巨量資料與統計分析 Fall 2024

授課教師:統計系余清祥 日期:2024年10月22日 第六週:群聚與分類

什麼是群集(Clustering)?

■ **Clustering:** the process of grouping a set of objects into classes of similar objects →到同一組文件有類似特性,不同組別的文 件特性大不相同。如紅樓夢前八十回、後 四十回作者不同,風格應該略有差異。 →公司、客戶、產品也可如此區隔。 ■問題:如何定義相似性(Similarity)?如何 劃分不同類別的界線?

Two Clusters Four Clusters

Q:How many groups are there in the following 20 faces?

Converting them into Chernoff faces … \rightarrow Which two faces are the most similar?

Applications of clustering

- Pattern Recognition
- Spatial Data Analysis
	- Create thematic maps in GIS by clustering feature spaces
	- Detect spatial clusters or for other spatial mining tasks
- Image Processing
- Economic Science (especially market research) ■ WWW
	- Document classification
	- Cluster Weblog data to discover groups of similar access patterns

http://www.lac.inpe.br/~rafael.santos/Docs/CAP394/WholeStory-Iris.htmlt

Anderson and Fisher's Iris Data

Multi-label classification with Keras

https://pyimagesearch.com/wp-content/uploads/2018/04/keras_multi_label_dataset.jpg

Clustering Algorithms

■A clustering algorithm tries to find natural groups of components based on **similarity** & the **centroid** of a group of data sets. Most algorithms evaluate the **distance** between a point and the cluster centroids. The output from a clustering algorithm is basically a statistical description of the cluster centroids with the number of components in each cluster.

Partitioning Clustering Approach

- A typical approach via iteratively partitioning training data set to learn a partition of the given data
- Learning a partition on a data set to produce several non-empty clusters (given the number of clusters)
- In principle, optimal partition achieved via minimising the sum of squared distance to its "representative object" in each cluster $^{2}(\mathbf{x},\mathbf{m}_{k})$ $E = \sum_{k=1}^{K} \sum_{\mathbf{x} \in C_k} d^2(\mathbf{x}, \mathbf{m}_k)$ $=\sum_{k=1}^{\mathbf{\Lambda}}\sum_{\mathbf{x}\in C_k}d^2(\mathbf{x},\mathbf{m}_k)$

 $1 - \mathbf{x} \in C_k$ ^{*C*} $(1 - \mathbf{x})$ iii_{*k} j*</sub>

17 $2(\mathbf{x}, \mathbf{m}_k) = \sum (x_n - m_{kn})^2$ 1 *N* $n=1$ $d^{2}(\mathbf{x}, \mathbf{m}_{k}) = \sum (x_{n} - m_{kn})^{2}$ = $\mathbf{x}, \mathbf{m}_{k}$) = $\sum_{n=1}^{k} (x_{n} - m_{kn})^{-1}$ e.g., Euclidean distance

What is K-Means?

- Given a *K*, find a partition of *K clusters* to optimise the chosen partitioning criterion
	- ^o global optimum: exhaustively search all partitions
- The *K-means* algorithm: a heuristic method
	- ^o K-means algorithm (MacQueen'67): each cluster is represented by the centre of the.
	- ^o K-means algorithm is the simplest partitioning method for clustering.

K-means Algorithm

- Given the number *K*, the *K-means* algorithm is carried out in three steps after initialisation: Initialisation: set seed points (randomly)
- 1) Assign each object to the cluster of the nearest seed point measured with a specific distance metric
- 2) Compute new seed points as the centroids of the clusters of the current partition (the centroid is the centre, i.e., *mean point*, of the cluster)
- 3) Go back to Step 1), stop when no more new assignment (i.e., membership in each cluster no longer changes)

The *K-Means* Clustering Method

Distance Between Two Clusters

❑Single-Link Method / Nearest Neighbor ❑Complete-Link / Furthest Neighbor ❑Their Centroids.

❑Average of all cross-cluster pairs.

Single-Link Method

Euclidean Distance

Distance Matrix

Complete-Link Method

Euclidean Distance

Distance Matrix

K-Means vs. Hierarchical Clustering

Partitional Clustering

Original Points A Partitional Clustering

Non-traditional Hierarchical **Clustering**

Non-traditional Dendrogram

Hierarchical Clustering

- Produces a set of *nested clusters* organized as a hierarchical tree
- Can be visualized as a **dendrogram**
	- \blacksquare A tree-like diagram that records the sequences of merges or splits

Cluster Similarity: MIN or Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
	- Determined by one pair of points, i.e., by one link in the proximity graph.

Hierarchical Clustering: MIN

Nested Clusters **Dendrogram**

Strength of MIN

Original Points Two Clusters

• Can handle non-elliptical shapes

Limitations of MIN

Original Points Two Clusters

• Sensitive to noise and outliers

Cluster Similarity: MAX or Complete Linkage

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
	- Determined by all pairs of points in the two clusters

Hierarchical Clustering: MAX

Nested Clusters Dendrogram

Strength of MAX

Original Points Two Clusters

• Less susceptible to noise and outliers

Limitations of MAX

Original Points Two Clusters

- •Tends to break large clusters
- •Biased towards globular clusters

Cluster Similarity: Group Average

■ Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

> $\sum_{\substack{\mathbf{p}_i \in \text{Cluster}_{i} \\ \mathbf{p}_j \in \text{Cluster}_{j}}} \text{proximity}(\mathbf{p}_i, \mathbf{p}_j)$
 $= \frac{\mathbf{p}_i \in \text{Cluster}_{i}}{|\text{Cluster}_{i}| * |\text{Cluster}_{j}|}$ $\mathbf{proximity}(\mathbf{p}_i, \mathbf{p}_j)$ $\frac{p_j}{p_j} = \frac{p_j}{p_j}$ *proximity(Cluster_i, Cluster* $\frac{p_j}{p_j}$ $\mathbf{p}_\mathbf{j}$ \in Cluster $_\mathbf{j}$ $\mathbf{p_i}$ \in **Cluster** \mathbf{i}

Need to use average connectivity for scalability since total proximity favors large clusters

Hierarchical Clustering: Group Average

Nested Clusters Dendrogram

Hierarchical Clustering: Group Average

- Compromise between Single and Complete Link
- Strengths
	- Less susceptible to noise and outliers
- Limitations
	- Biased towards globular clusters

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
	- Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
	- Can be used to initialize K-means

Hierarchical Clustering: Comparison

- [Colour-Based Image Segmentation Using](http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html) *K*-means
	- **Step 1**: Loading a colour image of tissue stained with hemotoxylin and eosin (H&E)

H&E image

Image courtesy of Alan Partin, Johns Hopkins University

- [Colour-Based Image Segmentation Using](http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html) *K*-means
	- **Step 2**: Convert the image from RGB colour space to L*a*b* colour space
		- Unlike the RGB colour model, $L^*a^*b^*$ colour is designed to approximate human vision.
		- There is a complicated transformation between RGB and $L^*a^*b^*$.

 $(L^*, a^*, b^*) = T(R, G, B).$ $(R, G, B) = T(L^*, a^*, b^*).$

- [Colour-Based Image Segmentation Using](http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html) *K*-means
	- **Step 3**: Undertake clustering analysis in the (a*, b*) colour space with the *K*-means algorithm
		- In the L^{*}a^{*}b^{*} colour space, each pixel has a properties or feature vector: (L^*, a^*, b^*) .
		- Like feature selection, L^{*} feature is discarded. As a result, each pixel has a feature vector (a^*, b^*) .
		- Applying the *K-*means algorithm to the image in the a*b* feature space where $K = 3$ by applying the domain knowledge.

• [Colour-Based Image Segmentation Using](http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html) *K*-means **Step 4**: Label every pixel in the image using the results from *K*-means clustering (indicated by three different grey levels)

image labeled by cluster index

• [Colour-Based Image Segmentation Using](http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html) *K*-means

Step 5: Create Images that Segment the H&E Image by Colour

• Apply the label and the colour information of each pixel to achieve separate colour images corresponding to three clusters.

• [Colour-Based Image Segmentation Using](http://www.mathworks.co.uk/help/images/examples/color-based-segmentation-using-k-means-clustering.html) *K*-means

Step 6: Segment the nuclei into a separate image with the L^{*} feature

- In cluster 1, there are dark and light blue objects (pixels). The dark blue objects (pixels) correspond to nuclei (with the domain knowledge).
- L^{*} feature specifies the brightness values of each colour.
- With a threshold for L^* , we achieve an image containing the nuclei only.

blue nuclei

Summary

- *K*-means algorithm is a simple yet popular method for clustering analysis
- Its performance is determined by initialisation and appropriate distance measure
- There are several variants of *K*-means to overcome its weaknesses
	- *K*-Medoids: resistance to noise and/or outliers
	- *K*-Modes: extension to categorical data clustering analysis
	- CLARA: extension to deal with large data sets
	- Mixture models (EM): handling uncertainty of clusters