巨量資料與統計分析 Fall 2024

授課教師:統計系余清祥 日期:2024年10月22日 第六週:群聚與分類

什麼是群集(Clustering)?

• **Clustering:** the process of grouping a set of objects into classes of similar objects →到同一組文件有類似特性,不同組別的文 件特性大不相同。如紅樓夢前八十回、後 四十回作者不同,風格應該略有差異。 →公司、客戶、產品也可如此區隔。 ■問題:如何定義相似性(Similarity)?如何 劃分不同類別的界線?

Two Clusters

Four Clusters

Q: How many groups are there in the following 20 faces?

Converting them into Chernoff faces ...→ Which two faces are the most similar?

Applications of clustering

- Pattern Recognition
- Spatial Data Analysis
 - Create thematic maps in GIS by clustering feature spaces
 - Detect spatial clusters or for other spatial mining tasks
- Image Processing
- Economic Science (especially market research)WWW
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns

 $http://www.lac.inpe.br/{\capace{rafael.santos/Docs/CAP394/WholeStory-Iris.htmlt}$

Anderson and Fisher's Iris Data Iris setosa 2nd Principal Component Iris versicolor http://www.lac.inpetbr/~rafael.santos/Docs/CAP394/WholeStory-fris.hthlis virginica 1st Principal Component

Multi-label classification with Keras

https://pyimagesearch.com/wp-content/uploads/2018/04/keras_multi_label_dataset.jpg

Clustering Algorithms

A clustering algorithm tries to find natural groups of components based on <u>similarity</u> & the <u>centroid</u> of a group of data sets. Most algorithms evaluate the <u>distance</u> between a point and the cluster centroids. The output from a clustering algorithm is basically a statistical description of the cluster centroids with the number of components in each cluster.

Partitioning Clustering Approach

- A typical approach via iteratively partitioning training data set to learn a partition of the given data
- Learning a partition on a data set to produce several non-empty clusters (given the number of clusters)
- In principle, optimal partition achieved via minimising the sum of squared distance to its "representative object" in each cluster $E = \sum_{k=1}^{K} \sum_{\mathbf{x} \in C_{k}} d^{2}(\mathbf{x}, \mathbf{m}_{k})$

e.g., Euclidean distance $d^2(\mathbf{x}, \mathbf{m}_k) = \sum_{n=1}^{N} (x_n - m_{kn})^2$

What is K-Means?

- Given a *K*, find a partition of *K clusters* to optimise the chosen partitioning criterion
 - global optimum: exhaustively search all partitions
- The *K*-means algorithm: a heuristic method
 - K-means algorithm (MacQueen'67): each cluster is represented by the centre of the.
 - K-means algorithm is the simplest partitioning method for clustering.

K-means Algorithm

- Given the number K, the K-means algorithm is carried out in three steps after initialisation:
 Initialisation: set seed points (randomly)
- 1) Assign each object to the cluster of the nearest seed point measured with a specific distance metric
- 2) Compute new seed points as the centroids of the clusters of the current partition (the centroid is the centre, i.e., *mean point*, of the cluster)
- 3) Go back to Step 1), stop when no more new assignment (i.e., membership in each cluster no longer changes)

The K-Means Clustering Method

Distance Between Two Clusters

Single-Link Method / Nearest Neighbor
Complete-Link / Furthest Neighbor
Their Centroids.
Average of all cross-cluster pairs.

Single-Link Method

Euclidean Distance

(1)

(2)

	b	С	d
a	2	5	6
b		3	5
C			4

Distance Matrix

Complete-Link Method

Euclidean Distance

(1)

(2)

Distance Matrix

K-Means vs. Hierarchical Clustering

Partitional Clustering

Original Points

A Partitional Clustering

Non-traditional Hierarchical Clustering

Hierarchical Clustering

- Produces a set of *nested clusters* organized as a hierarchical tree
- Can be visualized as a **dendrogram**
 - A tree-like diagram that records the sequences of merges or splits

Cluster Similarity: MIN or Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

	11	12	13	4	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

Original Points

Two Clusters

Can handle non-elliptical shapes

Limitations of MIN

Original Points

Two Clusters

Sensitive to noise and outliers

Cluster Similarity: MAX or Complete Linkage

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

	11	12	13	4	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Strength of MAX

Original Points Two Clusters

• Less susceptible to noise and outliers

Limitations of MAX

Original Points

Two Clusters

- •Tends to break large clusters
- •Biased towards globular clusters

Cluster Similarity: Group Average

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

 $proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{\substack{p_i \in Cluster_i \\ p_j \in Cluster_j \\ p_j \in Cluster_j \\ | Cluster_i | * | Cluster_i |}}{| Cluster_i | * | Cluster_i |}$

 Need to use average connectivity for scalability since total proximity favors large clusters

	1	12	13	4	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

- Compromise between Single and Complete Link
- Strengths
 - Less susceptible to noise and outliers
- Limitations
 - Biased towards globular clusters

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - Can be used to initialize K-means

Hierarchical Clustering: Comparison

• Colour-Based Image Segmentation Using *K*-means

Step 1: Loading a colour image of tissue stained with hemotoxylin and eosin (H&E)

H&E image

Image courtesy of Alan Partin, Johns Hopkins University

- Colour-Based Image Segmentation Using *K*-means
 - **Step 2**: Convert the image from RGB colour space to L*a*b* colour space
 - Unlike the RGB colour model, <u>L*a*b*</u> colour is designed to approximate human vision.
 - There is a complicated transformation between RGB and L*a*b*.

 $(L^*, a^*, b^*) = T(R, G, B).$ $(R, G, B) = T'(L^*, a^*, b^*).$

- Colour-Based Image Segmentation Using *K*-means
 - **Step 3**: Undertake clustering analysis in the (a*, b*) colour space with the *K*-means algorithm
 - In the L*a*b* colour space, each pixel has a properties or feature vector: (L*, a*, b*).
 - Like feature selection, L* feature is discarded. As a result, each pixel has a feature vector (a*, b*).
 - Applying the *K*-means algorithm to the image in the a*b* feature space where K = 3 by applying the domain knowledge.

• Colour-Based Image Segmentation Using *K*-means Step 4: Label every pixel in the image using the results from *K*-means clustering (indicated by three different grey levels)

image labeled by cluster index

• Colour-Based Image Segmentation Using *K*-means

Step 5: Create Images that Segment the H&E Image by Colour

• Apply the label and the colour information of each pixel to achieve separate colour images corresponding to three clusters.

• Colour-Based Image Segmentation Using *K*-means

Step 6: Segment the nuclei into a separate image with the L* feature

- In cluster 1, there are dark and light blue objects (pixels). The dark blue objects (pixels) correspond to nuclei (with the domain knowledge).
- L* feature specifies the brightness values of each colour.
- With a threshold for L*, we achieve an image containing the nuclei only.

blue nuclei

Summary

- *K*-means algorithm is a simple yet popular method for clustering analysis
- Its performance is determined by initialisation and appropriate distance measure
- There are several variants of *K*-means to overcome its weaknesses
 - *K*-Medoids: resistance to noise and/or outliers
 - *K*-Modes: extension to categorical data clustering analysis
 - CLARA: extension to deal with large data sets
 - Mixture models (EM): handling uncertainty of clusters