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Abstract 
Prolonging life expectancy and improving mortality rates is a common trend of 

the 21st century. Stochastic models, such as Lee-Carter model (Lee and Carter, 1992), 

are a popular choice to deal with longevity risk. However, these mortality models 

often have unsatisfactory results for the case of small populations. Thus, quite a few 

modifications (such as approximation and maximal likelihood estimation) to the 

Lee-Carter can be used for the case of small populations or missing observations. In 

this study, we propose an alternative approach (graduation methods) to improve the 

performance of stochastic models.      

The proposed approach is a combination of data aggregation and mortality 

graduation. In specific, we first combine the historical data of target population, 

treating it as the reference population, and use the data graduation methods (Whittaker 

and partial standard mortality ratio) to stabilize the mortality estimates of the target 

population. We first evaluate whether the proposed method have smaller errors in 

mortality estimation than the Lee-Carter model in the case of small populations, and 

explore if it is possible to reduce the bias of parameter estimates in the Lee-Carter 

model. We found that the proposed approach can improve the model fit of the 

Lee-Carter model when the population size is 200,000 or less. 
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1. Introduction 

Since people are living longer, life planning for the elderly becomes a popular 

issue around the world. The study of the elderly’s mortality rates and health receives a 

lot of attention among all elderly research topics. However, the human life expectancy 

has been increasing rapidly and many countries (especially for those with small 

populations and with a rapid increase in longevity) do not have enough historical data, 

including the size and the period, which makes modeling the mortality rates difficult. 

For example, the population records of highest attained age in Taiwan are 100 years 

old in 1998 (95 years old in 1995), i.e., limited data points for modeling the elderly 

mortality rates. 

Dealing with estimating mortality rates of small populations is not new in 

insurance industry and the actuaries often apply smoothing methods to reduce the 

fluctuations of age-specific mortality rates in constructing life tables. Increasing the 

sample size is a natural choice to stabilize the estimates. However, it is often not 

possible to collect more data and thus the graduation methods are used instead. 

Traditional graduation methods, such as moving weighted average (London, 1985), 

can be treated as augmenting mortality data from neighboring ages. Now the 

graduation is a common (and often necessary) process for constructing life tables and 

estimating mortality rates. The Human Mortality Database (Source: University of 

California, Berkeley) also makes adjustment in the case where the data size is small. 

For the group of ages 80 and over, mortality rates are adjusted by the method of 

extinct generations, while the survivor ratio method is used over age 90 (Thatcher et 

al., 2002).  

The need for increasing the sample size (or graduation) also appears in 

improving the parameter estimation of mortality models. For example, Lee-Carter 

model (Lee and Carter, 1992) is a popular mortality model among governments and 



insurance companies. However, applying the Lee-Carter to small populations (such as 

Nordic countries and Denmark) would produce estimation bias in age-related 

parameters (Booth et al., 2006; Jarner and Kryger, 2011). Similar problem also 

appears in the CBD model (Cairns et al., 2006) and Chen et al. (2017) found that 

small population size has a significant influence on the variation of parameters’ 

estimates.  Referencing the mortality profile of larger populations is a popular choice 

for stabling the parameter estimation. For example, the coherent Lee-Carter model by 

Li and Lee (2005) can reduce the estimation errors by referencing the mortality data 

from populations with similar mortality improvements.  

This probably is the main reason why many studies focus on modeling mortality 

rates for small populations recently. Intuitively, increasing the sample size is the most 

efficient way to stabilize the parameter estimation of mortality models, and including 

the mortality data from neighboring areas (or areas with similar mortality profiles) is a 

natural choice. We think that it is possible to adapt the idea of graduation methods and 

use it to stabilize the parameter estimation of mortality models in the case of small 

populations. In this study, we explore the possibility of combining graduation 

methods and coherent Lee-Carter model, adjusting the differences between the small 

and the reference populations. Wang et al. (2012) showed that the Whittaker and 

partial standard mortality ratio (SMR) methods are effective in reducing bias and 

variation of mortality estimates if a proper reference population is chosen. We shall 

further evaluate if the idea of Wang et al. can be used to stabilize the parameter 

estimation of mortality models.  

We propose a modification in estimating the parameters of Lee-Carter model for 

small populations. Similar to the setting in Wang et al., under certain mortality 

scenario, we use computer simulation to evaluate whether the modification via 

graduation is valid with respect to MAPE (Mean Absolute Percentage Error). Also, we 



use the empirical data from Taiwan and Taipei city to check the proposed method. The 

results show that the Whittaker and partial SMR methods can improve the parameter 

estimation of Lee-Carter model for small populations.  

 

2. Methodology 

Increasing the population size (and its similar form) is probably the universal 

way to deal with the problem associated with small population size, and the extra 

samples can be from the same population or different populations.  Choosing a larger 

reference population, i.e. a different population, is a popular approach in recent years.  

For example, there are quite a few modifications of Lee-Carter model, such as the 

coherent model by Li and Lee (2005) and the three-way decomposition by Russolillo 

et al. (2011). Modifications of other mortality models are also possible.  For example, 

for the age-period-cohort model, Jarner and Kryger (2011) modified the frailty model 

into the SAINT model, Cairns et al. (2011) considered a Bayesian approach, and 

Dowd et al. (2011) proposed a gravity model.  Madrigal et al (2011) suggested 

adding mortality related variables (or extra predictors) in the generalized linear 

models for modelling life expectancy. 

However, it is required that the small and reference populations share similar 

mortality profile to guarantee whether increasing the population size can improve the 

parameter estimation.  In this study, we first evaluate the effect of similarity level on 

the model fit and then propose a graduation-based method to increase the population 

size based on the historical data of small population.  Our proposed method can 

reduce the bias in the parameter estimation, if the small population does not show 

sudden changes in mortality rates. We should first give a brief introduction to the 

graduation methods used in this section. 

We will first introduce the proposed (partial SMR) approach and evaluate its 



performance in the next section. The partial SMR (Lee, 2003) is a modification of 

SMR (standard mortality ratio), which is used to smooth mortality rates of small 

populations via the information from a large population with respect to SMR. The 

SMR is often used in epidemiology and is defined as  
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where xd and xe are the observed and expected numbers of deaths at age x for the small 

population, xP is the population size of age x for the small population, and R
xm is the 

central death (or mortality) rate of age x for the reference (or large) population. In 

general, SMR greater/less than 1 usually indicates the small population has a 

higher/lower overall mortality rate than the reference population, i.e., the SMR can be 

treated as a mortality index.  

If certain age groups in the small population are not many, the observed mortality 

rate would fluctuate considerably. The SMR can be used, therefore, to refine the 

mortality rate. For the partial SMR, the graduated mortality rates satisfy  
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or the weighted average between raw mortality rates and SMR, where 2ĥ is the 

estimate of parameter 2h for measuring the heterogeneity (in mortality rates) between 

the small area and large area. *
xu is the mortality rate for age x in the large population. 

 The idea behind the partial SMR is similar to credibility weighted estimate for 

calculating future premium (Klugman et al., 2012), where the estimate is a linear 

combination of recent observed loss and related reference information. The Bayesian 

graduation methods (e.g., Kimeldorf and Jones, 1967) function in a similar format and 

the updated (or posterior) estimate is also a linear combination of new observation 



and past (or prior) experience (London, 1985). The key is to choose appropriate 

weight and related reference population.  

To achieve satisfactory results, Lee (2003) suggests the weight of partial SMR: 
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The larger 2ĥ is, the larger the difference in age-specific mortality rates (i.e., mortality 

heterogeneity, or larger dissimilarity in shape between the age-specific mortality curve 

of the small population and that of the larger population). When the number of deaths 

is smaller, there will be greater weight from the large population, and the graduated 

mortality value equals *SMR xu× when the number of deaths is zero.  Lee (2003) 

mentioned that using the weight function 2ĥ in equation (3) usually has smaller mean 

square error (MSE) in mortality estimation. However, the derivation of 2ĥ is through 

some sort of approximations and it cannot guarantee to have the smallest MSE.  

For the reference population, there are quite a few possibilities. A natural choice 

is the whole nation (or nearby areas) if the small population is a subset of the nation. 

However, the differences in mortality within a country can be huge, even for 

neighboring areas. For example, the 2009-2011 life expectancies of men and women 

in Taipei city (Taiwan’s capital) are 79.35 and 84.31, respectively. These numbers are 

significantly larger than those in eastern Taiwan (70.07 and 78.43) which is about 100 

miles from Taipei city. Another possibility is to construct mortality index and to select 

populations having similar mortality profile as the small population. However, like 

SMR, populations with same/similar mortality index can have significantly different 

life expectancy. 

In this study, we suggest aggregating the historical data of small population and 



treat the aggregation as the reference population. Since of the mortality improvement, 

the life expectancy and mortality rates of the aggregation data are definitely different 

to those of small population, and their differences are larger if more years of data are 

involved. Still, as long as there are no rapid changes in mortality improvement, 

aggregation data are likely to be a good candidate of reference population. The 

number of years chosen should match to the size of small population. Our suggestion 

is to collect at least one million. In the next two sections, we will show that the partial 

SMR can also be used to forecast mortality rates for small populations.  

We also consider another graduation methods, Whittaker and Whittaker ratio. 

The Whittaker graduation method (London, 1985) is to minimize   
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where xu and xv are observed and graduated mortality rate/ratio for age x, respectively;

xw  is weighted number for age x; n is the number of ages (or age-groups) considered; 

and h and z are the parameters to be decided. In this study, we let h be the average 

population size of a single age/5-age group and 3=z , as suggested in our previous 

studies.  The Whittaker ratio is an extended version and we plug into the mortality 

ratio of small and reference populations for graduation, instead of mortality rates.  

 

3. Small Area Estimation 

We use the computer simulation to evaluate the performance of partial SMR 

method in this section and compare it with the Lee-Carter model in the next section. 

The datasets used in this study are the population of Taiwanese male and both the 

formats of single age and 5-age group are considered.  The population size of 

Taiwanese male is about 11.5 millions.  Also, for the study period, the proportion of 



elderly was between 6% and 11% and the life expectancy at age 0 was between 71 

and 76 years. 

We should first show the parameter estimation of Lee-Carter model in the case of 

small populations. In specific, we use Taiwan’s data to fit the Lee-Carter model and 

treat the estimated parameters as the true values. We use the mortality data in 

1990-2009 to derive the parameters of Lee-Carter model, with the age range 0-84.  

And then we generate numbers of deaths based on Poisson assumption, producing 

simulated age‐specific mortality rates under different population sizes. The population 

sizes considered in the computer simulation are from 10,000, 20,000, …, 2 million, 

and 5 million.  

Figures 1 and 2 are the averages and standard errors of Lee-Carter model 

parameters xα and xβ from 1,000 simulation runs, under different population sizes. 

Apparently, the small population size does cause problems in estimation and, in 

particular, it seems that the xβ estimate is more sensitive. The bias is obvious (or 

noticeable) when the population size is not more than 50,000 (or 500,000). Applying 

the idea of t-ratio, or average/standard error, to the parameter estimates, we can 

further evaluate the estimation of Lee-Carter model. Heuristically, if the t-ratio value 

of 1.96 is treated as the threshold of unacceptable estimation, it seems that the 

Lee-Cater model should be applied with care when the population size is not more 

than 50,000 (Figure 3). In fact, to be more conservative, we think that at least one 

million people are suggested and any population sizes smaller need some 

modifications. 



 
Figure 1. Averages and Standard Errors of xα from Lee-Carter Model 

 

 

Figure 2. Averages and Standard Errors of xβ from Lee-Carter Model 

 

The preceding simulation results of Lee-Carter model are from the singular value 

decomposition (SVD). Of course, other estimation methods of Lee-Carter model, 

including the approximation method, the modifications via maximum likelihood 

estimation and weighted least squares (Wilmoth, 1993), and Poisson approach 

(Brouhns et al., 2002) can be used as well.  However, the estimation methods do not 

have significant impacts on the results, although the estimates via SVD have slightly 

larger bias.  



 

Figure 3. “T-ratio” of xα̂ and xβ̂ from Lee-Carter Model 

 

We will check if the partial SMR can handle the fluctuation of mortality rates 

from small populations. In addition to the assumption of population sizes, we also 

consider various mortality scenarios, connecting the relationship between small 

population and reference population. Figure 4 shows three mortality scenarios in this 

study, indicating the mortality ratios (or R
x

x
x q

qs = , where xq and R
xq are the mortality 

rates of age x for the small and reference populations) between the mortality rates of 

small population and reference population. For the constant scenario, we assume that 

the shape of mortality rates in small population is similar to that of large population. 

For the other two scenarios, we assume that the mortality curves of two populations 

are not identical, e.g., small population has higher mortality rates in the elderly.  

 



 
Figure 4. Scenarios of Mortality Ratio  

 

Note that the SMR can be treated as a measure (or similarity index) between the 

reference population and the small population. The partial SMR is a modified version 

of the SMR and it is a weighted average of SMR and the observed mortality rates. 

The partial SMR can adjust the mortality rates of the small population according to 

observed mortality rates. If the age-specific mortality rates of small population are 

similar to those of the reference population, i.e., constant scenario, then the SMR 

serves as a good reference index. However, if the mortality rates of the small 

population behave differently than those of the reference population, then the SMR 

would create biased estimates, such as in the case of increasing and V-shape 

scenarios.  

The size of large population equals Taiwan’s male population (about 11 million), 

while the small population has 50,000 and 200,000, with same age structure as the 

large population. We also apply Whittaker graduation (London, 1985) to the mortality 

ratio xs , to compare with the partial SMR. The mechanism behind Whittaker 

graduation is similar to the moving average, by including the populations at 



neighboring ages to reduce variance of mortality rates. The reason for considering the 

Whittaker ratio is to check if the partial SMR “borrow” too much information from 

reference population when in fact the small population does not look like reference 

population.  

In addition, we add one more parameter a to measure the mortality discrepancy 

between small and reference populations. For the constant scenario, the mortality ratio 

of all ages is asx +=1 , and the mortality ratio satisfies asa x +≤≤− 11 for the other 

scenarios, with 9.00 ≤≤ a for all three scenarios. We use MAPE (mean absolute 

percentage error) of mortality rates to measure the differences between estimated 

values and true values. 

We only show the results of population size 50,000. The simulation results of 

population size 200,000 are similar and can be found in Appendix A. All simulation 

results are based on 1,000 replications. Table 1 shows the estimation errors of raw 

data, Whittaker ratio graduation, and the partial SMR. As expected, in the constant 

scenario case where the mortality curves of small and reference populations are very 

similar, the SMR is a good index for smoothing mortality rates of small population 

and thus the estimation errors (MAPE) of partial SMR are very small. Similar results 

apply to the Whittaker ratio as well.  

In the cases of increasing and V-shape scenarios, the SMR alone is not a good 

measurement for connecting small and reference populations. The partial SMR has 

smaller MAPE than the Whittaker ratio in the case of smaller a (or 4.0≤a ), but the 

Whittaker ratio is better for larger a when two populations are very different. The 

larger a is, the larger discrepancy between the mortality rates of small and large 

populations and it would be dangerous to rely on the large population when the 

mortality rates of two populations behave differently. It seems that the partial SMR is 



a feasible approach but we should choose the reference population carefully. 

 

Table 1. MAPE (%) of 3 Mortality Scenarios (Population size = 50,000) 

a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Constant 

Raw 30.1 28.7 27.6 26.5 25.3 24.7 23.3 23.0 22.4 21.8 

Whittaker 13.2 12.8 12.5 12.3 11.9 11.7 11.5 11.4 11.1 10.9 

PSMR 5.0 4.6 4.6 4.2 4.1 4.1 3.9 3.8 3.7 3.7 

Increasing 

Raw 30.2 32.4 36.0 41.3 47.6 56.2 66.2 79.8 99.2 143.3 

Whittaker 13.3 15.1 18.5 23.2 28.9 36.3 45.3 57.9 78.0 122.3 

PSMR 4.9 7.5 12.7 19.4 27.4 37.0 48.8 64.9 88.8 140.9 

V-shape 

Raw 30.2 31.0 33.6 38.0 43.7 51.4 60.1 72.7 90.9 130.6 

Whittaker 13.3 14.2 17.1 21.5 27.1 33.7 41.4 52.4 68.7 105.8 

PSMR 4.9 7.5 12.5 18.8 26.4 35.2 45.4 59.1 79.2 123.0 

 

4. Modeling Mortality Rates using Graduation Methods 

In this section, we use computer simulation to check if the partial SMR can be 

used to modify the parameter estimation of Lee-Carter model. In specific, we assume 

that both the mortality rates of small and reference populations satisfy the Lee-Carter 

model. First, we explore the number of years required for data aggregation using the 

partial SMR, following by comparing estimates of mortality rates between the 

Lee-Carter model and the partial SMR. Again, we use the age structure of Taiwanese 

male population as the underlying population (for both small and reference 

populations) and apply data from 1990-2009 to obtain parameters ( xα , xβ , and tκ ) of 

Lee-Carter model, treating them as the true values. Then we simulate the numbers of 

deaths from Poisson distribution, following by applying the Lee-Carter model (SVD) 

or the partial SMR. This process is repeated for 1,000 times.  

We consider various setting of data aggregation, as shown in Table 2. We use 



10% of MAPE as a threshold, marked as “accurate” by Lewis (1982), to judge if the 

estimation is stable. On average, aggregating 15 years of data has the smallest 

MAPE’s, following by aggregating 10 years of data. It seems that more years of data 

used do not guarantee better estimation. We use the mortality improvement via the 

parameters xβ and tκ in the Lee-Carter model to explain why. 

 

Table 2. MAPE (%) of Various Aggregation Years (5-age)  

 10,000 20,000 50,000 100,000 200,000 500,000 

PSMR+20 Years 14.31 11.75 9.68 8.70 8.09 7.50 

PSMR+15 Years 13.47 10.78 8.72 7.78 7.10 6.39 

PSMR+10 Years 13.80 11.21 9.19 8.25 7.51 6.57 

PSMR+ 5 Years 14.83 12.50 10.67 9.75 8.93 7.73 

 

The product of xβ and tκ equals to the annual mortality improvement for age x 

and it is about 2% on average in Taiwan, over 3% (or 4%) for certain ages. 

Heuristically speaking, if we aggregation 20 years of data (1990-2009) and treat it as 

the reference population of data in 2009, the difference between the small and 

reference populations would be at least 20% or more. Based on the information from 

Tables 1-1~1-3, It is not surprise that aggregating 10 or 15 years of data has smaller 

estimation errors than 20 years. In practice, we suggest aggregating 10~20 years of 

data for small populations with at least population 50,000. 



 

Figure 5. Age-specific Mortality Rates of Pen-Hu County (2014) 

 

We use the Pen-Hu county in Taiwan as a demonstration of partial SMR 

method. Pen-Hu is an island county, with about 50,000 men and women each. In 

order to reach one million people, we suggest aggregating at least 20 years of data. 

Figure 5 shows the mortality rates of 2014 Pen-Hu county from raw data, official 

abridge life table, and partial SMR (aggregating data of 1995-2014). Both the 

mortality curves of raw data and abridge life table show dis-continuity around age 10 

since there are no observed deaths in 2014.  On the other hand, the mortality curves 

of partial SMR are smoother and show no dis-continuities. It seems that the partial 

SMR method can be used to graduate mortality rates from small populations. 

 

Table 3. MAPE of Simulation (Taiwanese Male, 1990-2009, 5-age) 

(Unit: %)   

 10,000 20,000 50,000 100,000 200,000 500,000 

Raw 68.23 50.59 32.90 22.88 16.28 10.27 

Lee-Carter 33.57 23.67 15.53 10.97 8.66 6.05 

Partial 
SMR  14.31 11.75 9.68 8.70 8.09 7.50 

 



Table 4. MAPE of Simulation (Taiwanese Male, 1990-2009, Single-age) 

(Unit: %)   

 10,000 20,000 50,000 100,000 200,000 500,000 

Raw 125.56 101.45 73.01 54.89 39.40 24.60 

Lee-Carter 69.77 52.70 31.11 19.93 13.30 8.32 

Partial 
SMR  18.02 14.82 12.47 11.39 10.72 10.19 

 

For comparing the partial SMR and the Lee-Carter model, we aggregate 20-year 

data and treat it as the reference population. Tables 3 and 4 are the MAPEs of different 

methods from 1,000 computer replications, in the format of 5-age and single-age 

groups. The MAPEs are larger for the case of single-age groups, about two times more. 

For both the 5-age and single-age groups, the partial SMR has smaller MAPE than the 

Lee-Carter model when the population size is not more than 200,000. The advantage is 

more obvious for smaller population size and single-age group. It is interesting that the 

partial SMR does not suffer much for smaller population size and its MAPE is always 

smaller than 20%. It seems that the partial SMR can be used to handling mortality 

estimation of small population.  

 Other than the MAPE’s of mortality rates, we can also use the survival curve to 

validate the proposed approach. The role of survival curve is similar to life expectancy 

and thus can link to longevity. The differences between the theoretical survival curve 

and the predicted survival curves (from Lee-Carter estimation and the proposed 

approach) can be used to evaluate the impact of estimation methods on the life 

insurance products.  We first use the theoretical survival curves in 1995 and 2005 for 

population size 10,000, together with their estimates via the Lee-Carter method and 

proposed approach, to demonstrate the differences of estimation methods (Figure 6, 

1,000 simulation runs).  The areas between the theoretical survival curves and those 



of the proposed partial SMR are significantly smaller, which indicates that the 

proposed approach has a better performance in estimating the life expectancy.  

 

 
Figure 6. Survival Curves and Their Estimates  

 

 The prediction of life expectancy can be done in a similar way and we can use the 

increment of life expectancy to evaluate the proposed approach. Note that the 

rectangularization of the survival curve becomes more obvious because the mortality 

improvement occurs at all ages (Yue, 2012).  Thus, the survival curve will move to 

the right with time and the areas between the survival curves of two different years can 

be used to measure the level of life prolonging.  In particular, we consider three types 

of setting: 1995 vs. 2005 and 2005 vs. 2015 (ten years apart) and 1995 vs. 2015 (20 

years apart). Table 5 shows the bias of areas between two survival curves, comparing 

to the theoretical results, based on 1,000 simulation runs. Positive/negative values 

indicate under/over-estimates in the prediction of prolonging life and pricing of life 

insurance products. On average, the partial SMR has smaller absolute bias and the 

Lee-Carter model tends to have large negative bias for smaller population sizes, 
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indicating under-estimates in pricing life annuity products.  

 

Table 5. Bias of Survival Curves’ Estimates  

 10,000 20,000 50,000 100,000 200,000 500,000 

1995 
vs. 

2005 

Lee-Carter -8% 2% 0% 7% 9% 10% 

Partial 
SMR  -1% 5% 5% 6% 6% 5% 

2005 
vs. 

2015 

Lee-Carter -43% -30% -16% -14% -17% -8% 

Partial 
SMR  -5% -7% -1% -4% -6% -5% 

1995 
vs. 

2015 

Lee-Carter 24% -12% -7% -2% -3% 2% 

Partial 
SMR  -3% -1% 2% 2% 1% 1% 

 

Table 6. MSE of Parameters’ Estimates (Taiwanese Male, 1990-2009, 5-age) 

(Unit: 310− for xα & 410− for xβ )   

 10,000 20,000 50,000 100,000 200,000 500,000 

xα  
Lee-Carter 169.02  47.19  10.55  4.50  2.44  0.91  

Partial 
SMR  3.00  1.37  0.78  0.63  0.57  0.56  

xβ  
Lee-Carter 20.19  13.76  8.61  4.79  2.63  1.32  

Partial 
SMR  0.27  0.23  0.15  0.10  0.07  0.06  

 

In addition to the MAPE between the predicted and observed mortality rates, we 

also compute the mean squared error (MSE) of the parameters’ estimate ( xα and xβ ) 

for the Lee-Carter model.  To a clear understanding, we use the case of Taiwanese 

men (5-age groups) as a demonstration and the results are shown in Table 6.  The 

proposed partial SMR does provide smaller MSE’s for both parameters xα and xβ , and 



the MSE’s of the partial SMR do not change much for different population sizes.  On 

the other hand, the MSE’s of Lee-Carter model are obviously influenced by the 

population sizes.  

 

 

Figure 7. xα Estimates Bias for Different Models 

 

We can further examine why the partial SMR has smaller MSE for parameters xα

and xβ .  Figure 7 shows the bias of xα estimate for various population sizes in the case 

of Taiwanese men (5-age groups). Apparently the partial SMR has significantly 

smaller bias, especially for smaller population sizes, such as 10,000 and 20,000, and 

this probably can explain why the Lee-Carter model has larger MAPE’s for smaller 

population sizes (Tables 3 and 4).  The bias of xα estimate for the partial SMR do not 

change much for different population sizes, while those for the Lee-Carter model 

decrease as population sizes increase.  Similarly, the variance of xα estimate for the 

partial SMR is very small, unlike those for the Lee-Carter model (Figure 1).  

The variance of xβ estimate for the partial SMR is also very small, but the bias of 
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xβ estimate is not the same. Again, we use the case of Taiwanese men (5-age groups) 

as an example. Figure 8 shows the bias of xβ estimates with and without plugging the 

partial SMR smoothing in the cases of population size 10,000 and 20,000. In general, 

the estimates after the partial SMR have smaller bias, and the largest improvement is 

at the younger ages. This result matches to those in Figure 5 (life tables of Pen-Hu 

county) since the mortality rates and number of deaths around ages 5~15 are the 

smallest.  However, the partial SMR still has larger bias at the older ages, although 

the differences are not significant.  

 

   

Figure 8. Bias of Parameter xβ before and after the Partial SMR 

 

5. Conclusion and Discussions 

Longevity is a popular issue in the 21st century and the study of mortality rates is 

one of the main research topics in recent years. In addition to the problem of data 

quality, small population is another main difficulty in exploring mortality models. 

Although small area estimation is not new, the development of dealing with small 



population in applying mortality models is quite new. The coherent Lee-Carter model 

(Li and Lee, 2004) is one of the famous examples for modifying the Lee-Carter model 

in a sense by increasing the population size. Past studies showed that increasing the 

population size (or borrowing information from reference populations) does improve 

the fitting and forecasting of mortality rates (e.g., Booth et al., 2006; Jarner and Kryger, 

2011).  

The idea of increasing the population size/referencing other populations for 

modeling mortality rates are not unique in insurance. Credibility and mortality 

graduation are two other famous applications adapting the same notion, which means 

that the methodology of graduation/credibility can be used for improving the fitting of 

mortality models in the case of small populations. Thus, we modify the partial SMR 

(standard mortality ratio) for graduating mortality rates of small populations (Lee, 

2003). We use it to reduce the fluctuations of mortality rates and the model fitting of 

mortality models.  

The small population size can cause difficulties in applying mortality models. 

For example, the popular Lee-Carter model (Lee and Carter, 1992) has biased 

estimates for age-related parameters xα and xβ in the case of small populations. 

According to our simulation, the bias is especially noticeable when the population size 

is 200,000 or less. The bias problem is almost the same using different estimation 

methods, either singular value decomposition (SVD), approximation method, or 

Poisson approach (Brouhns et al., 2002). If we treat the (20-year) aggregation of 

historical data of small population as the reference population, then applying the 

partial SMR to the mortality rates has smaller MAPE’s than the Lee-Carter model.  

The proposed partial SMR can be applied to any mortality models, such as 

Gompertz’s law and age-period-cohort model, and is not restricted to the Lee-Carter 



model. We can first apply the partial SMR, with aggregation of 10~20 years of data as 

the reference population, and then apply the graduated values to mortality models. 

This might reduce the bias in the parameter estimation but the improvement may not 

be the same as that of the Lee-Carter model. For example, the bias of parameters’ 

estimates of CBD model (Cairns ‐Blake‐Dowd, 2006) are not as significant as those 

of the Lee-Carter model.  

On the other hand, as shown in Figure 6, the partial SMR can reduce the bias of

xβ estimates but the improvement rate is not as much as that with respect to MAPE. It 

is likely that two-stage estimation, i.e., graduation first and then Lee-Carter model, 

discounts the improvement. We will continue exploring possible modifications for 

including the partial SMR into the mortality models. Alternatively, if our goal is 

mortality projection, maybe we can apply simulation methods (such as block 

bootstrap) directly to the mortality rates after the partial SMR, without going to the 

stage of model estimation. 

Of course, there are possibilities for modifying the partial SMR approach. For 

example, intuitively, the weight should include the exposure (not restricted to the 

numbers of deaths), like the Kernel graduation (Gavin et al., 1993). Also, the 

information from reference population can be SMR of certain age groups, instead of 

all ages. Bayesian approach is another possibility of increasing the sample size, such 

as the Bayesian modification of Lee-Carter model by Wiśniowski et al. (2015). We 

can adapt the Bayesian notion in adjusting the weights of small and reference 

populations.  
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Appendix A. Simulation Errors of 3 Mortality Scenarios  
(Population size = 200,000) 

 
a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Constant 

Raw 15.0 14.3 13.6 13.1 12.7 12.3 11.9 11.5 11.3 10.9 

Whittaker 8.5 8.3 8.0 7.7 7.4 7.3 7.0 6.9 6.8 6.6 

PSMR 2.5 2.4 2.2 2.2 2.1 2.0 2.0 1.9 1.9 1.8 

Increasing 

Raw 14.9 17.2 22.2 27.8 35.5 44.0 54.7 68.3 90.0 132.9 

Whittaker 8.4 10.4 14.6 19.4 25.8 32.8 42.0 53.5 72.5 112.8 

PSMR 2.4 6.2 12.5 19.9 28.5 38.2 50.1 65.6 89.4 138.6 

V-shape 

Raw 14.9 16.7 21.6 27.4 34.4 42.9 52.9 65.8 85.2 125.0 

Whittaker 8.5 10.5 14.9 20.5 26.9 34.5 43.4 54.9 72.2 109.5 

PSMR 2.4 6.2 12.4 19.5 27.5 36.5 47.0 60.5 80.3 121.0 

 

 


