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Abstract 

The increasing cancer incidence and mortality rates in Taiwan worsened the loss 

ratio of cancer insurance products and created a financial crisis for insurers. In the 

present study, we used the data from Taiwan National Health Insurance Research 

Database to evaluate the challenge of designing cancer products. We found the 

Lee-Carter and APC models have the smallest estimation errors, and the CBD and 

Gompertz models are good alternatives to explore the trend of cancer incidence and 

mortality rates, especially for the elderly people. The loss ratio of Taiwan’s cancer 

products is to grow and this can be deemed as a form of longevity risk.  
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1. Preface 

People in Taiwan are focussing more on their life planning after retirement 

because of prolonging life. In addition to economic needs, medical expenses have 

become a primary focus for the elderly (ages 65 and over) people, mainly due to their 

high medical demands. On average, the annual medical cost for the elderly is about 5 

times that of the ages between 0 to 64 in Taiwan. Moreover, like population aging, 

age-related death has also become one of the main causes of death in Taiwan. For 

example, most of the top 10 main causes in 1935 are acute and infectious diseases, 

while those in 2015 are not (Table 1). Also, the average age at death for the top 10 

main causes in 2015 is over 70 and cancer has been the leading cause of death for 34 

years in Taiwan, since 1982. 

 

Table 1. Top 10 Main Death Causes and their % in 1935 and 2015 

Cause 1 2 3 4 5 6-10 

1935 Pneumonia 
21.1% 

Enteritis 
12.2% 

Parasites 
Disease 

7.1% 

Tuberculosis 
6.8% 

Inherence 
6.0% 

Others 
20.9% 

2015 Cancer 
29.4% 

Heart 
Diseases 
12.0% 

Cerebrovascular 
Diseases 

7.0% 

Pneumonia 
6.8% 

Diabetes 
Mellitus 

6.0% 

Others 
17.8% 

 
Note: The cause “Inherence” includes birth injuries, infections of the newborn, other 
diseases of infancy, and immaturity5. 
Sources: Ministry of Interior6 and Ministry of Health and Welfare 

 

Although only 2% people in Taiwan have cancer, cancer accounts for almost 30% 

of death. In fact, the more elderly people died of cancer, 25% in 2015 compared to 

21% in 1996. (Source: Ministry of Health and Welfare, 2015) Cancer is also one of 

                                                      
5 Liu, S.Y. (2000), “Epidemiological transition in colonial Taiwan and its explanation”, Conference 

Paper for the Conference of Disease History, Academia Sinica, Taipei, Taiwan. (In Chinese) 
http://www.ihp.sinica.edu.tw/~medicine/conference/disease/shihyong.PDF  

6 Statistical Abstract of Taiwan Province for the Past Fifty-One Years. (In Chinese) 
http://twstudy.iis.sinica.edu.tw/twstatistic50/ 
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the major causes of death in OECD countries and over 1/4 of deaths are cancer related 

after diseases of the circulatory system in 2013. (Source: OECD Health Statistics, 

2015) Cancer is also the second leading cause of death in the U.S. (next to heart 

disease) and accounts for about 22.5% of death. (Source: National Vital Statistics 

Reports, 2016)  

Curing cancer is expensive and the financial burden of cancer is growing in most 

of the countries around the globe. In Taiwan, about 6% of national health care 

expenditure is cancer-related. According to Taiwan’s National Health Insurance, the 

average medical expense per cancer patient is around 3 times the average medical 

expense per person (Figure 1). Cancer is also a major cause in OECD countries and 

around 5% of total health cost involves cancer. The direct medical cost (including 

inpatient stays, outpatient visit, and prescription drugs) for cancer in the U.S. in 2011 

was $88.7 billion, which was slightly over 2% of the national health expenditure. 

(Source: Agency for Healthcare research and Quality)  

 
Figure 1. Annual medical expense of cancer and other patients in Taiwan 

 

It is believed that increasing incidence, prolonged survival, and high medical cost 

are the three main causes of increase in cancer expenditure. The incidence rate of 
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cancer generally increases with age. The financial burden of cancer is likely to 

increase in Taiwan due to the prolonged life and population aging. According to 

Taiwan’s government agency Financial Supervisory Commission, the loss ratio (i.e., 

the ratio of claim to premium) of long-term health products seems to increase with the 

policy year and many insurance companies have 100% or more loss ratios after 15 

years. This is especially the case for the cancer products. Table 2 shows the loss ratios 

of long-term health products in Taiwan over the past three years. (Source: Taiwan 

Insurance Institute) 

 
Table 2. The Loss ratio of long-term health products in Taiwan  

(Unit: %) 
Policy  
Year 1 2 3 4 5 6 7 8 9 10 11~14 15+ 

2013 33 37 37 39 39 48 53 54 52 55 66 76 
2014 35 43 44 44 45 45 46 55 57 54 61 79 
2015 36 41 45 45 45 46 44 48 53 63 62 76 

 

 Higher loss ratio is not unique in Taiwan and many countries in Asia gained 

similar experiences. Several reasons can be identified that cause higher than expected 

loss ratio. First, the economic and insurance markets in Asia developed rapidly since 

the end of 20th century, but not enough experience rates are available. As a result, 

quite a lot of Asian insurance companies use experience rates from the more 

developed countries (such as Japan). Another reason is that the insurers did not expect 

longevity risk, like the case of annuity products. Furthermore, rapid progress in 

medical technology is also a key factor. People can go to private clinics or health 

exam centers to check if they have cancers. This creates the possibility of moral 

hazard. The loss ratios of some one-year term cancer products in Taiwan were 70% or 

more for the last two years, which is unusual for health insurance products.  
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The insurers can stop selling, renewing design, or refining the experience rate for 

the insurance products with high loss ratios. However, this does not work for 

long-term health insurance products and stopping of selling can only act like a form 

of damage control. In Taiwan and many Asian countries, whole-life health insurance 

products are popular and longevity issue needs to be considered to prevent occurrence 

of financial burden to the insurer in future. Annuity products can be considered to 

handle the longevity risk, and to this end, a reliable data set and sound stochastic 

models are required. Taiwan’s National Health Insurance (NHI) has been effective 

since 1995 and cancer is one of the focal diseases. Currently, there are about half 

million patients recorded with malignant tumors in the NHI database, which have 

been used in the current study.  

In a sense, it seems that the longevity risk exists not only for the annuity products 

but also for the long-term health insurance products. Thus, predicting future rates of 

health products are important and we can adopt the experience of mortality rates. 

Most of the early cancer studies focussed on the estimation of incidence and 

mortality/survival. For example, for the study of breast cancer, Shek and Godolphin 

(1988) used Cox’s proportional hazards model for breast cancer survival; Rosner and 

Colditz (1996) proposed nonlinear regression methods to model breast cancer 

incidence; Uddin et al. (2010) utilized the logistic regression method for the incidence 

of breast cancer. Other models for cancer study include Beta distribution (Pompei and 

Wilson, 2001), incidence–prevalence–mortality (IPM) model (Kruijshaar et al., 2002), 

compound-Poisson distribution (Moger et al., 2004), survival model (Hoggart et al., 

2012), and functional data analysis (Pokhrel and Tsokos, 2015).  

Mortality models became popular and famous mortality models have been 

applied in cancer studies, especially for the purpose of projection. For example, 

Arbeev et al. (2005) compared several models for cancer incidence; Robertson and 
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Boyle (1997) and Shibuya et al. (2005) projected the breast/lung cancer mortality by 

Age-Period-Cohort model; Di Cesare and Murphy (2009) used the Lee-Carter, 

Booth-Maindonald-Smith, Age-Period-Cohort, and Bayesian models to analyze trends 

and forecast mortality rates of three major death causes. One of the advatanges of 

using these models is their ease of use in the mortality projection. In the current study, 

similar to dealing with longevity risk in annuity, we have considered the Generalised 

Age-Period-Cohort (GAPC) stochastic mortality models (Villegas et al., 2016), which 

include most of the frequently used mortality models from the past studies, and 

applied them for projections. Our aim was to verify which GAPC model is suitable 

for describing the cancer incidence and mortality rates.  

The current paper has been arranged as follows. Section 2 gives a brief 

introduction of Taiwan's National Health Insurance Research Databases (NHIRD) and 

describes the idea of handling big data, including the exploratory data analysis for 

cancer incidence and mortality rates. The introduction of proposed models and the 

evaluation of modeling cancer incidence and mortality rates are given in Section 3. 

The applications of projecting cancer trend and their consequences with respect to the 

loss ratio of cancer insurance products are given in Section 4. In the final section, we 

provided a discussion and suggestions on dealing with the potential risks in cancer 

insurance.  

  

2. Exploratory Data Analysis of the Big Data  

Taiwan launched the NHI program on March 1, 1995, and about 99.68% Taiwan 

residents were enrolled in the program at the end of 2015. The data from the NHI 

program, including registration files and original claim data for reimbursement, were 

collected by the NHI Bureau. Based on the principle of privacy protection, personal 

identification numbers were de-identified by using the scrambling program twice. 
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After the scrambling, the data were sent to the National Health Research Institutes 

(NHRI) for storage. Scholars from research institutes and universities can apply to the 

NHRI for the NHI data, by paying a fee based on the size of the data requested.  

Cancer is one of the Catastrophic Illnesses (CI) recorded in the NHI database. 

The CI is one of the key features in Taiwan’s NHI, and to ease some financial burden, 

the government provides some medical privilege and a co-payment waiver to people 

diagnosed with CI. In 2014, the CI patients were about 4% of Taiwan population 

(about 0.9 million) but about 27% of total NHI expenditure was spent. The cancer 

patients (about 0.45 million) spent approximately 35% of the total CI expenditures, 

which was around 65 billion NT dollars (or 2 billion US dollars).  

In this study, we used all the records of the CI patients to avoid the possibility of 

biased selection for cancer data. The size of the CI related databases is huge, around 

228 GB, and the data size of cancer is approximately half of the CI data, about half 

million Taiwan people with cancer in 2016. Datasets considered in this study include 

the registry for beneficiaries (ID), registry for CI patients (HV), and CI patients’ 

original claim data extracted from the CD (ambulatory care expenditures by visits) 

data file (HV_CD).  We used database software (SQL) and applied big data 

techniques for handling data analysis, since it is impossible to use a regular statistical 

software to perform a data analysis.  

Considering the data quality, we used the data only during the period 2002-2011. 

The size and data quality complicate the analysis of big data, and the NHIRD showed 

no differences. The data codebook was used to check whether there was any problem 

in the data content. However, we can still find problems by cross-checking different 

databases. For example, the numbers of HV patients are different in the databases of 

HV and HV_CD (Table 3). The numbers of patients in HV_CD are close to (but 

slightly larger than) the official records from Ministry of Health and Welfare (MHW). 
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It is possible that patients can have two or more than two records in the HV_CD 

database if they have more than one CIs. On average, about 5% of CI patients have 

more than one CIs. On the other hand, the numbers of patients in the HV database are 

too large, and it is likely that the HV records might not have been updated (e.g. CI 

patients passed away or recovered but are still in the list). We need to remove this 

kind of content errors before conducting any data analysis.  

 

Table 3. Discrepancy between Databases 

Year 
HV HV_CD 

#Patients #Records #Patients #Visits 

2007 1,103,431 1,453,483 649,106 17,946,211 

2008 1,164,465 1,529,866 678,544 19,173,919 

2009 1,276,315 1,733,251 712,828 20,357,173 

2010 1,350,786 1,863,254 746,746 21,619,442 

2011 1,401,449 1,933,455 779,179 22,861,178 

The process of analyzing big data is tedious and time-consuming. Therefore, we 

used the example of judging whether a CI patient is alive as a demonstration. There is 

a data column (“death note”) in the HV_CD database showing the status (i.e. alive or 

dead) of each patient. However, the number of death recorded in this data column is 

too small. For example, the number of cancer deaths is more than 40,000 annually but 

only 7,000~8,000 deaths (e.g. 7,517 deaths in 2007) shown in this column, meaning 

under-reported deaths from the death note. Therefore, to judge whether a patient is 

dead or not, certain criteria were needed to be set.  

The cancer patients recorded in the HV and HV_CD database are those with 

malignant tumors between stage 1 and stage 4 who require medical treatments. Thus, 

we can use the nature of cancer patients’ medical visits to judge if they are still alive. 

We found that, if cancer patients stop visiting doctors, especially after a series of 
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regular treatments, it is likely that health conditions of the patients are worsening, is 

similar to Lee et al. (2011) research results.  

After a few trial-and-errors, we determined to use the condition “no outpatient 

records for two consecutive years” (Condition 1) for cancer patients to judge if a 

patient is dead, since the percentage of misjudgment was smaller than 5%. We used 

the International Classification of Diseases (ICD) codes in the medical records to 

identify whether cancer patients were receiving medical treatments. In addition, we 

also included the condition, whether the cancer patients stop visiting doctors suddenly, 

or more precisely, whether there are 3 or more outpatient visits for the month of last 

outpatient visit (Condition 2). We used the official records of cancer deaths to verify 

the above two conditions. 

In this part, the cancer incidence rates and cancer mortality rates derived from the 

analysis of NHIRD have been shown. First, we defined the cancer incidence rate and 

mortality rate of cancer patients, the same way as that defined by the Ministry of 

Health and Welfare. Let the age-specific cancer incidence rate of ith age group is ii nI , 

where i  indicates the age groups 0-14, 15-19, 20-24, …, 85-89, iI  is the number of 

new cancer patients diagnosed in the age group i , in  is the number of persons who 

do not have cancer in the age group i  in the beginning of the year. The mortality rate 

of cancer patients for the ith age group is the ratio between the death number of cancer 

patients and the number of cancer patients in the age group i . 

The age-specific incidence cancer rates are shown in Figure 2. Since there were a 

large volume of data, we only selected the results of 2002, 2005, 2008, and 2011 for 

demonstration. As expected, men showed a higher incidence rate than women for all 

the age groups. To note, the incidence rate did not show big changes from 2002 to 

2011 but only showed small increments between two consecutive years. However, 
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still the increments did indicate potential longevity risk. Next, we applied stochastic 

models to the incidence rates.  

 

Figure 2. Taiwan age-specific cancer incidence rates (Estimated) 

 

Since our goal is to design cancer insurance products, we computed the mortality 

rates for those who had cancer. These mortality rates were different from the official 

records where the cancer mortality rate is defined as the number of cancer deaths 

divided by all Taiwan residents. Moreover, since we used “no outpatient records for 

two consecutive years” (Condition 1) to determine if a patient is alive, we lost two 

years of data, i.e. could not determine the status of patients for 2010 and 2011. Thus, 

following the similar format as that in Figure 2, Figure 3 shows the age-specific 

mortality rates for cancer patients in 2002, 2005, 2008, and 2009. It seems that the 

mortality rate reduced slowly, and similar to those in Figure 2, the change in mortality 

rate between two consecutive years was not much.  
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Figure 3. Taiwan age-specific cancer patients’ mortality rates (Estimated) 

 

Since the incidence rate increased slowly and the mortality rate reduce gradually, 

it is reasonable to expect that the number of Taiwan cancer patients (or the cancer 

prevalence rate) will increase. This is exactly the case in Taiwan and the number of 

Taiwan cancer patients increased about 30% from 2002 to 2011. Together with the 

population aging in Taiwan, the number of cancer patients will continue to increase in 

the future. On the other hand, increasing incidence rate and decreasing mortality rate 

indicated a higher expenditure for cancer insurance, coinciding with the increasing 

loss ratio for cancer insurance in recent years. In the next section, we will detail the 

use stochastic models to explore the possibility of including longevity risk in cancer 

products.  
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Renshaw-Haberman (RH) model (Renshaw and Haberman, 2003&2006), the 

Cairns-Blake-Dowd (CBD) model (Cairns et al., 2009), and Plat model (Plat, 2009) 

are some well-known examples.  

First, an introduction to the Gompertz model and some of the GAPC stochastic 

mortality models will be provided. Originally, the Gompertz model was for modeling 

the mortality rates of higher ages. It is believed that the force of mortality xµ at age x 

satisfies 

x
x BC=µ ,       (1)  

where 0>B and 1>C are model parameters. Equation (1) can be converted to the form 

of central death rate xm by x
x BCm = . The Gompertz model has been applied to 

situations such as fertility and morbidity. Additionally, Strehler and Mildvan (1960) 

used the Gompertz mode to fit cancer mortality rate.  

If xtm denote the central death rate or incidence rate for a person aged x  at time 

t . The LC model assumes that  

txtxxxtm ,
)2()2()1()log( εκββ ++= ,     (2) 

with∑ =
x

x
1)2(β and∑ =

t
t

0)2(κ , )(i
xβ are age related parameters ( 2,1=i ), and )2(

tκ

represents the time related parameter. Note that )1(
xβ is the general mortality level, 

)2(
xβ is the decline in mortality at age x, and )2(

tκ is usually a linear function in time. 

The term tx,ε denotes the deviation of the model and is assumed to be white noise, 

with 0 mean and relatively small variance.  

 The residuals after fitting the LC model are often not random (Debón et al., 

2008), and adding extra time or cohort component to the LC model is one of the 
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possible modifications. The RH model can be treated as a version of LC model with 

an extra cohort component, 

                   )3()3()2()2()1()ln( xtxtxxxtm −++= γβκββ  ,                 (3) 

where ,0,1,0,1
,

)3()3()2()2( ∑∑∑∑ ==== −
tx

xt
x

x
t

t
x

x γβκβ and the parameter )(i
xβ denotes the 

average age-specific mortality, )2(
tκ represents the general mortality level, and )3(

xt−γ  

reflects the cohort-related effect.  

The CBD model was designed to model mortality rates of higher ages and to deal 

with the longevity risk in pensions and annuities. For the CBD model, it assumes that 

the mortality rates satisfy  

    logit )2()2()1()1(

1
log)( txtx

xt

xt
xt m

mm κβκβ +=
−

= ,                (4) 

where the parameters are )(i
xβ and )(i

tκ ( 2,1=i ) denote the average age-specific 

mortality and the general mortality levels. If we assume 1)1( =xβ and xxx −=)2(β , then 

the model has a simple parametric form: 

logit )()( )2()1( xxm ttxt −+= κκ .      (5) 

The Age-Period-Cohort (APC) model is a popular tool for modelling disease 

incidence and mortality in epidemiology. Heuristically speaking, if we consider the 

notion of Analysis of Variance, the LC model considers the effects of Age and 

Age×Period (Interaction), while the APC model considers three main effects, Age, 

Period, and Cohort: 

xttxxtm −++= γκα)ln( ,                      (6) 
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where ∑∑ ==
−= c

c
xtc

c c 0,0 γγ  . 

Three criteria are used to evaluate the models: mean absolute percentage error 

(MAPE), Akaike Information Criteria (AIC), and Bayesian Information Criterion 

(BIC). The MAPE is defined as  

∑
=

×=
n

i i

i

Yn
MAPE

1
%1001 ε

, 

where iY and iε are the observed value and residual of observation i, .,,2,1 ni 2=  

The AIC and BIC are defined as 

,2)log(2 kLAIC +−=  

),log()log(2 nkLBIC +−=  

where L is the likelihood of the data, k is the number of parameters in the model, and 

n  is the number of observations. A model with smaller AIC or BIC value is treated as 

a better model. 

For the following discussion, we have chosen four GAPC mortality models (LC, 

APC, RH, and CBD) and used the R package StMoMo to explore these models. There 

were two reasons for choosing these four GAPC models. First, the LC model 

generally has the best model fit for all ages among the GAPC family models. The RH 

and CBD models provide fine modifications to the LC model under certain conditions. 

The RH model is more appropriate with obvious cohort effects, while the CBD model 

is a widespread alternative to LC model for the elderly people. On the other hand, the 

APC model is a popular choice in modeling disease incidence and mortality, and it is 

easy to provide interpretation.  
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Figure 4. Residuals of the LC model (Cancer, Male) 
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cancer patients for younger groups were very small. Therefore, the data were divided 

into ages 0-14, 15-19, 20-24, , and 85-89. In addition, we also considered the model 

evaluation for the case of higher ages, viz. ages 50-54, 55-59, …, and 85-89. 

For the Gompertz model, we used the weighted least squares to obtain the 

parameter estimates of B and C. As for the GAPC family models, we have only shown 

the results under the log-Poisson assumption because the estimation results were 

about the same as those of the log-Poisson and logit-Binomial assumptions. We do not 

recommend the estimation under the normal assumption since it would produce 

unstable results when the population sizes are small (populations smaller than 50,000, 

according to our experience). 

Next, we compared the model fits of Gompertz’s model and the GAPC family 

models. Table 4 shows the MAPE’s for fitting the incidence rates and mortality rates 

of cancer patients. For both males and females, the LC and APC models showed the 

smallest fitting errors. The MAPE’s of LC and APC models were very small, 

indicating that the trend of incidence and mortality rates were well captured. For 

higher ages, i.e. ages 50-89, the Gompertz and CBD models turned to be good 

alternatives to the LC and APC models, especially for the mortality rates. 

 

Table 4. MAPE’s of Cancer Patients Mortality and Incidence  

  Gompertz LC APC RH CBD 

Incidence Rates 
ages 0–89 

Male 47.8  2.4  2.8 45.4  50.1  
Female 69.8  2.4  2.9 10.3  63.1  

ages 50–89 
Male 16.1  1.6  2.0 55.8  15.6  
Female 7.6  1.4  1.9 31.0  7.3  

Mortality Rates 
ages 0–89 

Male 11.3  4.3  4.3 62.0  11.4  
Female 21.5  6.5  6.6 108.6  21.0  

ages 50–89 
Male 5.2  2.7  2.0 25.3  5.2  
Female 4.4  4.2  2.8 --- 4.0  

Note: “---” means that the model fitting didn’t converge. 
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We also considered the criteria of AIC and BIC to avoid over-parameterization in 

the models. Since the LC, APC, and CBD had the smallest MAPE’s, we have only 

shown the AIC and BIC values for these three models in Table 5, where smaller AIC 

and BIC values are preferred. Since the number of parameters were about the same 

for these three models, the results of AIC and BIC were similar to those of MAPE. In 

general, the LC and APC models are preferred and the CBD model is also a possible 

choice for higher ages.   

 

Table 5. AIC and BIC for LC, APC and CBD models  

 
LC APC CBD 

AIC BIC AIC BIC AIC BIC 

Incidence Rates 
ages 0–89 

Male 1705 1828 1778 1926 33071 33132 
Female 1659 1782 1744 1892 33771 33833 

ages 50–89 
Male 954 1011 1012 1088 8191 8239 

Female 892 949 954 1030 2111 2159 

Mortality Rates 
ages 0–89 

Male 2146 2296 2157 2348 3219 3315 
Female 2154 2304 2120 2311 5147 5243 

ages 50–89 
Male 1246 1322 1219 1328 1747 1823 

Female 1245 1321 1180 1289 1289 1365 

 

We also examined the differences between observed and estimated rates (or 

residuals) to double check the estimation results. Figure 5 shows the observed cancer 

incidence rates and the estimated rates for four GAPC family models, for the cases of 

Taiwan male in 2002, 2005, 2008, and 2011. Apparently, the fitting curves of LC and 

APC models almost overlapped with those of the observed values. The RH and CBD 

models seemed to produce overbiased estimates for the younger ages and sometimes 

overbiased estimates for the elderly as well. The results for mortality rates estimation 

were similar and thus the details are not shown.  
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Figure 5. Observed vs. estimated cancer incidence rates (Male) 
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mortality (right panel). Older ages showed the largest increment in cancer incidence 

and younger ages displayed the largest reduction in cancer mortality. 
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Figure 6. Annual increment/reduction of cancer data (LC Model) 

 

The changes in the incidence rates were positive which indicated an increasing 

trend, while the changes in the mortality rates were negative, thereby indicating a 

decreasing trend. There are double risks of insurers in cancer product. The first is that 

the increasing cancer incidence rate should enhance the benefit paid when the insured 

is diagnosed with cancer. The second risk is that improvement in cancer patients’ 

mortality rates would add medical benefits burden and annuity, which is similar to the 

longevity risk for annuity products. Note that, the annual reductions and increments 

are not a smooth function of age (due to smaller population sizes) and in practice, we 

can use graduation methods to obtain smoother values (e.g. Wang et al., 2016a). 
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decreasing mortality rate of cancer patients are expected to worsen the loss ratio of 

cancer products. For simplicity, we considered two types of whole-life cancer 

products: the first is that a (lump-sum) benefit is paid when the insured was diagnosed 

with cancer for the first time; The other product is that the annual annuity benefit will 

be paid after the insured is diagnosed with cancer and still alive.   

The first type of cancer product is similar to the whole-life insurance products 

and the contract is terminated after the benefit is paid. We used the years 2002-2009 

as the base-line years and compared the differences in pure premium whether the 

increasing cancer incidence rates were considered or not. The insured ages for the 

cancer insurance products were 30 to 60, with a premium payment period of 20 years. 

Also, the highest attained age was 110 years old and the interest rate was 2.25%. 

Since the results for different base-line years are similar, we only show the case of 

2009 as a demonstration. Table 6 shows the pure premiums per $1,000 for the 

whole-life cancer products, where “cohort” and “period” indicate the cases 

with/without the increment in cancer incidence respectively.  

 

Table 6. Pure Premium of 20-Year Payment Whole-Life Cancer  
( Per $1,000, Interest Rate: 2.25%) 

Age 
Male Female 

Period Cohort Period Cohort 
30 10.58 17.66 9.72 14.53 
35 11.88 19.04 10.71 15.22 
40 13.27 20.47 11.68 15.80 
45 14.74 21.92 12.49 16.17 
50 16.31 23.44 13.15 16.30 
55 18.03 25.08 13.65 16.33 
60 19.98 27.03 14.12 16.33 
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Figure 7 shows the percentages of pure premium undercounts if the increment of 

cancer incidence rate is not considered. The differences in pure premium were very 

significant, especially for the male and the younger ages, for all base-line years. This 

can be used as an evidence to explain why the loss ratios of cancer insurance products 

in Taiwan is increasing in recent years. Also, the differences in pure premium seem to 

be a decreasing function of time for both genders and the differences in 2002 are the 

largest. 

 

  

Figure 7. % Difference in pure premium whole-life cancer (LC Model) 

Note: Cohort effect means cancer growth rate of incidence is considered. 

 

The second type of cancer product is similar to the whole-life annuity product 

and the annuity is paid while the insured is alive, after diagnosed with cancer. Again, 

the year 2009 was used as the base-line year to evaluate the differences of pure 

premium if the reduction of cancer patient mortality rates is considered. The settings 

of age, interest rate, and highest attained age were the same as the first type. Table 7 
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shows the detailed numbers of pure premiums per $1,000 for the whole-life annuity 

products. Figure 8 shows the percentage of pure premium undercount when the 

reduction of cancer mortality was not considered. Unlike in Figure 7, the differences 

in pure premium with respect to mortality reduction were not very significant and the 

cases of female and younger ages were the largest.  

 

Table 7. Pure Premium of 20-Year Payment Whole-Life Annuity Cancer  
( Per $1,000, Interest Rate: 2.25%) 

Age 
Male Female 

Period Cohort Period Cohort 
30 1,048 1,074 1,222 1,320 
35 1,042 1,065 1,192 1,278 
40 1,038 1,059 1,157 1,225 
45 1,034 1,052 1,119 1,168 
50 1,029 1,041 1,082 1,113 
55 1,022 1,030 1,050 1,067 
60 1,016 1,020 1,026 1,034 

 

  

Figure 8. % Difference in pure premium whole-life annuity cancer (LC Model) 
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5. Discussion and Conclusions 

The loss ratios of cancer insurance products in Taiwan worsened in recent years 

and the longevity risk seemed to exist in long-term health insurance products as well. 

Using the databases from Taiwan’s National Health Insurance (NHI), we found that 

the incidence rates slightly increased and the mortality rates gradually decreased over 

the years in Taiwan. This was in accord with the increasing trend of the loss ratios for 

the cancer insurance products. This suggested that the longevity risk should be 

included in long-term health products. We also evaluated whether the frequently used 

mortality models can be employed to cope with the longevity risk or not. The LC and 

APC models were the top choices for modeling the cancer incidence and mortality 

rates. The CBD and Gompertz models were possible alternatives for the higher ages.  

Taiwan is not the only country with increasing loss ratios, many Asian countries 

have similar experiences for long-term health products. For example, the number of 

those diagnosed with cancer in South Korea increased annually by 2.9 percent 

between 1999 and 2007, catapulting the loss ratio to around 120 percent (Source: 

Korea Insurance Development Institute). Lack of relevant experience data and use of 

foreign experience rates are the main reasons of increasing loss ratio. Therefore, we 

used Taiwan’s population data (i.e. NHIRD) to acquire the cancer incidence and 

mortality rates. However, this was still not enough to meet our goal to design 

long-term cancer insurance products. To this end, the notion of longevity risk should 

be considered. We think that the influence of mortality improvement is bigger than 

that of the interest in insurance products, and this became more obvious when we 

looked at long-term and whole-life products. In fact, the mortality improvement is not 

always a plus to the insurers. In Taiwan, “whole-life” and “return principal” are the 

two common attributes in most life insurance policies, and we found that the 
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decreasing mortality rates would cause an increase in the insurance premium (Yue and 

Huang, 2011).  

Using the stochastic models to capture the future trend is one of the possibilities 

for dealing the increasing loss ratios. However, there still remains potential risk, if the 

changes of incidence and mortality rates are larger than expected. Natural hedge is 

one possible alternative, and we can bundle the long-term cancer insurance products 

with annuity products. Intuitively speaking, cancer patients often have shorter life 

expectancy and thus receive fewer payments in annuity. Another possibility is to 

transfer the financial burden of medical claim risk to the capital market, and the 

experience of the longevity bond can provide useful guidelines.  

Furthermore, moral hazards also needs to be considered in cancer insurance. As 

mentioned in the first section, private clinics or health exam centers can help people 

to check if they have cancers without showing the exam results in the medical records. 

This increases the possibilities of adverse selection. There are quite a lot of possible 

remedies, such as extending the waiting period, reducing the coverage for the first 

policy year and coverage of the actual expenditures only. For example, a Taiwan’s 

insurance company returns the premium paid to the insured persons if they are 

diagnosed with cancer in the first policy year, and returns 200% of the total premium 

paid if they are diagnosed with cancer in the second policy year.   

The issue of big data also appeared in this study. We would expect more data to 

be available in future for the insurance companies, and not restricted to their own 

experience data. The insurance companies need to invest more on the manpower, such 

as organizing big data teams and training data scientists, in order to analyze the big 

data. It is neither cost effective nor feasible to hire outsiders to handle the data. For 

example, in order to handle the NHI databases (e.g. HV and HV_CD), our big data 

team has been operating for more than 10 years. Analysis of big data is a process of 
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knowledge accumulation and trial-and-error method. In this regard, we keep updating 

the standard operating procedure for handling the NHI data over the years.  

As for the stochastic models, we considered the GAPC family models in this 

study. Like in many previous studies, the LC and APC models showed better model 

fits. It seemed that the RH model (i.e. cohort modification of the LC model) does not 

fit well. It can be a result of shorter data period (fewer than 15 years) which makes 

observation of the cohort effect difficult. For model development, we can also 

consider other models for cancer incidence and mortality rates. Possible candidates 

include the discount sequence method and its extension (Wang and Yue, 2011; Wang 

et al., 2016b) and spatial modification of LC model. For example, Debón et al. (2008) 

considered adding a term of autocorrelation when the residuals of LC model showed 

systematic errors. We can add clusters or other first degree moment (i.e. mean shift) to 

the LC model (Wang and Yue, 2013).  
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