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Abstract 

Introduction: A full-time non-operating room (OR) scheduler was hired by an anesthesia 

department’s hospital. Non-OR sites (e.g., interventional radiology) were allocated time. 

Unexpectedly, challenges in implementation were inaccurate anesthesia times for radiology. 

Methods: Anesthesia billing data and paper logbooks from non-OR sites were used. 

Results: Case durations for computerized tomography (CT) and magnetic resonance 

imaging (MRI) classified by Current Procedural Terminology (CPT) were less accurate than for 

OR cases. There were many different CPT, almost all rare, and CPT reflected organs imaged, 

not scanning times. Anesthesia times estimated by expert judgment had better face validity, 

internal consistency, and accuracy. Methods were developed and validated to estimate upper 

and lower prediction bounds (e.g., for fasting “NPO”) from the expert estimates. Scheduling 

interventional radiology was challenging because a few CPT accounted for most cases. Since 

interventional radiology scheduled cases into allocated time, and open access was planned 

within two-week increments, the relevant objective was to estimate the time to complete series 

of elective cases including turnover times. We describe and validate how to pick the time up to 

when interventional radiology schedules to be finished on a specified percentage of days by a 

specified time (e.g., 6 PM). Results are expected to be similar for International Classifications of 

Diseases Version 9. 

Conclusions: We believe this paper to be the first investigation of the estimation of 

anesthesia times for cases performed outside of ORs. Case duration prediction based on CPT(s) 

performs poorly, unlike for OR cases. 
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Introduction 

An anesthesia department aimed to improve case scheduling for anesthetics outside of 

operating rooms (ORs). Time was allocated to adult and pediatric cardiology and to 

interventional and neuroradiology (Table 1). A full-time non-OR scheduler was hired by the 

hospital to facilitate the transition. A Vice Chair became actively involved in non-OR scheduling. 

Together, they shepherded the process of working with non-OR sites as they choose days of 

the week for their allocations. During a transition period of a few months, three non-OR teams 

were used to eliminate a two-month backlog. Then, as forecasted based on expected workload, 

two teams were used each workday. With multiple meetings and support of the hospital and 

College of Medicine’s leadership, implementation was relatively uneventful. 

However, accurately estimating anesthesia times for diagnostic and interventional radiology 

was unexpectedly a problem. In retrospect, large inaccuracy had been present for a decade. 

Yet, without a focus on non-OR scheduling, the anesthesia department had not appreciated the 

magnitude of the case estimation problem. Starting and finishing computerized tomography (CT) 

and magnetic resonance imaging (MRI) anesthetics early or late had been attributed to other 

causes (e.g., how the time was planned and cases were scheduled). 

The first attempt to improve estimates of anesthesia times for scheduling1 radiology was to 

average2,3 historical anesthesia times classified by the Current Procedural Terminology (CPT) 

codes used for billing. The assumption was made that such estimates of anesthesia times 

would be highly accurate for CT and MRI, because these procedures involve unchanging and 

unbiased physics, not different surgeons who may also deliberately underestimate times. 

In this paper, we describe reasons identified for inaccuracies in using CPT for case 

scheduling of radiological procedures, both interventional and diagnostic. We describe some 

reasonable alternatives, and our experience in implementation. For application outside the USA, 

frequent reference is also made to the October 2004 edition of the International Classification of 

Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) procedure codes. 
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Methods 

Quantifying Inaccuracy in Predicting Anesthetic Time for Radiology 

“Anesthetic time” referred to the time of continuous anesthesia presence. The first goal was 

to put the inaccuracy in predicting anesthetic time by radiology CPT into practical perspective. 

The diagnostic radiological procedures studied were CT and MRI with anesthesia, almost 

all for children. Three years of billing data were available: September 1, 2001 through August 31, 

2004. As described by Strum et al.,4,5 cases studied were those of CPT* performed a moderate 

to large number of times (N ≥ 30). The observed sample mean for each CPT was considered 

the scheduled duration. Uncertainty was quantified using the mean absolute error and the mean 

absolute percentage error. 

The comparison group was the hospital’s surgical cases during the same period. The cases 

were sorted in ascending order of duration. The fewest number of cases were used that 

provided the same overall mean duration as that of the studied MRI and CT cases. The cases’ 

scheduled and actual OR times were obtained from the hospital’s OR information system. 

For quantifying uncertainty in anesthetic times for interventional radiology, cases were 

classified by combination of CPT and physician.2,3,6 Data were available including the most 

common physician from July 1, 2003. The same final date of August 31, 2004 was used. 

Estimating Anesthetic Times for Computerized Tomography 

The chief CT technologist was provided a list of body regions scanned by CT (e.g., brain or 

thorax). She provided her expert judgment of the CT room time required when a case is 

performed with anesthesia. The next day, her estimates plus 15 min were converted into a 

presentation-format rule by the authors, where 15 min was the value used by anesthesia 

                                                 
* The CPT studied were 70553 MRI of brain without contrast followed by contrast and further sequences 

(N = 281); 70551 MRI of brain without contrast (N = 74); 70543 MRI orbit, face, and neck without 
contrast followed by contrast and further sequences (N = 51); 72141 MRI of spine without contrast 
(N = 43); 72156 MRI of spine without contrast followed by contrast and further sequences (N = 32); 
70480 CT of orbit, sella, posterior fossa or outer, middle, or inner ear, without contrast (N = 35); and 
74160 CT of abdomen with contrast (N = 51). 
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schedulers for years as the typical time to take the patient to the post-anesthesia care unit. The 

expert reviewed the rule, but made no changes. By this process the expert’s estimates of 

anesthesia times were made separate from the data (i.e., no data fitting was performed). 

To assess the accuracy of estimates, the scheduled procedure(s) needed to be known. For 

example, if the scheduled procedure was “CT of head” and yet “CT of brain” was performed, 

such poor scheduling may reduce the accuracy of estimates. Both anesthesia scheduling and 

CT had kept their paper logbooks listing scheduled procedure(s) back to June 1, 2003. The 

1.7 yr of data provided 105 anesthetics for validation. 

Residuals between actual anesthesia times and expert estimates were analyzed to 

determine if there was additional error that could be explained. Each body region scheduled for 

scanning was coded as 0 or 1 for each patient. Use of each CT machine was coded as 0 or 1. 

Mann-Whitney test was applied repeatedly, one body region or machine at a time, to test 

whether residuals differed. Because 20 comparisons were performed without correction for 

multiple comparison, by design the analysis was intentionally overly likely to detect a significant 

relationship even when detection may be spurious due to random error. 

Residuals were compared to those of the original scheduled times to assure that estimation 

errors were no worse than that of the original method of scheduling. Better performance was 

preferred by the anesthesia department studied, and was achieved (see Results). Nonetheless, 

that was not of scientific importance, as the baseline method of scheduling lacked both face 

validity (e.g., a whole body CT scheduled for the same time as a sinuses only CT) and internal 

consistency (e.g., CT of the same sites scheduled for different times). The expert description, in 

contrast, will be shown to be systematic enough for implementation in enterprise wide 

scheduling software and generalized enough for implementation elsewhere. Thus, the scientific 

issue was to show that the estimates of anesthesia times by expert judgment were no worse 

than estimates by the schedulers, as that suggests that there was not important a priori 

knowledge that schedulers had about individual patients that the expert did not use. 
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Lower (5%) and upper (90%) prediction bounds were estimated. The next three paragraphs 

explain the logic. Since anesthetic times are uncertain, the expert’s estimate alone could not be 

used for good decision-making.7

The average anesthetic time is relevant to scheduling a case into the time allocated for a 

service,1 or into time of another day8,9. The allocations for the services (Table 1) were calculated 

using the forecasted total hours of anesthesia including turnovers for each service.8,10 When 

deciding whether to schedule a case into OR time that has been allocated based on the 

expected (mean) total hours of anesthesia time, the value used should be the unbiased 

estimator for the total time.1,2,7 The same applies to moving a case, releasing allocated time, and 

assigning anesthesia providers.7 

The upper prediction bound7, ,11 12 is the end-point that relates to inserting a case into a gap 

in the schedule (e.g., CT in the middle of the workday during time originally scheduled for a 

case that was subsequently cancelled). The scheduler needs to know the longest time that an 

anesthetic is likely to take. An upper prediction bound for the duration of a case is the value that 

will be exceeded by the next case of the same type at the specified rate. There is a 10% chance 

that the duration of a case will be longer than its 90% upper prediction bound. 

The lower prediction bound is the end-point that relates to planning the availability of the 

subsequent patient to receive care by the same team.7,13 The anesthesia scheduler and 

pediatric practitioners adjust children’s fasting times using the calculated lower 5% prediction 

bounds for the shortest expected durations of preceding cases (below).13 

Previously described methods for calculating lower7,13 and upper7,11,12 prediction bounds for 

cases relied on the statistical distribution of OR times to follow two-parameter log-normal 

distributions, with different parameters for each combination of surgeon and scheduled CPT(s). 

However, in the Results we will show that this approach does not apply, because the estimated 

anesthetic time(s) were neither based on surgeon or scheduled CPT (s). Rather, the relevant 

issue was residuals from a rule based on expert judgment. 



Page 7 

Suppose that there are N observed anesthesia times (ATi, i = 1, 2, …, N), each with a 

corresponding (Zi) expert estimate of that anesthesia time. Assume that the experts are 

providing the median anesthesia times for CT’s of a specified region. This assumption was 

tested with the sign and the Wilcoxon signed-ranks tests. 

Assume that the ATi, i = 1, 2, …, N, follow two-parameter log normal distributions with 

individual medians but a common variance. Specifically, let µi refer to the expected value (i.e., 

mean) of the natural logarithm of ATi and c refer to the case effect specifying variation of the 

natural logarithm of ATi around that mean.14 By definition, ci follows a normal distribution with 

mean of 0 and unknown variance of σ2, and ATi = exp(µ + ci) = exp(µ) × exp (ci) = Zi × exp(ci). 

Therefore, we use Lilliefors’ test as to whether the N observed ln(ATi / Zi) follow a normal 

distribution with mean of zero and common, unknown, variance σ2. Simultaneously, we obtain s, 

the sample estimate of σ. 

Provided the assumptions hold, then lower7,13 and upper7,11,12 prediction bounds can be 

calculated for the next anesthetic (ATi+1) based on the prior N anesthetics and the expert 

estimate of its duration (Zi+1).15 Let α refer to the desired quantile (e.g., α = 0.05 for the 5% 

lower prediction bound and α = 0.9 for the 90% upper prediction bound). The prediction bound 

equals [ ]( )α,111exp 1
1 −⋅+⋅⋅ −

+ NTNsZi , where [ ]α,11 −− NT  is the inverse of the 

Student t cumulative distribution function with (N−1) degrees of freedom. 

All of the above steps for CT were repeated for MRI. Paper logbooks were available back to 

December 1, 2003. The 1.2 yr of data provided 154 anesthetics for review. 

Diversity of Procedures in Diagnostic and Interventional Radiology 

To understand why there were challenges in predicting anesthesia times for radiology, the 

distributions among all anesthetics of procedures involving radiology were studied. This 

methodology is presented after the above description of prediction bounds. However, the 

corresponding results will be presented first. 
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Sites studied were CT and MRI, interventional radiology, and pediatric cardiac 

catheterization laboratory. The latter control site was the only non-OR site other than radiology 

that was active for several years before initiation of the allocation of time for non-OR activities. 

All cases performed in 2004 were used. 

A simple, but limited, method of quantifying the diversity of procedures is the percentage of 

anesthetics accounted for by the most common procedure(s). Standard errors for proportions 

were estimated by using the Clopper-Pearson confidence intervals.16

The diversity of the procedures performed at each of the non-OR sites was quantified using 

the internal Herfindahl index.17,18 The internal Herfindahl index equaled the sum of the squares 

of the proportions of all anesthetics at a site that were accounted for by each procedure(s). That 

is, it equaled the probability that if two anesthetics were selected at random, both would be of 

the same procedure(s). Corresponding standard errors were calculated by Taplin’s method.19

For example, suppose that 3 procedures were performed at a site in relative proportions of 

50%, 40%, and 10%. Then, the internal Herfindahl index would equal 0.42, where 0.42 = (0.50)2 

+ (0.40)2 + (0.10)2.  If a different site performed 3 procedures in relative proportions of 93%, 5%, 

and 2%, then the internal Herfindahl index would equal 0.87, where 0.87 = (0.93)2 + (0.05)2 + 

(0.02)2.  Although both sites performed 3 procedures, the second site was less diverse because 

the proportions of each procedure were less balanced. 

For example, suppose that a site performed only one procedure (e.g., therapeutic radiation 

treatment delivery). Then, the internal Herfindahl index would equal 1.0, where 1.0 = (1.00)2. 

For example, suppose that a site performed 100 procedures, each with a relative proportion 

of 1%. Then, the internal Herfindahl index would equal 0.01, where 0.01 = 100 × (0.01)2. The 

minimum value of the internal Herfindahl index equals one divided by the number of different 

procedures performed at the site. 

To understand inaccuracy in predicting anesthesia times, we also studied the percentage of 

anesthetics at different sites that were of rare procedures.20 A procedure(s) was considered rare 
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if it accounted for 0.5% or less, or 0.1% or less, of anesthetics performed during a one-year 

period. Derivation and validation of this statistic and its standard error are in the Appendix. 

When the number of previous anesthetics (N) is large, the difference between the lower and 

upper prediction bounds depends solely on the intrinsic variability (σ) and median expected 

duration (µ) of the procedure (above). In contrast, for rare procedures (e.g., N = 2), uncertainty 

in the sample estimates of these parameters contribute markedly to the width of the interval.13 

This relationship is represented mathematically as having a large magnitude of the inverse of 

the cumulative distribution of the Student’s t distribution (above). 

For example, the uncertainty in the anesthetic time for the next insertion of myringotomy 

tube is less than the uncertainty in the anesthetic time for the next knee replacement. This is 

because myringotomy tube insertion takes less time (smaller µ) than knee replacement. 

However, there are plenty of historical data to review for both procedures. In contrast, consider 

disarticulation of the hip. Much of the uncertainty in the duration of an anesthetic is likely due to 

few or no prior recent cases of the same procedure on which to estimate the durations. 

Predicting Duration of the Interventional Radiology Workday 

By 2004, there were frequently series of scheduled (elective) interventional radiology cases. 

All series of cases with anesthesia scheduled to start before 9:00 AM and finish after 3:00 PM 

were reviewed from January 1, 2004 through January 18, 2005. Scheduled versus actual times 

to complete the series of cases were studied. The rational is explained in the Results. 
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Results 

Quantifying Inaccuracy in Predicting Anesthetic Time for Radiology 

Unexpectedly, the durations of CT and MRI anesthetics were less predictable than surgery, 

despite involving physics rather than surgeons. 

For CT and MRI, the mean absolute error was 43 ± 1 min and mean absolute percentage 

error was 45% ± 1% (N = 566). In comparison, the briefest 41,770 of surgical cases had the 

same mean (1.97 hr) as that of the CT and MRI anesthetics. Among the surgical cases, the 

mean absolute error was 29 ± 1 min and mean absolute percentage error was 27% ± 1%. Thus, 

expected durations of CT and MRI anesthetics were less accurate than that of surgical cases. 

For interventional radiology, using combination of CPT and radiologist, the mean absolute 

error was 50 ± 2 min and the mean absolute percentage error was 24% ± 1% (N = 373). The 

mean duration was 3.89 hr. All 58,291 surgical cases were used as a comparison (mean 

2.75 hr). The mean absolute error was 42 ± 0 min and mean absolute percentage error was 

28% ± 1%. 

Diversity of Procedures in Diagnostic and Interventional Radiology 

Pediatric cardiac catheterization was used as a control, since there are many CPT and ICD-

9-CM reflecting the many different congenital lesions. The most common CPT accounted for 

18% of anesthetics, and the most common 3 CPT accounted for 39% of anesthetics (Table 2). 

The internal Herfinahl was 0.08, which is very low18. Furthermore, most procedures were rare. 

Among anesthetics performed in the pediatric cardiac catheterization laboratory, 100% ± 0% 

were for procedures that each accounted for 0.5% or less of anesthetics. Thus, as expected, 

cardiac catheterization had a larger diversity of procedures,18 and a higher frequency of rare 

procedures,20 than does surgery. 

For MRI and CT, the most common CPT (70553, MRI brain without contrast) accounted for 

31% of anesthetics, and the most common 3 CPT accounted for 44% of anesthetics. The 



Page 11 

internal Herfindahl was 0.12. Among anesthetics for CT or MRI, 100% were for procedures 

accounting for 0.5% or less of anesthetics. The similarity of findings to pediatric cardiac 

catheterization laboratory partly explain why estimates of diagnostic radiology anesthesia times 

using CPT(s) were relatively inaccurate. Other reasons are below. 

For interventional radiology, the most common CPT accounted for 63% of anesthetics, and 

the most common 3 CPT accounted for 77% of anesthetics. The internal Herfindahl was 0.42. 

Among cases with anesthesia, 37% were for procedures accounting for 0.5% or less of 

anesthetics. In fact, the 3 combinations of CPT and radiologist with N ≥ 30 in the preceding 

section accounted for 69% of anesthetics. Thus, unlike for pediatric cardiac catheterization 

laboratory and diagnostic radiology, a challenge in predicting anesthetic times was that so many 

anesthetics were for a few CPT of long duration. The most common interventional radiology 

CPT (61624) was broad, not specifying the size of the lesion: “Transcatheter permanent 

occlusion or embolization (e.g., for tumor destruction, to achieve hemostasis, to occlude a 

vascular malformation), percutaneous, any method; central nervous system (intracranial, spinal 

cord).” The corresponding single ICD-9-CM was 39.72: “Endovascular repair or occlusion of 

head and neck vessels,” [including] “coil embolization or occlusion, …, endovascular graft(s),” 

[and/or] “… liquid tissue adhesive (glue) embolization or occlusion … for repair of aneurysm, 

arteriovenous malformation, or fistula.” 

Estimating Anesthetic Times for Computerized Tomography 

Expert judgment of anesthesia time for CT was: 

30 min 
+ (   5 min scanning time for each of: head, facial bones, sinuses, or cervical spine ) 
+ ( 15 min scanning time for each of: brain, neck, thorax, abdomen, pelvis, or thoracic spine ) 
+ (   5 min if not using the Siemens six slice spiral CT ). 

Analysis of residuals did not detect additional error that could be explained by body region(s) 

or the scanner used (all P > 0.10). 

The bias of the estimate was negligible (2 ± 2 min). 
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The expert’s estimate was for the median (P = 0.84 sign test, P = 0.50 Wilcoxon signed-

ranks test). There were 50 under-estimates of the actual duration, 7 zero residuals, and 47 over-

estimates of the actual duration. 

Figure 1 shows a histogram of the natural logarithm of the actual anesthetic times to the 

expert estimate, with a superimposed normal curve (mean −0.01, standard deviation 0.36, 

N = 104). The distribution was close to that of a log-normal (Lilliefors P = 0.05). Strum et al. 

showed that and why goodness of fit tests tend to falsely reject null hypotheses of good fits for 

case duration data (i.e., P = 0.05 is acceptable).21 The 5% lower prediction bound was 55% of 

the expert’s estimate, where 

0.55 = [ ]( )05.0,11041041136.0exp 1 −⋅+⋅ −T . 

The 90% upper prediction bound was 160% of the expert’s estimate. 

Rounding had a large effect on results, which was a reason why satisfying distributional 

assumptions was not overly important.4,12 For example, depending on the machine used for CT 

of the brain, the expert’s estimate above could be 40 min, which we could schedule for 45 min. 

Multiplying 0.55 by 40 min gives 22 min, which we practically would make 15 min as the lower 

bound. Multiplying by 1.60 by 40 min gives 64 min, which could be rounded to 1 hr or up to 1 hr 

15 min being conservative. 

The expert’s estimate achieved a pairwise reduction in the mean absolute error of 

11 ± 2 min versus that originally scheduled. The 5% lower bound calculated using the 

scheduled times was 48%, less than the above 55%. The 90% upper bound was 177%, more 

than the above 160%. Thus, the width of the uncertainty (5% to 90%) was reduced by 24%. The 

expert’s estimate added face validity and internal consistency (see Methods) without evidence 

of losing a priori knowledge that the schedulers had about patients. 
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Estimating Anesthetic Times for Magnetic Resonance Imaging 

Expert judgment of anesthesia time for MRI was: 

30 min 
+ ( 60 min scanning time ) 
+ ( 15 min scanning time if total spine or abdomen/pelvis extending into the thighs ) 
+ ( 15 min scanning time if not using the Siemens Avanto MRI ). 

Analysis of residuals did not detect additional error that could be explained by body region 

or the scanner used (all P > 0.10). 

The bias of the estimate was negligible (2 ± 2 min). 

The expert’s MRI estimate did not differ from the hypothesis that the median was provided 

(P = 0.68 sign test, P = 0.64 Wilcoxon signed-ranks test, N = 155). 

Figure 2 shows a histogram of the natural logarithm of the actual anesthetic times to the 

expert prediction, with a superimposed normal curve (mean −0.02, standard deviation 0.28). 

The distribution was close to that of a log-normal (Lilliefors P = 0.69). The 5% lower prediction 

bound was 63% of the expert’s estimate, and the 90% upper bound was 143% of the estimate. 

For example, MRI of the brain would be scheduled for 90 min. The shortest time of 57 min could 

be considered 1 hr, and the longest of 128 min could be considered 2 hr 15 min. 

The expert’s MRI estimate resulted in a pairwise reduction of the mean absolute error of 

12 ± 2 min. The corresponding 5% lower bound was 55%, less than the above 63%. The 90% 

upper bound was 158%, more than the above 143%. Thus, the width of the uncertainty (5% to 

90%) was reduced by 23%. These findings suggest the schedulers did not have important, 

additional a priori knowledge lost in using the expert’s estimate. 

Quantifying Inaccuracy in Predicting Anesthetic Time for Radiology (Continued) 

In the first section of the Results, we showed that CT and MRI had larger errors in 

predicting anesthesia times based on CPT than for ORs. Using the expert estimates, the mean 
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absolute error was 19 ± 1 min and mean absolute percentage error was 26% ± 2%, less than for 

OR cases of comparable duration. 

Radiology technicians recorded MRI scanning times in logbooks. Differences between 

anesthesia and scanning times were considered the anesthesia-controlled times. The expert 

estimate was 45 min for all patients. The mean absolute difference of the anesthesia-controlled 

times from 45 min equaled 19 ± 1 min, only slightly more than the 15 ± 1 min for the absolute 

difference of the actual and scheduled scanning times. Thus, further improvement in schedule 

estimates would require knowledge, at the time of case scheduling, of both patients’ 

physiological condition for anesthesia and primary disease and machine for choosing the MRI 

scanning protocol. We failed at attempts to implement either with radiology scheduling. 

Finally, findings that anesthesia times for CT and MRI were predicted poorly by CPT likely 

also applied to ICD-9-CM. The ICD-9-CM 88.38 included both CT of the sinuses and pelvis, 

differing by 10 min. The ICD-9-CM 88.97 included both MRI of the abdomen and orbit, differing 

by 15 min (above). Also, neither considered the substantive differences in scanning times 

among machines. 

Predicting Duration of the Interventional Radiology Workday 

Although CT and MRI were scheduled into open time, interventional radiology scheduled 

cases into allocated time (Table 1). Whereas individual cases were relevant to scheduling CT 

and MRI, the time to complete series of cases including turnover times applied to interventional 

radiology.13 Cases were scheduled sequentially. The scheduled end of the workday was 

compared to the actual end of the anesthetic workday. All delays, turnovers, etc. were included. 

Figure 3 shows a histogram of the differences in time between the actual versus scheduled 

ends of the anesthetic workday, with a superimposed normal curve (mean 0.75 hr, standard 

deviation 1.45 hr). As for series of OR cases,2 the distribution was close to normal (N = 57, 

P = 0.42). 
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The end of the workday was considered 6:00 PM. Relief was rarely available for anesthesia 

providers working in interventional radiology, even though they were not on call. Thus, the 

relative cost of an hour of over-utilized anesthesia time was considered costly, 4-fold more, than 

the cost of an hour of allocated time. For 4 out of 5 workdays (i.e., 80%),22 the providers should 

finish early. The time up to when interventional radiology schedules cases was chosen so that 

the last anesthetic would be expected to end at 6:00 PM on at least 80% of workdays. Just as 

the 95% quantile of a normal distribution equals the mean + 1.65 × (standard deviation), the 

80% quantile equals mean + 0.84 × (standard deviation). Substituting the mean and standard 

deviation above, the 80% quantile for the difference between actual and scheduled end of 

anesthesia equaled 2.0 hr, where 2.0 hr = 0.75 hr + 0.84 × 1.45 hr. In addition, the observed 

80th percentile for the 57 workdays was 2.0 hr. Thus, interventional radiology scheduled cases 

with anesthesia sequentially to 4:00 PM. 
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Discussion 

We believe this paper to be the first investigation of the estimation of anesthesia times for 

cases performed outside of ORs. If anesthetic times were known with relative certainty, then 

how the time was planned (i.e., allocated) into which the cases were scheduled could be 

separated from how anesthesia times were estimated.7 Since the anesthesia times were 

uncertain, estimation of anesthesia times could not be done rationally without considering 

simultaneously how the time was planned into which the cases were being scheduled.7 

Diagnostic radiology requested not to be allocated time. Partly, this was because CT, MRI, 

physiological imaging, echocardiography, etc., were performed in separate sites with different 

technicians. Partly, this was because these sites were scheduled like primary care outpatient 

clinics, with patients or secretaries calling, and a convenient time scheduled throughout the day. 

Scheduling such cases into open, first-come first-served time provided the most flexibility in start 

times when multiple days of the week were considered. These needs differed from those of 

interventional radiology at which the radiologists and technicians shared the same advantage as 

the anesthesia providers in scheduling cases sequentially. 

Pediatric clinics were concerned about children fasting from the previous evening for 

diagnostic radiology in afternoons. For several years, anesthesiologists tried education to 

encourage the use of evidence-based practice. We perceive that lack of use reflected nurses’ 

concerns in basing fasting instructions on scheduled start times. Implementation was achieved 

by our use of a dedicated non-OR scheduler who used the lower prediction bounds and told the 

nurse practitioners the recommended fasting period for each patient. The implication for this 

paper was that the expected (average) time was not the only important statistic for CT and MRI.7 

The lower prediction bound was also needed. 

Diagnostic radiology procedures were sometimes cancelled after scheduling, but several 

days before the date of the procedure. In ORs, pediatric cardiac catheterization laboratory, 

interventional radiology, etc., patients were routinely told their start times the day before surgery, 
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so holes in the schedule could be filled by moving later cases to earlier times. However, we 

failed at encouraging such scheduling for diagnostic radiology. Many patients undergoing short 

procedures without anesthesia would have needed to have their times changed. The implication 

was that holes in the schedule were produced, and filled whenever possible by cases with 

anesthesia at other sites (e.g., cancelled MRI hole filled with a CT case). Upper prediction 

bounds show whether another case can fit within a hole in the schedule.7 

Interventional radiology performed its cases in individually allocated time. The anesthesia 

department studied received institutional financial support to provide open access within a 

reasonable (2 wk) period.8,23 Together, there were fixed hours on any one day into which 

interventional radiology scheduled its cases. Each workday had insufficient time for the service 

to complete all its pending cases. Supporting this construct was the observation that the 

allocated time was never once released, other than many weeks in advance from vacations.24 

The issue then in estimating anesthesia times was to know the time up to when interventional 

radiology could schedule cases to be done reliably by the end of the workday (6:00 PM).1,2 

Whereas the uncertainty in the duration of a single case may be large, that of a series of cases 

was proportionally less.2 

Limitations 

Although our findings are likely valid elsewhere, their usefulness depends on how 

anesthesia time is allocated for radiology. The anesthesia department studied did not provide 

open access on the requested day up to the limit of what could be done safely,8,10,23 in contrast 

to the service provided in ORs1,7,9,14. At some hospitals, the expectation is that anesthesia 

providers should work late for any radiological procedure. Then, our approach for CT and MRI 

would apply, but not for interventional radiology. Nevertheless, we expect that the situation for 

the studied anesthesia department was commonplace, for two reasons. 
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First, radiology sites were not as interchangeable as ORs. When allocated time was full for 

the day and a service wanted to schedule another case, the allocated time of another service on 

the same day could not be released safely. For example, an interventional radiologist could not 

split and perform his other case inside an MRI machine. Consequently, if open access had been 

provided on the workday of choice of a service, then its new case would invariably have been 

performed in over-utilized anesthesia time rather than in the time originally allocated to another 

service that was likely not to use it. 

Second, when OR staffing (i.e., short-term OR allocations) is based on departments with 

many surgeons, variations in OR workload from week to week are driven by variations in 

numbers of patients requesting to be scheduled for surgery.25,26 In contrast, non-OR services 

(e.g., interventional radiology) were small, representing one or two physicians. Variation in 

workload was larger, reflecting vacations and meetings.24 Thus, providing open access on the 

workday of choice of the service would have resulted in substantial hours of under-utilized and 

over-utilized anesthesia time. The efficiency of use of allocated22 radiology time would have be 

substantially less than that of OR time. 

Our results apply only to elective, scheduled radiology anesthetics. For example, our 

estimates are invalid for a CT at 2 AM in a combative trauma patient. 

Analyses used data from one hospital. We studied the diversity of procedures performed 

with anesthesia in diagnostic and interventional radiology to understand the reason for our 

results. Based on those findings, we expect our results to be valid elsewhere.  

Finally, we limited this paper to what we could implement. Substantial variability in 

anesthesia times remained. For MRI, we identified one cause (see Results), but lacked the 

ability to implement obtaining the needed data. In addition, for both CT and MRI, many children 

underwent other unrelated procedures while under general anesthesia (e.g., phlebotomy or 

bone marrow biopsy). Every such patient was included, even though these procedures were 

virtually never scheduled and thus contributed to inaccuracy in estimation of anesthesia times. 
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Appendix – Percentage of Cases that are of a Specified Type and are Rare 

Each case is one of S procedure(s) {A1, A2, …, AS} with relative frequencies {p1, p2, …, pS}. 

Some procedures, C ≤ S, satisfy a dichotomous condition (e.g., diagnostic radiology). Consider 

the conditional probability of a case satisfying both the dichotomous condition and being rare, 

defined as λ≤ip , i = 1, …, C. Without loss of generality, let procedures 1, 2, …, k be rare and 

satisfying the dichotomous condition ( SCk ≤≤ ). Also, without loss of generality, assume 

. Then, the statistic Cppp ≤≤≤ L21 ,
11 ∑∑= C

i
k

i ppθ  where .1+<≤ kk pp λ  The corresponding 

nonparametric maximum likelihood estimator (NPMLE) ,ˆ
1

ˆ

1 ∑∑= C
i

k
i XXθ  where  is the 

observed number of cases of procedure , . The k  are estimated via 

 Following Yue et al.,

iX

i ∑= S
iXn

1
ˆ

.1ˆ

1

ˆ

1 ∑∑ +
<≤

k
i

k
i XnX λ 27  is asymptotically normally distributed with 

standard error 

θ̂

( ) ( )∑−
C

iX
1

ˆ1ˆ θθ . 

For testing, the diagnostic and interventional radiology data were treated as population 

information in Monte-Carlo simulations. To also perform simulations with large sample sizes, 

three years of OR data were used for the percentage of cases that were rare and physiologically 

complex.18,20, ,28 29 The NPMLE was within 1.96 standard errors of the true (simulated) mean 

other than when λn  was just 5 cases per procedure for the OR data (Table 3). The bootstrap 

standard errors were accurate to within 1%, but not the asymptotic ones. Reasons were multi-

factorial (not shown): θ ≅ 0, θ ≅ 1, k ≠ k , and non-smooth behavior near ˆ λ≅ip . In the Results, 

we report  with bootstrap standard errors. θ̂

Rarely procedures may be equivocal as to whether they satisfy the dichotomous category 

(e.g., a procedure may be performed in interventional radiology and in ORs). Even an 

unbelievably high 5% misclassification rate affected  by just 1% (Table 4). θ̂
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Table 1. Allocations of Anesthesia Time for non-Operating Room Locations 

Week  Team  Monday Tuesday Wednesday Thursday  Friday

1  A  Open PCC PCC ACC/EP × 2  Open

  B  ECT Int Rad ECT Int Rad  ECT 

2  A  Open Open PCC ACC/EP × 2  Open

  B  ECT Int Rad ECT Int Rad  ECT 

Open refers to first-requested first-scheduled time available for: (1) specialties that requested not to have 
allocated time (e.g., MRI and CT), (2) specialties with low workloads (e.g., dermatology clinic), and (3) 
specialties that have filled their allocated time for the two-week period and have another case to schedule. 
PCC refers to pediatric cardiac catheterization suite. ACC/EP × 2 refers to the adult cardiac 
catheterization and electrophysiology suite, staffed by one anesthesiologist medically directing two 
adjacent rooms with resident physicians and/or certified registered nurse anesthetists. Int Rad refers to 
neurological and non-neurological interventional radiology. 



 

Table 2. Allocations of Anesthesia Time for non-Operating Room Locations 

 
Pediatric 
cardiac 

catheterization

Diagnostic 
Radiology 

(CT and MRI)
 Interventional 

Radiology 

Number 411 359  292 

Most common CPT 18% ± 2% 31% ± 2%  63% ± 3% 

Most common 3 CPT 39% ± 2% 44% ± 3%  77% ± 2% 

Internal Herfindahl 0.08 ± 0.01 0.12 ± 0.01  0.42 ± 0.03 

Percentage of anesthetics that were for 
procedures each accounting 0.5% or less 
of anesthetics in 2004 

100% ± 0% 100% ± 0%  37% ± 3% 

Percentage of anesthetics that were for 
procedures each accounting 0.1% or less 
of anesthetics in 2004 

60% ± 7% 69% ± 5%  30% ± 4% 

CPT stands for Current Procedural Terminology. CT stands for computerized tomography. MRI stands for 
magnetic resonance imaging. 



 

Table 3 (Appendix). Monte-Carlo Simulation to Test Estimator for Percentage of Cases 

(Anesthetics) that are Rare and Satisfy the Dichotomous Condition 

λ  0.5%  0.2%  0.1%  0.08% 0.05% 0.03% 0.02% 0.01%

Diagnostic Radiology    

Cases (nλ)  127  51  25  20 13 8 5 2.5

θ  − NPMLE  θ̂  2.4%  -0.1%  4.8%  -1.2% 2.2% 1.4% 1.7% 0.8%

S.E. of NPMLE  8.8%  2.4%  5.2%  5.5% 4.6% 3.6% 2.8% 1.3%

True S.E. − 
Asymptotic S.E.  8.0%  -0.5%  2.1%  2.1% 0.5% -1.0% -2.1% -3.9%

True S.E. − 
Bootstrap S.E.  0.1%  0.0%  -0.2%  -0.1% 0.1% 0.0% 0.0% 0.0%

Interventional Radiology 

Cases (Nλ)  127  51  25  20 13 8 5 2.5

θ  − NPMLE  θ̂  -0.0%  0.0%  -4.4%  -6.5% 0.1% 2.4% 0.4% 0.7%

S.E. of NPMLE  2.8%  4.4%  4.4%  5.1% 2.8% 2.9% 2.6% 1.3%

True S.E. − 
Asymptotic S.E.  2.6%  2.6%  4.1%  4.8% 2.5% 2.7% 2.3% 1.0%

True S.E. − 
Bootstrap S.E.  0.0%  -0.1%  0.4%  0.8% 0.0% 0.1% 0.1% 0.0%

Physiologically Complex Procedures 
Cases (Nλ)  255  102  51  41 25 15 10 5

θ  − NPMLE  θ̂  -0.9%  0.5%  -0.3%  0.9% 1.1% 0.9% 1.0% 2.0%

S.E. of NPMLE  1.4%  1.1%  0.9%  0.9% 0.8% 0.7% 0.6% 0.5%

True S.E. − 
Asymptotic S.E.  1.0%  0.7%  0.5%  0.4% 0.3% 0.3% 0.1% 0.1%

True S.E. − 
Bootstrap S.E.  0.0%  0.0%  0.0%  0.0% 0.0% 0.0% 0.0% 0.0%

“NPMLE” refers to nonparametric maximum likelihood estimator. “S.E.” refers to standard error. Monte-
Carlo simulations were performed with empirical data treated as the population. At the top, the 1 yr of 
25,389 anesthetics with 2,357 procedures included 359 anesthetics of 47 procedures involving 
computerized tomography or magnetic resonance imaging. In the middle, the 25,389 anesthetics of 2,357 
procedures included 292 anesthetics of 30 procedures involving interventional radiology. At the bottom, 
the 3 yr of 50,982 operating room cases with 9,466 procedure(s) included 10,719 cases of 2,126 
procedure(s) for which at least one of the procedures was physiologically complex18,20,28,29 (i.e., 8 or more 
American Society of Anesthesiologists’ basic units). The “S.E. of NPMLE” is the standard deviation of the 
1,000 bootstrap estimates of the NPMLE. The “Asymptotic S.E.” is the mean of the 1,000 calculations 
using the formula in the Appendix. For each of the 1,000 simulations, 1,000 bootstraps were taken. The 
“bootstrap S.E.” is the mean of the 1,000 standard deviations of the bootstrap estimates.  



 

Table 4 (Appendix). Lack of Sensitivity of Results to Misclassification of the 

Dichotomous Condition 

λ  0.5%  0.2% 0.1% 0.08% 0.05% 0.02% 0.01%

Cases (nλ)  255  102 51 41 25 15 5

θ  − NPMLE  
with 1% misclassification 

θ̂  -0.1%  -0.0% -0.1% -0.1% -0.2% -0.1% -0.1%

θ  − NPMLE  
with 3% misclassification 

θ̂  -0.2%  -0.6% -0.2% -0.3% -0.3% -0.2% -0.1%

θ  − NPMLE  
with 5% misclassification 

θ̂  -0.8%  -1.3% -0.6% -0.8% -0.8% -0.3% -0.2%

NPMLE refers to nonparametric maximum likelihood estimator. First, 1000 Monte-Carlo simulations were 
performed using the large (operating room) dataset (Table 3) as the population. Then, additional 1000 
simulations were performed with a binomial random variable (with probability 1%, 3%, or 5%) generated 
for each procedure. When true, the physiological complexity of the procedure was reversed. The bias is 
negative, because more than half of procedures, specifically 79%, were not physiologically complex. 



 

Figure Legends 

1. Histogram of the natural logarithm of the actual anesthetic times for computerized 

tomography to the expert’s estimate (N = 104). The superimposed normal curve has a mean 

of −0.01 and standard deviation 0.36. The distribution was close to that of a log-normal 

(P = 0.05). 

2. Histogram of the natural logarithm of the actual anesthetic times for magnetic resonance 

imaging to the expert’s estimate (N = 155). The superimposed normal curve has a mean 

of -0.02 and standard deviation 0.28. The distribution was close to that of a log-normal 

(P = 0.69). 

3. Histogram of the differences in time between the actual versus scheduled ends of the day for 

interventional radiology (N = 57 days). The superimposed normal curve has a mean of 0.75 hr 

and standard deviation 1.45 hr. The distribution was close to normal (P = 0.42). 

 


