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ABSTRACT

There are several indices for measuring the similarity of two populations, including the ratio

of the number of shared species to the number of distinct species (Jaccard’s index) and

the conditional probability of observing a shared species (Smith et al., (1)). However, these

indices only take into account the number of species and species proportions of shared species.

In this paper, we propose a new similarity index which includes the species proportions of

both the shared and non-shared species in each population, and also propose a Nonparametric

Maximum Likelihood Estimator (NPMLE) for this index. Bootstrap and delta methods are

used to evaluate the standard errors of the NPMLE. Based on a loss function, we also

compare a class of nonparametric estimators for the proposed index in various situations.

1. INTRODUCTION

The comparison, especially the similarity, of two populations or the evaluation of a pop-

ulation’s change over time has been an widely studied topic in areas such as ecology, biology,

and biogeography. For example, Abele (2) studies the similarity of decapod crustaceans

1This research was supported in part by a grant from National Science Council in Taiwan, NSC 90-2118-

M-004-005.
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(crabs) living in coral communities at two locations in Panama. Chao (3, 4) estimates the

number of shared species of wild bird in two heavily polluted estuaries of northern Taiwan.

In addition to these applications, there is an increasing demand in the design of good search

engines, to determine how closely two Internet web sites or home pages are related.

Among all similarity indices, Jaccard’s index is perhaps the most frequently used index

to compare two communities. It is defined as the ratio of the number of shared species to

the number of distinct species in two communities, i.e. Jaccard’s index can be expressed as

θJ = s0/(s1 + s2 − s0), where si is the number of species in community i, i = 1, 2 and s0

is the number of shared species for the two communities. Although the Jaccard index does

consider the number of shared species and is easy to compute, the species proportions are

not used and the similarity of two communities is likely to be under-estimated in real life

examples (such as the two examples mentioned above).

Smith et al. (1) proposed a new species overlap measure, defined as the probability that,

given a randomly selected species is present in at least one of the two communities, it is

present in both communities. This index, called the community Jaccard index by Smith et

al., can be defined as θn (Yue et al., (5)) where

θn =
(
∑s0

i=1 pi)(
∑s0

i=1 qi)∑s0
i=1 pi +

∑s0
i=1 qi − (

∑s0
i=1 pi)(

∑s0
i=1 qi)

,

and where pi and qi are the species proportions of species i in communities 1 and 2, and,

without loss of generality, species 1 to s0 are the shared species in both communities. This

index takes into account the number of shared species and their proportions and has an

appealing probabilistic interpretation. However, for this index the species proportions of all

species are not considered fully in assessing the similarity of two communities and similar to

the Jaccard index, the degree of similarity could be mis-judged. For example, let s1 = s2 = 3,

s0 = 2, p1 = .01 = q2, and p2 = .98 = q1. Since the dominant species in one population have

low abundance in the other population, intuitively the similarity should not be large. But θn

tends to give large values (for example, θn ≈ .96 in this example) when, in each community,
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the probability of discovering shared species is large and the shared species proportions differ

considerably.

In this paper, we propose a new similarity index which is a function of species proportions

from both the shared and non-shared species. In addition, the shared species proportions in

each community are compared one-to-one, and as a result, more weight is placed on those

shared species which have similar species proportions in both communities.

2. THEORETICAL RESULTS

A natural and intuitive similarity index to consider would be
∑s0

i=1 piqi, which represents

the probability of observing the same species in each population given that one observation is

selected randomly from each population. (For a detailed discussion of measures of similarity

and dissimilarity, see Gower, (6).) The range of this index is between 0 and 1. However,

this index does not give the value 1 to cases where two populations have an identical species

structure. For example, if s1 = s2 = s0 and pi = qi = 1/s0 for i = 1, . . . , s0, then the

index is 1/s0. So, we divide
∑s0

i=1 piqi by a normalizing constant. By noting the inequality

x2 + y2 − xy ≥ xy, we define the new similarity index to be

θ =

∑s0
i=1 piqi∑s1

i=1 p
2
i +

∑s2
i=1 q

2
i −

∑s0
i=1 piqi

=

∑
i piqi∑

i(pi − qi)2 +
∑

i piqi
. (2.1)

Then θ = 1 if s1 = s2 = s0 and pi = qi = 1/s0 for i = 1, . . . , s0, and θ is close to 0 if pi and

qi are very different, or the probability of observing a shared species is small in at least one

of the two communities (e.g.
∑s0

i=1 pi or
∑s0

i=1 qi is small).

When the species proportions of both populations are uniformly distributed, the Jaccard

index, the community Jaccard index, and the proposed index have identical values. In other

words, if pi = 1/s1 and qi = 1/s2, then

θ =

∑s0
i=1

1

s1

1

s2∑s1
i=1(

1

s1
)2 +

∑s2
i=1(

1

s2
)2 −∑s0

i=1
1

s1

1

s2

=
s0

s1 + s2 − s0
= θJ
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and

θn =

(∑s0
i=1

1

s1

) (∑s0
i=1

1

s2

)
∑s0

i=1 1/s1 +
∑s0

i=1 1/s2 − (
∑s0

i=1
1

s1
)(
∑s0

i=1
1

s2
)
=

s0
s1 + s2 − s0

= θJ .

Note that the proposed index is closely related to Morisita’s index (Krebs, (7)), defined

as

θMH =
2
∑s0

i=1 piqi∑s1
i=1 p

2
i +

∑s2
i=1 q

2
i

.

But these two indices have different upper bounds for the summations in the denominator

and have a slightly different meaning. For example, let pi = 1/s1 for i = 1, 2, . . . , s1 and

qj = 1/s2 for j = 1, 2, . . . , s2. Also, without loss of generality, let s1 ≥ s2. Then

θ =
s2
s1

≤ θMH =
2× s2/s1

1 + (s2/s1)2
.

Suppose that s1 = 2s2, i.e., the number of species in population 2 is half of that in population

1. In this case, θ = 0.5 and θMH = 0.8. Because half of the species in population 1 cannot

be found in population 2, a similarity value of θ = 0.5 seems more appropriate.

Let a =
∑

i p
2

i , b =
∑

i q
2

i , and d =
∑

i piqi. Then the proposed index can be written as

the form:

θ =
d

a + b− d
. (2.2)

As mentioned in Engen (8, 9), since θ is not a linear function of pi’s and qj’s, unbiased

estimators likely do not exist. (Or if they exist, their forms are likely to be very complicated.)

One possible solution is to plug in the maximum likelihood estimators for the pi’s and qj’s,

i.e.,

â =
s1∑
i=1

(
xi
n1

)2
, b̂ =

s2∑
i=1

(
yi
n2

)2
, and d̂ =

s0∑
i=1

(
xi
n1

)(
yi
n2

)
, (2.3)

where xi and yi are the numbers of occurrences for the ith species from n1 and n2 observations

taken in communities 1 and 2, respectively. Hence θ̂ = d̂/(â + b̂ − d̂), where θ̂, â, b̂, and d̂

can be referred to as Nonparametric Maximum Likelihood Estimators (NPMLE).
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It is obvious that E(â) → a and E(b̂) → b, as min{n1, n2} → ∞, since

E(â) = E

[
s1∑
i=1

xi(xi − 1)

n21

]
+ E

[
s1∑
i=1

xi
n21

]

=
n1 − 1

n1

s1∑
i=1

p2i +
1

n1
=

n1 − 1

n1
a+

1

n1
,

and E(b̂) = (n2−1)b/n2+1/n2. We can also show, using a similar argument, that â → a and

b̂ → b in probability, given that min{n1, n2} → ∞. Similarly, we can show that E(d̂) → d

and d̂ → d in probability as min{n1, n2} → ∞. Thus, we have that θ̂ → θ in probability and

so E(θ̂) → θ as min{n1, n2} → ∞.

Applying Cramer’s delta theorem, it is obvious that θ̂ is asymptotically normally distrib-

uted. The asymptotic variance can be derived via the delta method, and approximately

V ar(θ̂) ≈ d̂2

(â + b̂− d̂)4

[
V ar(â) + V ar(b̂)

]
+

(â+ b̂)2

(â + b̂− d̂)4
V ar(d̂)

−2
(â + b̂)d̂

(â+ b̂− d̂)4

[
Cov(â, d̂) + Cov(b̂, d̂)

]
, (2.4)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ar(â) ≈ 4

n1
[
∑s1

i=1 p
3

i − a2]

V ar(b̂) ≈ 4

n2
[
∑s1

i=1 q
3

i − b2]

V ar(d̂) ≈ 1

n1

∑
i piq

2

i +
1

n2

∑
i p

2

i qi − ( 1

n1
+ 1

n2
)d2

Cov(â, d̂) ≈ 2

n1
[
∑

i p
2

i qi − ad]

Cov(b̂, d̂) ≈ 2

n2
[
∑

i piq
2

i − bd] .

3. EXAMPLES AND SIMULATION

In this section, we use two examples and simulation to evaluate the performance of the

NPMLE. The first example involves decapod crustacean (crab) communities at two locations

in Panama (data shown in Smith et al., (1)), studied by Abele (2). The second example is

based on wild bird communities at two locations of north-western Taiwan (data shown in

Yue et al., (5)), studied by Chao (3). The probabilities of observing shared species in each

population (i.e.,
∑s0

i=1 pi and
∑s0

i=1 qi), Simpson’s index (i.e.,
∑

p2i and
∑

q2i ), and Shannon’s
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index (entropy, defines as −∑ pi log(pi) and −∑ qi log(qi)) for each community are listed on

Table 1.1 and the species proportions (in squared root scale and descending order) of the

two communities are plotted in Figures 1.1 and 1.2. We can use this information to judge

how similar the two communities are. For the crab data, both the probabilities of shared

species and the Simpson indices indicate that these two communities are very different.

(The Shannon indices show some differences.) This can also be seen from Figure 1.1, where

dominant species in one community often have low abundance in the other community. We

would expect that the value of an appropriate similarity index for these two communities

would not be too large. On the other hand, all three indices for the two communities and

the species proportions graph (Figure 1.2) in the case of the wild bird data are very similar,

and the value of an appropriate similarity index should be fairly large.

However, the Jaccard index and the index proposed by Smith et al. do not coincide with

the information in Table 1.1, Figure 1.1, and Figure 1.2. The estimates of three indices and

their standard errors (calculated via bootstrapping) are given in Table 1.2. The Jaccard

index gives a smaller (instead of large) similarity value in the wild bird case, while the

Jaccard community index of Smith et al. gives a larger (instead of small) similarity value in

the crab case.

As a check of the variance computed via bootstrapping of the NPMLE for θ, we also

compute the approximate variances (via delta method) of the new index from (2.4) and

compare them to those from bootstrapping. The standard errors computed via the delta

method for the two examples are .0234 and .0030 for the crab and wild bird cases, respectively,

which are very close to those computed via bootstrapping (.0233 and .0029).

For the simulation study, we consider two types of species proportion distribution: bal-

anced and unbalanced. In a balanced population, every species is equally likely to be ob-

served, while in an unbalanced population some species are dominant. In particular, for the

latter we assume that the species proportions follow a geometric distribution, i.e. pi ∝ αi for
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s1 ≥ i ≥ 1, and similarly for qj. Computations and simulations in this report were based on a

Pentium II— IBM compatible PC. The simulations were based on S-Plus statistical software,

version 2000.

Figure 1.1 Crab Data:
√
Species Prop. Figure 1.2 Bird Data:

√
Species Prop.

Table 1.1 Species structures of two examples

Decapod crustaceans Wild birds

Shared Simpson Shannon Shared Simpson Shannon

prob. index index prob. index index

community 1 .6784 .0693 3.0948 .9664 .0910 3.1917

community 2 .9308 .1518 2.3943 .9917 .1329 2.8058
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Table 1.2 Species Overlap Estimates

Decapod crustaceans Wild birds

Jaccard Smith New Jaccard Smith New

Index (θJ) (θn) (θ) (θJ) (θn) (θ)

Estimate .419 .646 .359 .603 .954 .840

s.e. .028 .015 .023 .016 .008 .003

We model three different types of species overlap between the two populations:

Type 1: The shared species are dominant in both populations;

Type 2: The shared species have low abundance in both populations;

Type 3: The shared species are dominant in one population, but have low abundance in

the other.

In addition to comparing the accuracy of the estimates to the real species overlap, we

also use SD (standard deviation) to measure the precision of the estimates. We define

SD =

√√√√∑n
i=1(θ̂i − ¯̂

θi)2

n− 1

where θ̂i is the estimate of species overlap in the ith simulation run, and
¯̂
θi is the average

of the estimates in n simulations. The results shown in this section are all based on 1,000

simulation runs.

Table 2 shows the simulation results for balanced and unbalanced cases. We assume that

both populations have 20 species, and 5 or 15 species are in common, respectively. The true

values of θ and the values of the Jaccard index and the index proposed by Smith et al. are also

listed in Table 2 for reference. In all cases, the difference between θ̂ and θ is within 2 times

the standard deviation when the sample size reaches 300, and the differences between θ̂ and θ

are smaller as the sample size increases. In other words, there are good agreements between

the NPMLE’s and population values in both the balanced and unbalanced population cases,
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provided that there are sufficiently many observations. Even in the type 3 case, where the

species structures of the shared species differ a lot, the NPMLE still performs fairly well.

Also, the standard deviation of θ̂ decreases monotonically as the sample size increases.

Table 2 Estimates (θ̂) for varying sample sizes, the number of shared species, and species

structures, given that s1 = s2 = 20 and α = 0.8. Values in parentheses represent SD.

s0 = 5 (θJ = .1429)

n Balanced Type 1 Type 2 Type 3

100 .1178(.0345) .7082(.0639) .000489(.000639) .0150(.0112)

200 .1272(.0263) .7540(.0425) .000535(.000430) .0158(.0076)

300 .1333(.0231) .7704(.0333) .000551(.000345) .0152(.0065)

400 .1357(.0191) .7773(.0284) .000544(.000290) .0157(.0055)

500 .1369(.0173) .7841(.0250) .000551(.000257) .0156(.0048)

1000 .1402(.0128) .7954(.0178) .000560(.000172) .0160(.0036)

θ .1429 .8062 .000553 .0159

θn .1429 .5153 .0121 .0237

s0 = 15 (θJ = .6)

n Balanced Type 1 Type 2 Type 3

100 .4663(.0715) .8666(.0568) .0531(.0168) .1805(.0446)

200 .5208(.0511) .9264(.0323) .0551(.0127) .1879(.0324)

300 .5460(.0443) .9488(.0222) .0559(.0102) .1922(.0278)

400 .5580(.0373) .9595(.0184) .0558(.0088) .1924(.0242)

500 .5662(.0348) .9675(.0139) .0558(.0080) .1925(.0221)

1000 .5837(.0245) .9831(.0071) .0562(.0056) .1937(.0155)

θ .6 .9977 .0567 .1883

θn .6 .9533 .1904 .3173
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4. A CLASS OF NONPARAMETRIC ESTIMATORS

The NPMLE of the similarity index defined in (2.1) is a result of directly plugging in

the MLE’s of a, b, and d in (2.3). Like most MLE’s, â and b̂ are biased (and yet they are

consistent). Although we have shown that the NPMLE θ̂ is consistent, it would be interesting

to see if it would reduce the bias or the variance if we plugged in unbiased estimators of a and

b, i.e., ã =
∑

xi(xi−1)/n1(n1−1) and b̃ =
∑

yi(yi−1)/n2(n2−1), (see, for example, Engen,

(8)). In this section, we use simulation to study the performance of plugging in different

estimators of a and b. In particular, we consider

âc =
∑ xi(xi − c)

n1(n1 − c)
and b̂c =

∑ yi(yi − c)

n2(n2 − c)
, (4.1)

for c = 0 and 1, i.e. NPMLE and “unbiased” estimators, and define

θ̂c =
d̂c

âc + b̂c − d̂c
. (4.2)

Also, in order to evaluate the performance of these estimators, we consider the loss function

L(θ̂c, θ) = V ar(θ̂c) + E(θ̂c − θ)2,

which includes both the variance and (bias)2 for the estimator θ̂c. The variance and (bias)2

of each estimator are defined as

V ar(θ̂) =
1

n− 1

n∑
i=1

(θ̂i − ¯̂
θ)2,

and

E(θ̂i − θ)2 =
1

n

n∑
i=1

(θ̂i − θ)2,

where θ̂i is the estimate of species overlap in the ith simulation run, and
¯̂
θi is the average of

the estimates in n simulations.

Similar to the previous section, we consider three types of species structure for both

the balanced and unbalanced situations. The number of species in each population is 20,

and the number of shared species is 5 or 15. Table 3 shows the simulation results, with
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each number representing the result of 1,000 replications. Note that in our simulation, the

numbers of observations taken from each population are 200, 300, 400, 500, 600, 800, 1000,

1500, and 2000. Since the simulation results for different sample sizes show identical patterns,

in Table 3, we only use the case where 1000 observations are taken from each population as

a demonstration.

Briefly, the results suggest using θ̂0 if the shared species have low abundance in either of

the populations. If there is no information about the species abundance, we suggest using

θ̂1 since its loss is generally smaller than or similar to that of θ̂0.

Table 3 Simulated loss ratio of θ̂1 to θ̂0

Balanced Type 1 Type 2 Type 3

s0 = 5 1.0064 0.5231 1.0525 1.0532

s0 = 15 0.5186 0.2124 1.0677 1.1681

It happens that the simulated loss of θ̂1 comes mainly from the variance, since the bias

is almost negligible. On the other hand, the bias of θ̂0 is not always negligible (such as in

Type 1 and balanced cases) but θ̂0 has a smaller variance in general.

5. CONCLUSION

In this paper, we proposed a new overlap index for measuring the similarity of two

populations. It is founded on a probabilistic interpretation, scaled to represent a measure

between 0 and 1. Unlike previously described measures, this index takes fuller account of all

the species proportion information. However, when the populations are uniform, it provides

a measure of overlap identical to the measures of Jaccard or Smith et al.

The NPMLE of the proposed index makes the proposed index even more appealing, since

the NPMLE has theoretically and empirically sound properties and is easy to compute. Theo-

retically, it has good asymptotic properties, including consistency and asymptotic normality.

In addition, in our examples, we found that the standard errors of the NPMLE computed via
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formula in (2.4) and bootstrapping are very close, and in practice we can use either method.

The NPMLE has good accuracy in estimating the true overlap as well. From our simula-

tions, we found that the NPMLE of the proposed index also performs well, whether the

distribution is balanced or unbalanced. In particular, in the Type 2 unbalanced case where

the shared species have low abundance in both populations, the NPMLE is well within the

error range when the sample size is moderately large, say 300.

An open question which we are currently exploring is the definition and estimation of

overlap when several populations are at hand. We believe that the measure introduced in this

paper can be extended in a natural way to the consideration of more than two populations,

and we are currently working on developing those ideas.
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