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數量分析

◼透過數理模型描述觀察結果：

觀察現象 =模型 +誤差

或是

y = f(x) + error；觀察值 =訊號 +雜訊。

◼數量化模型的關鍵：

→量化目標值 y：定義問題！

→選取關鍵變數：

→建立量化模型：統計學習、機器學習。
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廣義線性模型(Generalized Linear Model)



Simple Linear Regression

Model the mean of a numeric response Y as a 

function of a single predictor X, i.e.

E(Y|X) = bo + b1f(x)

Here f(x) is any function of X, e.g.

f(x) = X ➔ E(Y|X) = bo + b1X       (line)

f(x) = ln(X) ➔ E(Y|X) = bo + b1ln(X)  (curved)

The key is that E(Y|X) is a linear in the

parameters bo and b1 but not necessarily in X.



b0 = Estimated Intercept

b1 =  Estimated Slopew units

b0

b1 w units

Simple Linear Regression

Interpretable only if x = 0 is a

value of particular interest.

Always interpretable!
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Multiple Linear Regression

We model the mean of a numeric response as 

linear combination of the predictors themselves 

or some functions based on the predictors, i.e.

E(Y|X) = bo + b1X1+ b2X2 +…+ bpXp

Here the terms in the model are the predictors

E(Y|X) = bo + b1 f1(X)+ b2 f2(X)+…+ bk fk(X)

Here the terms in the model are k different functions of the p predictors



Multiple Linear Regression

For the classic multiple regression model

E(Y|X) = bo + b1X1+ b2X2 +…+ bpXp

the regression coefficients (bi) represent the 

estimated change in the mean of the response Y

associated with a unit change in Xi while the 

other predictors are held constant.  

They measure the association between Y and Xi

adjusted for the other predictors in the model.  



General Linear Models
• Family of regression models

• Response Model Type

– Continuous Linear regression

– Counts Poisson regression

– Survival times Cox model

– Binomial Logistic regression

• Uses
– Control for potentially confounding factors

– Model building , risk prediction



Logistic regression

• Most important model for categorical 
response (yi) data

• Categorical response with 2 levels (binary: 0 
and 1)

• Categorical response with ≥ 3 levels (nominal 
or ordinal)

• Predictor variables (xi) can take on any form: 
binary, categorical, and/or continuous



Logistic Regression

• Models relationship between set of variables Xi

– dichotomous (yes/no, smoker/nonsmoker,…)

– categorical (social class, race, ... )

– continuous (age, weight, gestational age, ...)

and

– dichotomous categorical response variable Y

e.g. Success/Failure, Remission/No Remission,

Survived/Died, CHD/No CHD, Low Birth

Weight/Normal Birth Weight…



Sigmoid curve for logistic regression



Logistic Regression Curve
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Logit Transformation

Logistic regression models transform 

probabilities called logits.

where

i indexes all cases (observations).

pi is the probability the event (a sale, for 

example) occurs in the ith case.

log is the natural log (to the base e).
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Logistic regression model with a single 

continuous predictor

logit (pi) = log (odds) = b0 + b1X1

where

logit(pi) logit transformation of the probability 

of the event

b0 intercept of the regression line

b1 slope of the regression line



Assumption

P i

Predictor Predictor

Logit
Transform

pi

(pi )



Interpretation of a single continuous

parameter

• The sign (±) of β determines whether the log 

odds of y is increasing or decreasing for every 

1-unit increase in x. 

• If β > 0, there is an increase in the log odds of 

y for every 1-unit increase in x.

• If β < 0, there is a decrease in the log odds of y 

for every 1-unit increase in x.

• If β = 0 there is no linear relationship between 

the log odds and x.



Parameter interpretation (ctd).

• Exponentiating both sides of the logit link 

function we get the following:

= odds = exp(b0 + b1X1) = e
b0

e
b1X1

• The odds increase multiplicatively by e
β
for 

every 1-unit increase in x.

• Whether the increase is greater than 1 or less 

than one depends on whether β > 0 or β < 0.

• The odds at X = x+1 are e
β
times the odds at X = 

x. Therefore, e
β

is an odds ratio!
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Logistic regression model with a single 

categorical (≥ 2 levels) predictor

logit (pi) = log (odds) = b0 + bkXk

where

logit(pi) logit transformation of the   

probability of the event

b0 intercept of the regression line

bk difference between the logits for 

category k vs. the reference 

category



Logistic Regression
Example:  Coronary Heart Disease (CD) and Age

In this study sampled individuals were examined for 

signs of CD (present = 1/absent = 0) and its potential 

relationship with the age (yrs.) was considered. 

…

Note: This is a portion of the raw data for the 100 subjects 

who participated in the study.



Logistic Regression

• How can we analyze these data?

The mean age of the individuals with some signs of 

coronary heart disease is 51.28 years vs. 39.18 years for 

individuals without signs (t = 5.95, p < .0001).  

Non-pooled t-test



Logistic Regression

Simple Linear Regression? Smooth Regression Estimate?
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The smooth regression estimate is 

“S-shaped” but what does the 

estimated mean value represent?

Answer:  P(CD|Age)!!!!



Logistic Regression

We can group individuals into age classes and 

look at the percentage/proportion showing signs of 

coronary heart disease.
  Diseased 

Age group # in group # Proportion 

1)  20 - 29 10 1 .100 

     2)  30 - 34 15 2 .133 

     3)  35 - 39 12 3 .250 

     4)  40 - 44 15 5 .333 

     5)  45 - 49 13 6 .462 

     6)  50 - 54 8 5 .625 

     7)  55 - 59 17 13 .765 

     8)  60 – 64            10 8 .800 
 

 

 

Notice the “S-shape” to the 

estimated proportions vs. age.



Logistic Function
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Logit Transformation

The logistic regression model is given by

which is equivalent to

X
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This is called the 

Logit Transformation



Dichotomous Predictor
Consider a dichotomous predictor (X) which 

represents the presence of risk (1 = present)
 Risk Factor (X) 

Disease (Y) Present 
              ( X   =   1 )  

  Absent 
                     ( X   =   0 ) 

Yes (Y = 1) )11( == XYP  )01( == XYP  

No  (Y = 0) )11(1 ==− XYP       )01(1 ==− XYP  
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Dichotomous Predictor

• Therefore, for the odds ratio associated with risk 
presence we have

• Taking the natural logarithm we have

Thus, the estimated regression coefficient 
associated with a 0-1 coded dichotomous 
predictor is the natural log of the OR associated 
with risk presence!!!

1beOR =

1)ln( b=OR



Logit is Directly Related to Odds

The logistic model can be written

This implies that the odds for success can be 

expressed as
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This relationship is the key to interpreting the 

coefficients in a logistic regression model !!



Dichotomous Predictor (+1/-1 coding)
Consider a dichotomous predictor (X) which 

represents the presence of risk (1 = present)
 Risk Factor (X) 

Disease (Y) Present 
              ( X   =   1 )  

  Absent 
                     ( X   =   -1 ) 

Yes (Y = 1) )11( == XYP  )11( −== XYP  

No  (Y = 0) )11(1 ==− XYP       )11(1 −==− XYP  
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Dichotomous Predictor

• Therefore, for the odds ratio associated with risk 
presence we have

• Taking the natural logarithm we have

Thus, twice the estimated regression coefficient 
associated with a +1 / -1 coded dichotomous 
predictor is the natural log of the OR associated 
with risk presence!!!

12b
eOR =

12)ln( b=OR



Example: Age at 1st Pregnancy & Cervical Cancer

Use Fit Model   Y = Disease Status

X = Risk Factor Status

When the response Y is a 

dichotomous categorical 

variable the Personality box 

will automatically change to 

Nominal Logistic, i.e. 

Logistic Regression will be 

used.

Remember when a 

dichotomous categorical 

predictor is used JMP uses 

+1/-1 coding.  If you want 

you can code them as 0-1 and 

treat is as numeric.



Example: Age at 1st Pregnancy & Cervical Cancer

607.0  ˆ
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Women whose first pregnancy is at or before age 25 

have 3.37 times the odds for developing cervical cancer 

than women whose 1st pregnancy occurs after age 25.



Example: Age at 1st Pregnancy & Cervical Cancer

607.0  ˆ

183.2ˆ

1 =

−=

b
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Thus the estimated odds ratio is 

Risk Present Odds Ratio for disease 

associated with risk presence



Example 1: Smoking and Low Birth Weight

Use Fit Model   Y = Low Birth Weight (Low, Norm)

X = Smoking Status (Cig, NoCig)

954.1 
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We estimate that women who 

smoker during pregnancy have 1.95 

times higher odds for having a child 

with low birth weight than women 

who do not smoke cigarettes during 

pregnancy.



Example 1: Smoking and Low Birth Weight

954.1 
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Find a 95% CI for OR

1st Find a 95% CI for b1   

2nd Compute CI for OR = (e2LCL, e2UCL)

)360,.310(.025.335.)013(.96.1335.)ˆ(96.1ˆ
11 === bb SE

(LCL,UCL)

)05.2 , 86.1(),( 360.23102 = ee

We estimate that the odds for having a low birth weight infant are between 1.86 

and 2.05 times higher for smokers than non-smokers, with 95% confidence.



Example 1: Smoking and Low Birth Weight

We might want to adjust for other potential 

confounding factors in our analysis of the risk 

associated with smoking during pregnancy.  This is 

accomplished by simply adding these covariates to 

our model.
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Multiple Logistic Regression Model

Before looking at some multiple logistic regression examples we 

need to look at how continuous predictors and categorical 

variables with 3 or levels are handled in these models and how 

associated OR’s are calculated.



Example 2:  Signs of CD and Age

Fit Model  Y = CD  (CD if signs present, No otherwise)

X = Age (years)
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Consider the risk associated with a c year increase in age.
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Example 2:  Signs of CD and Age

For example consider a 10 year increase in age, 
find the associated OR for showing signs of CD, i.e. 
c = 10

OR = ecb =  e10*.111 = 3.03

Thus we estimate that the odds for exhibiting 
signs of CD increase threefold for each 10 years of 
age.  Similar calculations could be done for other 
increments as well. 

For example for a c = 1 year increase

OR = eb = e.111 = 1.18 or an 18% increase in odds 
per year



Example 2:  Signs of CD and Age

◼Can we assume that the increase in risk 

associated with a c unit increase is constant 

throughout one’s life?  

◼ Is the increase going from 20 → 30 years of 

age the same as going from 50 → 60 years?

◼ If that assumption is not reasonable then one 

must be careful when discussing risk 

associated with a continuous predictor.



Example 3:  Race and Low Birth Weight

Calculate the odds for low birth weight for each race   (Low, Norm)

White Infants (reference group, missing in parameters)

Black Infants

Other Infants
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other  racefor   1
][

 white racefor   1

black  racefor   1
][

OtherRace

BlackRace

0805.089.410.198.2)1(089.)1(410.198.2 == +−−−−−+− ee
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OR for Blacks vs. Whites

= .167/.0805 = 2.075

OR for Others vs. Whites

= .102/.0805 = 1.267

OR for Black vs. Others

= .167/.102 = 1.637



Example 3:  Race and Low Birth Weight

Finding these directly using the estimated 

parameters is cumbersome.  JMP will compute the 

Odds Ratio for each possible comparison and their 

reciprocals in case those are of interest as well.

Odds Ratio column is odds for 

Low for Level 1 vs. Level 2.

Reciprocal is odds for Low for 

Level 2 vs. Level 1.   These are 

the easiest to interpret here as 

they represent increased risk.



Putting it all together

Now that we have seen how to interpret each 

of the variable types in a logistic model we can 

consider multiple logistic regression models with 

all these variable types included in the model.  

We can then look at risk associated with 

certain factors adjusted for the other covariates 

included in the model.



Example 3:  Smoking and Low Birth Weight

• Consider again the risk associated with smoking 

but this time adjusting for the potential 

confounding effects of education level and age of 

the mother & father, race of the child, total number 

of prior pregnancies, number children born alive 

that are now dead, and gestational age of the infant.

Several terms are not 

statistically significant 

and could consider using 

backwards elimination to 

simplify the model.  



Example 3:  Race and Low Birth Weight

None of the mother and farther 

related covariates entered into the 

final model.  

Adjusting for the included 

covariates we find smoking is 

statistically significant (p < .0001)

Adjusting for the included covariates we 

find the odds ratio for low birth weight 

associated with smoking during pregnancy 

is 2.142.

Odds Ratios for the other factors in the model can be 

computed as well.  All of which can be prefaced by the 

“adjusting for…” statement.



Summary

◼In logistic regression the response (Y) is a 

dichotomous categorical variable.

◼The parameter estimates give the odds ratio 

associated the variables in the model.

◼These odds ratios are adjusted for the other 

variables in the model.

◼One can also calculate P(Y|X) if that is of interest, 

e.g. given demographics of the mother what is the 

estimated probability of her having a child with 

low birth weight.



Interpretation of a single categorical parameter

• If your reference group is level 0, then the 

coefficient of βk represents the difference in the 

log odds between level k of your variable and 

level 0.

• Therefore, e
β

is an odds ratio for category k vs. 

the reference category of x.



Hypothesis testing

• Significance tests focuses on a test of H0: β = 0 

vs. Ha: β ≠ 0.

• The Wald, Likelihood Ratio, and Score test are 

used (we’ll focus on Wald method)

• Wald CI easily obtained, score and LR CI 

numerically obtained.

• For Wald, the 95% CI (on the log odds scale) 

is                    ))ˆ((96.1ˆ bb SE



95% CI for parameter

• Similarly, the Wald 95% CI for the odds ratio 

is obtained by exponentiation.

• The following yields the lower and upper 95% 

confidence limits:

• 1.96 corresponds to z0.05/2, where z~N(0,1)

))ˆ((96.1ˆexp( bb SE



Hypothesis testing (ctd)

• The Wald statistic of the test H0: β = β0 is

• Under H0, the test statistic is asymptotically 

chi-sq. with 1 df (at α = 0.05, the critical value 

is 3.84).



範例四、雙人賽局（囚犯困境）合作機率



羅吉士迴歸估計結果（囚犯困境）



羅吉士迴歸模型評估（囚犯困境）
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累進機率與Logit

• 我們在此處用累進機率cumulative 

probabilities的概念作為基礎

• 令P(y≦j)代表回答落在j這個類屬或以下的
機率（1, 2, …,j）

• Multinomial Logit 可逐項拆解：

→P(y=1)

→P(y≦2)=P(y=1)+P(y=2)

→P(y≦n)=P(y=1)++ P(y=n)



累進機率與Logit

• 每個類屬 j 或以下的勝算odds是

P(y≦j)/ P(y＞j)

• 每一個累進機率都可以被轉換成「高於」
或「低於」的二元變數的勝算

• A popular logistic model for an ordinal 

response uses logits of the cumulative 

probabilities



Cumulative logits

• 如果選項只有三種，則可得：
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Cumulative Logit Models for an 

Ordinal Response

• A model can simultaneously describe the effect of an 

explanatory variable on all the cumulative probabilities for y.

• 對於每個累積機率，這個模型就像是一般的羅吉斯模型，每

一組自變項都可分成「高於」和「低於」特定的類屬j。

• 這個模型是

Logit[P(y≦j)]=αj+βx, j=1, 2, …,c-1.

• In this model, β does not have a j subscript.

• It has the same value for each cumulative logit.  In other words, 

the model assumes that the effect of x is the same for each 

cumulative probability.

• This cumulative logit model with this common effect is often 

called the proportional odds model(比例勝算模型).



Cumulative Logit Models for an 

Ordinal Response

• For each j, the odds that y≦j multiply by eβ for each 

one-unit increase in x.

• Model fitting treats the observations as independent 

from a multinomial distribution.

• This is a generalization of the binomial distribution 

from two to multiple outcome categories.

• Software estimates the parameters using all the 

cumulative probabilities at once.  This provides a 

single estimate beta-hat for the effect of x, rather than 

the separate estimates.


