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By Jack C.  Yue

T
HE AVERAGE AGE AT DEATH continues to increase and shows no signs of slowing down. 
The inexorable increase in human life span has consequences across the actuarial spectrum, 
from insurance underwriting to lifetime income. A deeper understanding of the demographic 
trends at work will lead to more accurate projections and calculations. This piece studies the 

complex questions belied by the seemingly simple question of the headline.
Mortality improvement is a common phenomenon, but not all ages experience the same reduction in 

mortality rates. For example, the reductions in Taiwan’s mortality rates are greatest for the elderly (ages 65 
and beyond) and for the groups around ages 10 
and 20 (Figure 1). As a result, the age at death 
will concentrate on a narrower range, an oc-
currence known as “mortality compression.” 
We can use the ages-at-death probability to 
demonstrate mortality compression (Table 1). 
The median (50 percent) is the life expectancy, 
which keeps rising while the inter-quartile, the 
variance, becomes smaller.

Are We Approaching  
theUpper Boundsof  
Human Life Span?

FIGURE 1

The Logarithm Mortality Rates of Taiwanese People
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TABLE 1

Ages of Death Probability for Taiwanese Females

25% 50% 75% 90% 95%

1979-1981 69 79 86 91 93

1989-1991 72 80 87 92 94

1999-2001 74 83 90 95 98

2009-2011 78 86 92 97 99
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We can look at mortality compression via the angle of surviv-
al curve as well. Figure 2 shows the survival curves of Japanese 
females in 1950, 1980, and 2010, based on data from the Human 
Mortality Database (HMD). The survival curve goes rightward 
and upward, and it does start to look like half of a rectangle in 
2010, more so than in 1950. This is known as the “rectangular-
ization” of the survival curve, and it shows that most people die 
within a certain age group—and that age group is getting smaller 
over time. In other words, eventually the age-specific mortality 
rates will converge to 0, except for the ages near the modal age. 

Rectangularization is now assumed in many mortality stud-
ies, but there is no agreement on whether there is a limit to 
human life span. Researchers who support the premise that 
there is no upper limit, such as Oeppen and Vaupel (2002) and 
Wilmoth and Robine (2003), used historical data to show that 
human longevity is likely to continue increasing. On the oth-
er hand, those who support such a limit, such as Carnes et al. 
(2003) and Olshansky et al. (2005), thought that obesity and 
other biological factors would slow down and possibly restrain 
the incremental increases in longevity.

It is interesting to note that, depending on the methods used, 
researchers can arrive at different conclusions based on the 
same data set. For example, in exploring the issue of mortality 
compression, researchers do not agree on whether the variance 
(or standard deviation) of age-at-death distribution converges. 
Cheung et al. (2005) and Thatcher et al. (2010) support variance 
convergence, while Li et al. (2008) and Yue (2012) assert there 
is still not enough evidence to confirm mortality compression. 
In addition to the approach used, the quality of the data is also 
crucial in mortality studies. For example, even for the HMD, 
the official population counts are not available in all countries 
for ages 90 and beyond (Jdanov et al., 2008). Thus, the HMD 
needs to make adjustments (i.e., graduation) for mortality rates 
over age 80 using the method of extinct generations, and over 
age 90 using the survivor ratio method (Thatcher et al., 2002).

In this study, we propose a statistical approach for evaluat-
ing mortality compression using ungraduated mortality data. 
And then we apply this proposed approach to examine whether 
there is an upper limit to human life span. We consider optimi-
zation methods, e.g., nonlinear maximization and weighted least 
squares, for estimating the modal age and the standard deviation 
of age-at-death distribution. And finally, we use computer simu-
lations and empirical studies to check the proposed methods.

Methodology
Mortality compression was first proposed by Fries (1980). There 
are quite a few ways for measuring mortality compression. Kan-
nisto’s 2000 and 2001 studies were the first to use the standard 
deviation, or SD(M+), to measure the compression. The SD(M+) 
can be defined as

f(x)(x – M)2

x≥M
∑

f(x)
x≥M
∑

SD(M+) =

,    (1)

where M is the modal age with the largest number of deaths. 
The value of SD(M+) is derived from the formula of a sample 

variance and will have a lot of fluctuations, since age at death is 
usually recorded as the integer of age. 

There are several possible approaches to reduce the fluc-
tuations of the observed measures. Numerical methods are a 
frequent choice since they often provide good results. We use 
three optimization methods, similar to Yue (2002), including 
maximal likelihood estimation (MLE), nonlinear maximization 
(NM), and weighted least squares (WLS), to estimate the vari-
ance of age-at-death distribution.

To simplify the analysis, we present the NM method as a 
demonstration. The NM and MLE methods are expected to 
produce similar results in parameter estimations. However, in 
practice, not all data are used by the MLE method, thus the NM 
method will produce more accurate estimates. Also, it should 
be noted that in order to apply the optimization methods, the 
age-at-death distribution is required.

If the number of deaths at age x, or dx, satisfies the function 
f(x), then the NM estimate is found by solving the following 
equation

,    (2)
wx( f(x) – dx)2arg min

x=M
∑
M+2k

where wx is the weight, M is the modal age, and k is the data 
range. 

FIGURE 2

Survival Curves of Japanese Females
S(x)
1.0

0.8

0.6

0.4

0.2

0.0
0 20 40

Age
60 80 100

1950
1980
2010

Upper Bounds of Human Life Span CONTINUED

38       C O N T I N G E N C I E S       JAN | FEB.15� W W W . C O N T I N G E N C I E S . O R G



If the age of death follows the normal distribution, equation 
(2) can be written as 

.   (3)
wx exp [ (x–M)2] – dx

arg min
M,σ

x=M
∑
M+2k 1

2πσ
–1
2σ2

2

Note that equation (2) assumes a stationary population. 
However, in practice, the annual number of births may not be 
the same, or the radix l0 may be different every year. 

We can apply the process to mortality rates and modify equa-
tion (2) as

(4)
dx f(x) – dx(f(x)–xp0 × qx)2arg min = arg min

x=M
∑
M+2k

x=M
∑
M+2kdx

l0

where xp0 is the survival probability of age 0 to age x, and qx is 
the death probability between age x and age x+1. 

Similarly, we can modify SD(M+) in equation (1) to

.    (5)

SD(M+) =
dx(x – M)2

x=M
∑
M+2k

dx
x=M
∑
M+2k

The modal age at death can be derived from the process 
of optimization for the NM method, but it must be estimated 
separately for the SD(M+) method. The modal age is usually 
determined by pure observation, but it will have a lot of fluc-
tuations and will not be unique if there are two or more modal 
ages at death. To deal with these problems, Kannisto (2000) 
suggested a modified estimate of the modal age

,   (6)M* = x +
f(x) – f(x–1)

[f(x) – f(x–1)] + [f(x) – f(x+1)]

where x is the age with the largest number of deaths. 
We will use equation (6) to obtain the modal age for the 

SD(M+) in this study. 

Simulation and Empirical Analysis
We will then use a computer simulation to evaluate whether the 
proposed estimation method works. Before showing the simula-
tion results, we need to add a note about the estimation of the 
NM method. Since age at death is usually recorded as the age 
on the deceased’s last birthday, the age of a person aged x is be-
tween x and x+1, or [x, x+1). This means that the average age of 
a person aged x is x+½. In other words, to estimate the modal 
age using the NM method requires the addition of half a year. 

■■ Example 1. Suppose the age of death follows a normal distri-
bution with modal (mean) M=80 and standard deviation σ=10. 
For each simulation run, we simulate 100,000 deaths whose 
ages at death follow a normal distribution. The idea behind this 
setting is similar to the radix (l0 = 100,000) of life tables where 

there are 100,000 newborns. The simulation is repeated 1,000 
times. 

The data used to calculate the modal age and standard de-
viation for the NM method are from ages M−k to M+k, and the 
value of k is at least 5. We want to determine if the observa-
tions used have a significant influence on the estimation result. 
Also, in practice, we can use the observed information or we 
can apply equation (3) to determine the M value for use with 
the NM method. It should be noted that, as mentioned by Kan-
nisto (2000), the original setting for estimating the standard 
deviation for SD(M+) is to use the deaths beyond the modal 
age, or [M, ∞). However, according to our experiment on the 
proposed approach, we found that the estimation results using 
the data aged M−k ~ M+k are slightly better than those aged 
M ~ M+2k. Therefore, we use the data aged M−k ~ M+k for the 
NM method and those of aged M ~ M+2k for SD(M+) in the 
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simulation study. 
We will use the bias and the variance, or mean squared er-

ror (MSE), which is the sum of (bias)2
 and variance, of the 

estimate to evaluate the proposed method. We will use the 
logarithm of MSE (Figure 3) since it is easy to distinguish 
the differences. In addition, we want to know whether the 
estimates for ages to one decimal place are better than the es-
timates for integer ages.

It seems that the estimate of the NM method has a smaller 
MSE and the MSE decreases as the value k increases. Interest-
ingly, using the format of integer age is slightly better than using 
the data of ages to first decimal, which indicates data up to in-
teger ages would be sufficient. Also, the MSE of the estimate 
from equation (4) looks like a constant no matter how many 
data are used.

The results of σ estimate are similar and show more ob-
vious differences between the NM method and SD(M+). The 
NM method can obtain an accurate estimate for σ, for dif-
ferent k values (Figure 4). On the other hand, the SD(M+) is 
underbiased, and the bias becomes smaller as the data range k 
increases. However, the bias is still noticeable when more than 
30 data points (different ages) are used, or k = 15. Based on these 
simulation results, it seems that the NM method is reliable in 
providing the estimates of M and σ, and data in the form of in-
teger age are preferred.

We further use the coverage probability of the estimate of 
modal age to evaluate the estimation methods. Together with 
the estimate of modal age and σ for every simulation repli-
cation, we can use the variance to construct the confidence 
intervals. Table 2 shows the coverage probabilities of the modal 
age and σ for the NM method and SD(M+). The NM method 
meets expectations when the data are recorded in integer age 
or are accurate up to the first decimal. On the other hand, the 
SD(M+) is underbiased for estimating σ and cannot achieve 
its significance level. Note that, in practice, the variances and 
confidence intervals of the parameters M and σ can be acquired 
from a bootstrap simulation. 

In addition to the empirical study of mortality data from the 
HMD, we examine whether the graduation method would in-
fluence the estimates of modal age and standard deviation σ. 

■■ Example 2. Similar to Example 1, we assume that the age at 
death follows the normal distribution with modal age 80 and 
standard deviation 10. Also, there are 100,000 deaths in every 
simulation run. We chose the Whittaker-Henderson method 
(London, 1985) to graduate the raw data, by minimizing the fol-
lowing objective function,

,   (7)x=1
∑

n

x=1
∑
n–z

F = wx(vx–ux)2 + h (Δzvx)2

where wx is the weight of age, h is the weight of smoothness, 
and ux and vx are the raw and graduated data of age x, respec-
tively. The value of z is usually set to 3, and wx is the sample 
size of age x.

In this study, we consider two different values of h (W1 and 
W2): One is the average sample size of all ages (Yue, 1997), and 
the other is 10,000 times the average sample size. The purpose 
of 10,000 times the average sample size is to allow the graduated 
values to be close to a polynomial of degree z−1.

Table 3 shows the averages of the σ estimate from the raw 
data and two types of graduated data for various data range k. 
The NM method has less bias for all types of data used, but the 
σ estimates from SD(M+) are obviously underbiased. On the 
other hand, the estimates based on Whittaker graduation W1 
are close to those based on raw data, for both NM and SD(M+) 
methods; but those based on Whittaker graduation W2 are 
somewhat different. The results of the model estimate are sim-
ilar and are omitted. Thus, we suggest using the raw data to 
explore mortality compression, although most past work on 
mortality compression was based on graduated (or life table) 
data. Next, we will continue exploring mortality compression 
using the empirical data. 

■■ Example 3. Here we apply the mortality data from the HMD 
(Years 1950-2009) and check for mortality compression by 

TABLE 2

Coverage Probability of Normal Distribution

NM
SD(M+)

Integer Age First Decimal

M 0.951 0.952 0.969

σ2 0.956 0.937 0.000

Note: Coverage values larger than 0.964 or smaller than 0.936 are 
significantly different from the 95% level, and are marked in red.

TABLE 3

Parameter Estimates for Various Graduation 
Methods

σ NM SD(M+)

k Raw W1 W2 Raw W1 W2

5 9.99 10.00 9.73 5.47 5.47 5.50

6 10.00 10.00 9.70 6.34 6.34 6.39

7 9.99 10.00 9.67 7.10 7.09 7.19

8 10.00 10.00 9.67 7.71 7.71 7.89

9 10.00 10.00 9.66 8.31 8.31 8.46

10 10.01 10.01 9.66 8.69 8.69 8.91

Note: The W1 and W2 are the results under Whittaker graduation.

Upper Bounds of Human Life Span CONTINUED
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FIGURE 5

Japan Modal Estimates for NM and SD(M+)
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estimating the standard deviation σ, using the NM method and 
SD(M+). In addition, we want to examine the influence of using 
graduated data. 

Note that the modal age increases annually, like the life ex-
pectancy, and the results are virtually the same in almost all 
countries. We can use the Japanese mortality data to show the 
common pattern. Figure 5 shows the estimated modal ages for 
the NM method and pure observation, assuming the ages at death 
follow normal and logistic distribution. The reason for applying 
different distribution is to test whether the distribution would 
influence the estimates of the NM method. The increase in the 
modal age is about the same for three different approaches, and 
the estimates of the NM method are smoother for both genders. 

There are 37 countries in the HMD; the patterns of σ esti-
mates can be roughly separated into two groups. For the period 
1950-1980 the σ estimates decrease annually but do not always 
decrease after 1980. We can use the female data from Australia, 
France, Italy, Japan, and the U.S. for a more detailed analysis. 
As shown in Figures 6 and 7, the σ estimates are smoother for 
the NM method and thus it is easy to determine if there is mor-
tality compression by using the NM method. The σ estimates 
of Australia, France, and Italy continue the decreasing pattern, 
and it seems mortality compression is a reasonable assumption. 
However, for Japan and the U.S., the σ estimates fluctuate and 
do not continue the rate of decrease seen before 1980. The σ 
estimates of SD(M+) do not have an obvious sign of decreasing.

This is an interesting finding. Intuitively, we would expect 
that mortality compression is more plausible for countries with 
a greater life expectancy. Among these five countries, the life 
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expectancy is greatest in Japan and lowest in the U.S. It seems 
there are no strict connections between life expectancy (or mod-
al age) and mortality compression. Still, although the results are 
not shown here, we found that the shortest interval of covering 
50 percent of deaths continues its decreasing pattern for the 
HMD countries. There is still no decisive evidence to support 
or reject mortality compression.

Similar to Example 2, in this example we can also use the 
empirical data to verify the influence of graduated data. Since 
the results of σ estimates are about the same as using the raw 
data, we should look at the estimate of the 95th percentile, i.e., 95 
percent of deaths by this age. Figure 8 shows the results of the 
Japanese data. Although the graduation is intended to reduce 
the fluctuation in mortality rates, quite the opposite is true: The 
estimates of the 95th percentile show larger fluctuations for both 
genders. If possible, we would choose using the raw data over 
the graduated data. 

Still Not Enough Evidence
Mortality compression is a common conjecture. Although many 
studies support this theory, there still is not enough evidence to 
draw a valid conclusion. In fact, some recent studies show quite 
the opposite result. In addition to the data quality (including the 
insufficient amount of data at the higher ages), the compression 
measures and their estimation methods are one of the reasons 
why the study of mortality compression is difficult. 

In this study, we propose the nonlinear maximization (NM) 
method to estimate the standard deviation σ for the age-at-
death distribution. We showed that the proposed NM method 
does provide a reliable and more stable estimate for the standard 

Upper Bounds of Human Life Span CONTINUED
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deviation σ. Unfortunately, there exists estimate discrepancy 
in the standard deviation σ among different countries even us-
ing the NM method. Perhaps there are not enough data on the 
elderly population, and applying different estimation methods 
(for the standard deviation σ) alone cannot help us to conclude 
mortality compression. 

Another piece of evidence against mortality compression 
(and thus the theory that life span has an upper bound) is the 
fact that estimates of the 95th percentile for the age at death dis-
tribution show no signs of slowing down. This finding indicates 
the mean (or life expectancy) of the age-at-death distribution is 
likely not converging, and neither are its standard deviation and 
therefore its maximum (i.e., life limit).

Although the distribution of age-at-death is well studied be-
low the 95th percentile, one cannot determine the mortality rates 

of the oldest population—people 85 and beyond—merely by ex-
trapolating the mortality trend. And so using simple extrapolation 
to estimate the life span limit is questionable at best. (Note that 
this method is used by most of the current models.) We need more 
mortality data if we are to accurately study the theory of mortality 
compression—and if we hope to answer the question of whether 
human life span has an upper bound.�
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FIGURE 7
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