Assignment #2, Due 7/7/2025 or 7/8/2025

- In class, we use the court example to explain the null and alternative hypotheses. Based on the case of People vs. Collins (1969), discuss the following topics:
 - (a) What are the null hypothesis and the alternative hypothesis?
 - (b) Explain your reasons for the choice of the null hypothesis.
 - (c) Do you think the testimony of eyewitnesses can be used to charge the couples?
- 2. Ideal Pace of Life. A Pew Research Center survey asked adults if their ideal place to live would have a faster pace of life or a slower pace of life. A preliminary sample of 16 respondents showed 4 preferred a faster pace of life, 11 preferred a slower pace of life, and 1 said it did not matter.
 - (a) Are these data sufficient to conclude there is a difference between the preferences for a faster pace of life or a slower pace of life? Use $\alpha = .05$. What is your conclusion?
 - (b) Considering the entire sample of 16 respondents, what is the percentage who would like a faster pace of life? What is the percentage who would like a slower pace of life? What recommendation do you have for the study?
- 3. Speed of Overnight Delivery Services. A test was conducted for two overnight mail delivery services. Two samples of identical deliveries were set up so that both delivery services were notified of the need for a delivery at the same time. The hours required to make each delivery follow. Do the data shown suggest a difference in the median delivery times for the two services? Use Wilcoxon Signed-rank test and $\alpha = .05$ for the test.

	Ser	vice
Deliver	1	2
1	24.5	28.0
2	26.0	25.5
3	28.0	32.0
4	21.0	20.0
5	18.0	19.5
6	36.0	28.0
7	25.0	29.0
8	21.0	22.0
9	24.0	23.5
10	26.0	29.5
11	31.0	30.0

- **4. State Expenditure per Student and Student–Teacher Ratio.** The following data show the rankings of 11 states based on expenditure per student (ranked 1 highest to 11 lowest).
 - (a) What is the rank correlation between expenditure per student and student-

teacher ratio? Discuss.

(b) At the α = .05 level, does there appear to be a relationship between expenditure per student and student-teacher ratio? and student-teacher ratio (ranked 1 lowest to 11 highest).

State	Expenditure per Student	Student– Teacher Ratio
Arizona	9	10
Colorado	5	8
Florida	4	6
Idaho	2	11
Iowa	6	4
Louisiana	11	3
Massachusetts	1	1
Nebraska	7	2
North Dakota	8	7
South Dakota	10	5
Washington	3	9

- 5. Production Process Temperature. Temperature is used to measure the output of a production process. When the process is in control, the mean of the process is $\mu = 128.5$ and the standard deviation is $\sigma = .4$.
 - (a) Construct the \overline{x} chart for this process if samples of size 6 are to be used.
 - (b) Is the process in control for a sample providing the following data?

128.8 128.2 129.1 128.7 128.4 129.2

(c) Is the process in control for a sample providing the following data?

129.3 128.7 128.6 129.2 129.5 129.0

- 6. Tennis String Breaking Strength. Over several weeks of normal, or in-control, operation, 20 samples of 150 packages each of synthetic-gut tennis strings were tested for breaking strength. A total of 141 packages of the 3000 tested failed to conform to the manufacturer's specifications.
 - (a) What is an estimate of the process proportion defective when the system is in control?
 - (b) Compute the upper and lower control limits for a *p* chart.
 - (c) With the results of part (b), what conclusion should be made about the process if tests on a new sample of 150 packages find 12 defective? Do there appear to be assignable causes in this situation?
 - (d) Compute the upper and lower control limits for an *np* chart.
 - (e) Answer part (c) using the results of part (d).
 - (f) Which control chart would be preferred in this situation? Explain.