR on the inter-
cept and x1 in the second stage. We will use a simulation 
to evaluate the two-stage modification and show the 
results of the linear and hillside surfaces in Fig. 5. Similar 
to the previous simulation, the two-stage CGWR seems 
to work well even when the variables are not all positively 
correlated.

Table 9 The average discount rates of a linear-quadratic surface (mixed-type)

The values (1, 3, 5) indicate the signal/noise ratio

β0 β1

β0 1 3 5 1 3 5

β1

Basic GWR 1 1.062 0.279 0.155 1.934 1.643 1.420

3 2.110 0.407 0.181 1.048 1.067 0.935

5 3.119 0.537 0.231 0.688 0.687 0.711

Local linear 1 1.492 0.225 0.080 2.888 1.514 0.905

3 3.100 0.534 0.169 1.405 1.314 0.954

5 5.357 0.775 0.268 0.928 0.871 0.753

CGWR 1 0.764 0.183 0.100 1.301 0.802 0.538

3 1.132 0.345 0.179 0.708 0.849 0.785

5 1.257 0.388 0.217 0.404 0.523 0.584
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Single‑Type Surfaces with Clusters
The purpose of considering the scenario with clusters is 
to investigate whether the estimated surface would be 
influenced by the cluster intervention on β0. Figure  6 
illustrates the cluster location and the mean shift level. 
Single-type surfaces are assumed to evaluate the perfor-
mance under cluster intervention. The mean smoothness 
and average discount rate of β0 are in Fig. 7 and Table 11. 

The CGWR again has the best performance and provides 
the most accurate information pertaining to the loca-
tion and size of the clusters. Although the GWR seems 
to reveal the true cluster locations, it suffers from bumpy 
fitting and gives rise to ‘false clusters.’ The local linear 
method seems to oversmooth the surface and blur the 
local pattern, although this might suggest a possible clus-
ter on the edges.

Table 10 The average discount rates of a ridge-hillside surface (mixed-type)

The values (1, 3, 5) indicate the signal/noise ratio

β0 β1

β0 1 3 5 1 3 5

β1

Basic GWR 1 1.457 0.545 0.337 2.160 3.268 2.868

3 1.623 0.582 0.349 0.622 1.373 1.786

5 1.511 0.604 0.344 0.251 0.586 0.943

Local linear 1 2.105 0.853 0.536 3.312 5.602 4.755

3 2.236 0.903 0.497 0.896 2.348 2.595

5 1.999 0.980 0.540 0.333 1.076 1.522

CGWR 1 0.956 0.245 0.116 1.166 0.750 0.351

3 1.279 0.361 0.151 0.544 0.677 0.443

5 1.338 0.485 0.204 0.245 0.434 0.415

Fig. 5 Average discount rates by x2. The average discount rates of additional explanatory variables during the simulation study. The baseline is 
GWR. The ratio of average discount rate under different Signal to noise ratio. Left panel indicate the performance on β0, and indicate performance on 
β1 for right panel
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From the preceding computer simulations studies, 
we found that the proposed CGWR method makes a 
significant improvement over the basic GWR method. 
Although the local-linear method behaves well in the lin-
ear surface, if the coefficient surfaces are non-linear, the 
CGWR also outperforms the local linear method. In the 
following discussion, we will use two real-world datasets 
to compare the CGWR and other two methods and pro-
vide further evidence in support of the CGWR.

Empirical data
We apply the CGWR to two empirical data sets: the first 
is from the 2000 Taiwan Census and the other is the Ohio 
crime data provided by Anselin [1]. These two examples 
are designed to demonstrate that the CGWR would yield 
better estimation results. For the Taiwan data, our goal 
is to explore the relationship between the proportion of 
elderly disability and social factors. The elderly popula-
tion in Taiwan have been increasing rapidly all around 
the country, while the medical resources still concentrate 
in the metropolitan areas (or northern Taiwan). Hu and 
Yue [18] applied spatial regression model to the elderly 
disability data of township level and found they are spa-
tially auto-correlated. Brunsdon [7] argued that the 

Fig. 6 Cluster location and mean shift level. The area shows cluster 
intervention in simulation study. The shade depth in the first graph 
represents the mean shift level. The simulated region falls within 
Cartesian product within 0 and 1 (i.e. [0, 1] × [0,1]). There are two 
artificial clusters (hot‑spots) located on lower‑left and top‑right. The 
lower-left cluster has lower relative risk and the top-right cluster has 
higher relative risk

Basic GWR Local linear method CGWR

Linear

Hillside

Fig. 7 β0 Mean surface in cluster settings. Estimated intercept respond surface derived from different method (quadratic and hillside surfaces, S/N 
ratio of β0 = β1 = 5)
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spatial autocorrelation seems to be caused by spatial non-
stationarity (i.e., identifiability). His claim motivates us to 
re-examine the data using the GWR-based model.

Taiwan data
Taiwan 2000 Census includes data of 350 townships 
and their proportions of disabled elderly are set as the 
dependent variable. Since this variable appears to be 
right-skewed, a log transformation (i.e.y∗i = log(yi + 1) ) 
is applied. Four independent variables are selected: the 
population density (POP), proportion of elderly (ELD), 
elderly mortality rate (EMR), and education level (EDU). 
These independent variables are standardized into the [0, 
1] interval. Before applying the GWR, we first test spatial 
non-stationarity with the F test suggested by Leung et al. 
[21]. The F test shows that the model is spatially non-sta-
tionary with p value <0.001. This confirms the hypothesis 
of Brunsdon [7] and creates incentive for plugging the 
GWR-type analysis.

The correlation of the intercept and the variable POP is 
0.463 (Table 12), and they are placed in the same group. 
Similarly, the variables ELD, EMR, and EDU are in the 
other group since they are positively correlated pairwise. 
Thus, we use the two-stage modification and apply the 
CGWR on the group of positively correlated variables (i.e. 
the intercept and the variable POP). First, we treat the 
variables ELD, EMR, and EDU as constants after obtain-
ing estimates from the basic GWR method. Then, we 
apply the CGWR to the intercept and the variable POP 
as 

(
y∗i − β̂GWR

i2 ELDi − β̂GWR
i3 HMRi − β̂GWR

i4 EDUi

)
=  

β̂CGWR
i0 + β̂CGWR

i1 POPi + ri . After fitting the CGWR, the 
calibrated bandwidths vary across the variables. Also, we 
set the lower and upper bounds of the bandwidth as 1 
and 400 km, respectively.

There is a noticeable difference between the estimates 
from the CGWR and those from other methods (Fig. 8). 
The coefficient surfaces of the local linear method appear 
to spread in the north–south or east–west direction with 
linear boundaries. Similarly, the surfaces of the basic 
GWR also show descending (or ascending) patterns but 
with curved boundaries. However, the intercept of the 
CGWR shows clusters (or concentration) of high disabil-
ity rate on inland (mountainous areas). For the variable 
POP, the number of coefficient levels varies among differ-
ent models and their spreading directions are not identi-
cal. The GWR has the fewest levels and the local linear 
method has the largest; the spreading is in the east–west 
direction for the local linear method, different to other 
methods.

We also use the pseudo R-square values and the 
residual plots for model evaluation (Fig.  9). The pseudo 
R-square is the Pearson product moment correlation 
coefficient of the fitted value and the observed value; 
a large value usually indicates a better fit. The pseudo 
R-square value of the CGWR is 0.894, largest among 

Table 11 The average discount rates of β0 on surfaces with cluster

The values (1, 3, 5) indicate the signal/noise ratio

Linear Hillside

β0 1 3 5 1 3 5

β1

Basic GWR 1 0.975 0.395 0.214 0.929 0.386 0.198

3 1.116 0.421 0.240 0.964 0.416 0.196

5 1.202 0.473 0.257 1.007 0.412 0.197

Local linear 1 1.166 0.402 0.207 1.142 0.543 0.284

3 1.246 0.45 0.210 1.238 0.593 0.325

5 1.287 0.419 0.225 1.358 0.619 0.288

CGWR 1 0.714 0.226 0.098 0.625 0.216 0.106

3 0.943 0.302 0.133 0.852 0.281 0.112

5 1.146 0.368 0.150 1.000 0.303 0.123

Table 12 Correlations of  regression coefficients from  the 
disability data (INT and  POP)  →  group 1, (ELD, EMR, 
EDU) → group 2

INT represents the intercept in GWR. Other variables include Population Density 
(POP), Proportion of Elderly (ELD), Elderly Mortality Rate (EMR), Education (EDU)

INT POP ELD EMR EDU

INT 1.000 0.463 −0.949 −0.951 −0.971

POP 0.463 1.000 −0.281 −0.281 −0.653

ELD −0.949 −0.281 1.000 0.914 0.875

EMR −0.951 −0.281 0.914 1.000 0.868

EDU −0.971 −0.653 0.875 0.868 1.000
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Fig. 8 Surface of intercept and variable POP for different GWR methods. Comparison of different method by using Taiwan disability data

Fig. 9 Residual plots for different GWR methods (Taiwan data). These plots illustrate the residual analysis after fitting with different model. The 
residuals are generated from Taiwan disability data
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three methods. Moreover, the residual plots are also 
in favour of the CGWR because there are fewer outli-
ers, and the CGWR appears to have smaller variance. 
Except for one observation (standardized residual larger 
than 3), the residuals histogram of CGWR (350 observa-
tions) looks more symmetric and less skewed to the right 
than those of the basic GWR and local linear method. It 
should be noted that either one of the variable sets can be 
chosen as a constant. If we apply the CGWR procedure 
to the other group of variables (i.e. ELD, EMR, and EDU), 
then the CGWR has a better fit (although the pseudo 
R-square is slightly low at 0.874).

Ohio Data
The Ohio data is the Ohio crime data (which can be 
found on ‘spgwr’ package) with the information of 49 
neighborhoods including the crime per inhabitant, aver-
age income values, and average housing costs. In this 
study, we define the crime per inhabitant as the depend-
ent variable and the rest of them as the predictors. First, 
we fit the data with the GWR model. By cross validation 
criterion, the optimal bandwidth is 2.27 (Table 13). And 
yet, Leung et al. F test [21] suggests none of the variable 
is non-stationary. Therefore, the OLS analysis is applied 
and one observation is considered as outlier and removed 
accordingly.

Next, we re-fit the data with the CGWR and compare 
the estimation result with those of the OLS, the GWR, 
and the local linear models. Table  14 lists the pseudo 
R-square and the p value of normality test (Kolmogorov–
Smirnov test) for residuals, and Fig. 10 shows the residu-
als plot. Overall, the CGWR yields the best performance 
in estimation and produces a more reliable result. For 
other methods, none of them gives satisfactory estimates. 
For example, despite the GWR produces a large pseudo 

R-square, its residuals are not normally distributed and 
its variance is likely not constant. The OLS is also not a 
feasible model, judging from the information of normal-
ity test and constant variance.

Conclusions
The GWR has become a popular tool for explanatory data 
analysis and detecting spatial non-stationarity ever since 
its introduction. The GWR provides useful information 
for data analysis, especially helpful in deciding important 
explanatory variables. This technique allows regression 
coefficients to vary across space and obtains their esti-
mates from a bandwidth of observations according the 
data attribute. However, the GWR tends to produce rag-
ged surfaces (as shown in Fig.  1), and a fixed bandwidth 
may not be appropriate since the independent variables 
are necessary to be homogeneous (e.g., their variations can 
be quite different). In this study, we proposed a modifica-
tion to the GWR, namely CGWR, which allows the group 
of positively correlated independent variables to have its 
own bandwidth via an iterative calibration process.

We used computer simulated and empirical data to 
compare the proposed method with the GWR and its 
local linear modification by Wang et al. [31]. Based on the 
simulation results, we found that the CGWR outperforms 
other two methods, with respect to the bias and vari-
ance, when the regression coefficients are positively cor-
related. The advantage is especially noticeable in the case 
of non-linear surfaces. In particular, the clusters have lit-
tle influences on the estimation of CGWR. The results of 
empirical studies also support the CGWR and it generally 
has larger R-square and has fewer extreme outliers (e.g., 
the absolute value of standardized residual larger than 2 
or 3) than the GWR and the local linear method.

However, the proposed method has its limitations. 
First, probably the most critical limitation, the cur-
rent setting of CGWR only works for the case if there 
are independent variables with positive correlation. 
Although not shown here, we found that the CGWR does 
not work well in the case of independent variables with 
negative correlation. It is like the antithetic variate in var-
iance reduction of Monte Carlo Integration. Antithetic 
variate is one of the popular variance reduction methods 
but it only works when two variables are negatively cor-
related [25]. Thus, we suggest first calculating the corre-
lation coefficients between independent variables. Then, 
form a group of variables which are pairwise positively 
correlated and apply the CGWR only to this group of var-
iables. Another possibility is that the independent varia-
bles often can be separated into two groups and variables 
within/between groups are positively/negatively corre-
lated, as seen in Taiwan 2000 Census data. We can apply 
the two-stage CGWR to two groups of variables.

Table 13 The bandwidths of different models

Method Variable

Intercept x1 (average income 
value)

2 (average 
housing cost)

Basic GWR 2.27 2.27 2.27

Local linear 13.81 13.81 13.81

CGWR 999 999 1.77

Table 14 Pseudo  R2 and p values of Kolmogorov–Smirnov 
normality test

Method OLS Basic GWR Local linear CGWR

Pseudo  R2 0.743 0.953 0.837 0.937

K–S test p value 0.906 0.625 0.870 0.772
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Second, the CGWR is a computer-intensive method 
and its computing time increases rapidly as the number 
of variables increases, although the convergence of coef-
ficients can be speed up by using the moving average 
method. Third, the CGWR is not guaranteed to work if 
there are many variables, and so far it is effective for the 
case up to four variables. A possible modification to the 
case with more variables would be to separate the vari-
ables into two groups and use double iteration. Then, the 
CGWR can be applied to each group of variables forming 
the inner loop and the process re-iterated between the 
two groups forming the outer loop until both groups of 
variables converge. To demonstrate the feasibility of this 
idea, we also conducted an experiment with six variables, 

separating them into two groups of three variables each. 
We found that the estimation did converge and produce 
satisfactory estimates.

In addition to the fixed bandwidth, it seems that there 
is still room for improvement about the GWR. In par-
ticular, when the S/N ratio is small, the estimated coeffi-
cient surfaces would be non-linear (i.e., ragged surfaces), 
even when the true surfaces are linear. In addition, 
the variance reduction of the CGWR over the GWR 
is more obvious than that for bias reduction. This indi-
cates that the GWR estimates have large variance when 
the S/N ratio is small. In other words, if the variances of 
GWR estimates are reduced, the bias can also be further 
reduced, producing more stable estimates.

Fig. 10 Residual plots of various models (Ohio data). Different residual plot from Ohio crime data. Note that the data are cut into half according to 
fitted values before conducting F test. The data are cut into half according fitted values before conducting constant variance test. For example, the 
middle point of GWR fitted values is around 29.1. We first split the data to two sets (before 29.1 and after 29.1). After that, F test is conducted to test 
whether both parts have equal variance (i.e. H0 : σ1 = σ

2), which is the basic assumption in regression analysis. Small p value indicates constant 
variance assumption is not likely to be true



Page 18 of 18Leong and Yue  Int J Health Geogr  (2017) 16:11 

Authors’ contributions
Leong developed the estimation algorithm, conducted simulation studies, 
as well as empirical data analysis, and drafted the manuscript. Yue proposed 
the general methodology, designed the simulation, interpreted the results 
and helped to draft the manuscript. Both authors read and approved the final 
manuscript.

Acknowledgements
This research was supported in part by a grant from the National Science 
Council in Taiwan, NSC 104‑2410‑H‑004 ‑023 ‑MY2. We greatly appreciate the 
insightful comments from the editor and two anonymous reviewers, which 
helped us to clarify the context of our work.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The Columbus Ohio crime data is prepared by Luc Anselin, Spatial Analysis 
Laboratory, Department of Agricultural and Consumer Economics, University 
of Illinois, Urbana‑Champaign. The dataset can be downloaded at following 
link: https://spatial.uchicago.edu/sample‑data, or available at the ‘spgwr’ pack‑
age in R statistical software.

Received: 12 October 2016   Accepted: 20 March 2017

References
 1. Anselin L. Spatial econometrics: methods and models. Dordrecht: Kluwer 

Academic Publishers; 1988.
 2. Auchincloss AH, Gebreab SY, Mair C, Diez Roux AV. A review of spatial 

methods in epidemiology, 2000–2010. Annu Rev Public Health. 
2012;33:107–22. doi:10.1146/annurev‑publhealth‑031811‑124655.

 3. Bivand R, Danlin Y. R manual for package ‘spgwr’. 2010. http://cran.r‑
project.org/web/packages/spgwr/spgwr.pdf. Accessed 01 Mar 2017.

 4. Bivand R, Brunstad R. Further explorations of interactions between 
agricultural policy and regional growth in Western Europe: approaches 
to nonstationarity in spatial econometrics. 2005. http://www.feweb.vu.nl/
ersa2005/final_papers/671.pdf. Accessed 01 March 2017.

 5. Bratti M, De Benedictis L, Santoni G. On the pro‑trade effects of 
immigrants. Rev World Econ. 2014;150(3):557–94. doi:10.1007/
s10290‑014‑0191‑8.

 6. Brunsdon C, Fotheringham AS, Charlton M. Geographically weighted 
regression: modelling spatial nonstationarity. Statistician. 1998;47:431–43. 
doi:10.1111/1467‑9884.00145.

 7. Brunsdon C, Fotheringham AS, Charlton M. Some notes on parametric 
significance tests for geographically weighted regression. J Reg Sci. 
1999;39:497–524. doi:10.1111/0022‑4146.00146.

 8. Brunsdon C, Fotheringham AS, Charlton M. Geographically weighted 
regression: the analysis of spatially varying relationships. UK: Wiley; 2002.

 9. Cho S, Lambert DM, Kim SG, Jung S. Extreme coefficients in geographi‑
cally weighted regression and their effects on mapping. GISci Remote 
Sens. 2009;46(3):273–88. doi:10.2747/1548‑1603.46.3.273.

 10. Cleveland WS, Grosse E, Shyu WM. Local Regression Models. In: Chambers 
JM, Hastie TJ, editors. Statistical models in S. Pacific Grove: Wadsworth & 
Brooks; 1991. p. 309–76.

 11. Comber A, Fisher P, Brunsdon C, Khmag A. Spatial analysis of remote sens‑
ing image classification accuracy. Remote Sens Environ. 2012;127:237–46. 
doi:10.1016/j.rse.2012.09.005.

Additional file

Additional file 1. The outline proof of the convergence for CGWR with 
fixed bandwidths.

 12. Cressie N. Statistics for spatial data. New York: Wiley; 1993.
 13. Dark SJ, Bram D. The modifiable areal unit problem (MAUP) 

in physical geography. Prog Phys Geogr. 2007;31:471–9. 
doi:10.1177/0309133307083294.

 14. Du H, Mulley C. Understanding spatial variations in the impact of acces‑
sibility on land value using geographically weighted regression. J Transp 
Land Use. 2012;5(2):46–59. doi:10.5198/jtlu.v5i2.225.

 15. Fan JQ, Zhang WY. Statistical methods with varying coefficient models. 
Stat Interface. 2008;1:179–95.

 16. Farber S, Páez A. A systematic investigation of cross‑validation in GWR 
model estimation: empirical analysis and monte carlo simulations. J 
Geogr Syst. 2007;9:371–96. doi:10.1007/s10109‑007‑0051‑3.

 17. Hastie TJ, Tibshirani RJ. Generalized additive models. London, New York: 
Chapman and Hall; 1990.

 18. Hu YW, Yue JC. Spatial analysis of Taiwan elderly disability. Technical 
report, Department of Statistics, National Chengchi University, Taipei, 
Taiwan R.O.C; 2002. http://csyue.nccu.edu.tw/ch/2000Taiwan%20Old%20
Age%20Census.pdf. Accessed 01 March 2017.

 19. Kauhl B, Schweikart J, Krafft T, Keste A, Moskwyn M. Do the risk factors 
for type 2 diabetes mellitus vary by location? A spatial analysis of health 
insurance claims in northeastern germany using kernel density estima‑
tion and geographically weighted regression. Int J Health Geograph. 
2016;15:68. doi:10.1186/s12942‑016‑0068‑2.

 20. Lou Y, Caruana R, Gehrke J. Intelligible models for classification and 
regression. In: Proceedings of the 18th ACM SIGKDD international confer‑
ence on KDD. New York: ACM, 2012. P. 150–8.

 21. Leung Y, Mei CL, Zhang WX. Statistical tests for spatial nonstationarity 
based on the geographically weighted regression model. Environ Plann 
A. 2000;32:9–32. doi:10.1111/j.1538‑4632.1996.tb00936.x.

 22. Ma YZ. Simpson’s paradox in natural resource evaluation. Math Geosci. 
2009;41(2):193–213.

 23. Manoranjan VS, Olmos GM. A two‑step Jacobi‑type iterative method. 
Comput Math Appl. 1997;34:1–9. doi:10.1016/S0898‑1221(97)00093‑X.

 24. Ripley BD. Stochastic simulation. New York: Wiley; 1987.
 25. Rubinstein RY, Kroese DP. Simulation and the monte carlo method. New 

York: Wiley; 2011.
 26. Seng SB, Chong AK, Moore A. Geostatistical Modelling, Analysis and 

Mapping of Epidemiology of Dengue Fever in Johor State, Malaysia, (pp. 
109–123). Presented at the 17th Annual Colloquium of the Spatial Infor‑
mation Research Centre (SIRC 2005: A Spatio‑temporal Workshop); 2005.

 27. Shi HJ, Zhang LJ, Liu JG. A new spatial‑attribute weighting function for 
geographically weighted regression. Can J For Res. 2006;36:996–1005.

 28. Thisted R. Elements of statistical computing. London: Chapman‑Hall; 
1988.

 29. Tango T, Takahashi K. A flexibly shaped spatial scan statistic for detecting 
clusters. Int J Health Geograph. 2005;4:11. doi:10.1186/1476‑072X‑4‑11.

 30. Ward MD, Gleditsch KS. Spatial regression models. Thousand Oaks, CA: 
Sage; 2008.

 31. Wang N, Mei CL, Yan XD. Local linear estimation of spatially varying 
coefficient models: an improvement on the geographically weighted 
regression technique. Environ Plann A. 2008;40:986–1005.

 32. Wheeler DC. Geographically Weighted Regression. In: Fischer MM, 
Nijkamp P, editors. Handbook of regional science. Heidelberg: Springer; 
2014. p. 1435–59.

 33. Wu CO, Chiang CT. Kernel smoothing on varying coefficient models with 
longitudinal dependent variable. Stat Sinica. 2000;10:433–56.

 34. Wang TC, Yue JC. Spatial clusters in a global‑dependence model. Spat 
Spatio Temporal Epidemiol. 2013;5:39–50.

 35. Wei Y, Ye X. Urbanization, urban land expansion and environmental 
change in China. Stoch Env Res Risk Assess. 2014;28:757–65.

 36. Zou B, Pu Q, Muhammad B, Weng Q, Zhai L, Nichol J. High‑resolution 
satellite mapping of fine particulates based on geographically weighted 
regression. IEEE Geosci Remote Sens Lett. 2016;13:495–9. doi:10.1109/
LGRS.2016.2520480.

https://spatial.uchicago.edu/sample-data
http://dx.doi.org/10.1146/annurev-publhealth-031811-124655
http://cran.r-project.org/web/packages/spgwr/spgwr.pdf
http://cran.r-project.org/web/packages/spgwr/spgwr.pdf
http://www.feweb.vu.nl/ersa2005/final_papers/671.pdf
http://www.feweb.vu.nl/ersa2005/final_papers/671.pdf
http://dx.doi.org/10.1007/s10290-014-0191-8
http://dx.doi.org/10.1007/s10290-014-0191-8
http://dx.doi.org/10.1111/1467-9884.00145
http://dx.doi.org/10.1111/0022-4146.00146
http://dx.doi.org/10.2747/1548-1603.46.3.273
http://dx.doi.org/10.1016/j.rse.2012.09.005
http://dx.doi.org/10.1186/s12942-017-0085-9
http://dx.doi.org/10.1177/0309133307083294
http://dx.doi.org/10.5198/jtlu.v5i2.225
http://dx.doi.org/10.1007/s10109-007-0051-3
http://csyue.nccu.edu.tw/ch/2000Taiwan%20Old%20Age%20Census.pdf
http://csyue.nccu.edu.tw/ch/2000Taiwan%20Old%20Age%20Census.pdf
http://dx.doi.org/10.1186/s12942-016-0068-2
http://dx.doi.org/10.1111/j.1538-4632.1996.tb00936.x
http://dx.doi.org/10.1016/S0898-1221(97)00093-X
http://dx.doi.org/10.1186/1476-072X-4-11
http://dx.doi.org/10.1109/LGRS.2016.2520480
http://dx.doi.org/10.1109/LGRS.2016.2520480

	A modification to geographically weighted regression
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Results and discussion
	Simulated data
	Single-type surfaces
	Mixed-type surfaces
	Two-stage fitting procedure
	Single-Type Surfaces with Clusters

	Empirical data
	Taiwan data
	Ohio Data


	Conclusions
	Authors’ contributions
	References




