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SUMMARY

For two communities, species overlap has been defined by Smith et al. (1996)

as the probability that a randomly selected species is present in both commu-

nities, given that it is present in at least one community. Species overlap can

thus be used to describe the similarity of two communities. In contrast to the

parametric estimator of Smith et al., we propose a Nonparametric Maximum

Likelihood Estimator (NPMLE). We prove that the NPMLE is consistent and

asymptotically normally distributed, and show that computation of the NPMLE

and its standard error is straightforward. We also compare the NPMLE and

the estimator of Smith et al. for a variety of situations.

Key Words: Bootstrap; Jaccard’s index; Maximum likelihood estimator; Simi-

larity index; Species diversity.
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1. Introduction

In ecology, the comparison of two or more populations and the evaluation of a

population’s change over time are often of interest. The number of species and

proportions of species, and functions of these, are often used to measure species

diversity. Shannon’s index (or the Shannon-Wiener index) and Simpson’s index

are two well-known measures used to describe community structure. The com-

parisons of populations are based on the indices calculated separately for each

population.

Jaccard’s index is another way to compare populations, specifically for de-

scribing their similarity. It is defined as the ratio of the number of common

species to the number of distinct species in two populations, i.e. Jaccard’s

index is given by θJ = c/(s1 + s2 − c), where si is the number of species in pop-

ulation i, i = 1, 2 and c is the number of common (i.e., “shared”) species. The

Jaccard index does take the species common to both populations into account

and is easy to compute. However, all species have equal weight and species

proportion information is not used in the Jaccard index. Because all species are

equally weighted, it is possible that the similarity of two communities would be

underestimated by the Jaccard index.

Smith et al. (1996) proposed a new species overlap measure, defined as

the probability that, given a randomly selected species is present in at least

one of the two communities, it is present in both communities. This measure

takes into account the number of species and puts larger weight on those species

which appear more frequently in the sample. When Smith et al. estimated this

measure for data of Abele (1979), their estimate of community species overlap

was 50% larger than Jaccard’s index.
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The species overlap measure proposed by Smith et al. seems more appro-

priate than Jaccard’s measure of species overlap, since more information is used

in the new measure. Moreover, it has an interpretation that is intuitive, and

expressible as a probability. In this paper, we propose a Nonparametric Maxi-

mum Likelihood Estimator (NPMLE) of species overlap, given that the species

proportions are fixed. The NPMLE is easy to compute (similar to the Jaccard

index) and its standard error can be computed via bootstrapping or via an

asymptotic expression.

We first introduce the NPMLE in Section 2, followed by some theoretical

results in Section 3. We use two examples to compare the estimate of Jaccard’s

index, the estimate proposed by Smith et al., and the NPMLE in Section 4.

Further comparisons among these estimates, based on computer simulation, are

in Section 5. In Section 6 we make some concluding remarks, paying special

attention to the context in which our evaluations and comparisons are made.

2. Notation

Smith et al. (1996) first proposed describing the similarity of two communities

using the probability that a randomly selected species is present in both com-

munities, given that it is present in at least one community. Their approach is

based on a parametric assumption, which they called the delta-beta-binomial

model. Let Ni1 and Ni2 be the numbers of individuals of species i in the sample

from population 1 and 2, let B(·, ·) be the beta function, and let α and β be

parameters. Also, let p be the probability of observing species that are in popu-

lation 1 but not in population 2, and let q be the probability of observing species

that are in population 2 but not in population 1. Smith et al. assume that the
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probability of observing j individuals of species i in population 1, conditional

on Ni1 + Ni2 = ni, is

d(j; ni, α, β, p, q) = δ(j)q + δ(ni − j)p + (1 − p − q)b(j; ni, α, β), (1)

where

δ(j) =















1 if j = 0

0 if j 6= 0

and

b(j; ni, α, β) =









ni

j









B(j + α, ni − j + β)

B(α, β)
. (2)

Based on this model, 1 − p − q is the corresponding overlap index. An esti-

mate of the species overlap can be obtained by numerical maximum likelihood

estimation, and Smith et al. approximate its standard error by inverting the

observed information matrix.

To introduce an NPMLE of species overlap, consider an experiment where

a species is selected at random. For this experiment, define two events: A =

{Species is observed in population 1} and B = {Species is observed in population

2}. Then A ∩ B is the event that the species selected is in both populations

1 and 2. Let θn denote the probability that a randomly selected species is

present in both populations, given that it is present in at least one population.

Then using the notation defined above, θn = P (A ∩ B)/P (A ∪ B). We will

not evaluate P (A ∩ B) and P (A ∪ B) directly. Instead, since P (A) + P (B) =

P (A ∩ B) + P (A ∪ B), we can express θn as

θn =
P (A ∩ B)

P (A ∪ B)
=

a b

a + b − a b
, (3)

where a = P (A ∩ B|A) and b = P (A ∩ B|B), i.e. a and b are the probabilities

of observing shared species in populations 1 and 2, respectively. Note that,
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similar to Smith et al. θn is defined conditionally on A ∪ B. In other words,

we do not explicitly define a mechanism for sampling species directly; given

any such mechanism that follows the usual rules of probability, our definition is

logically consistent.

When any species in population 1 is equally likely to be selected, i.e. pop-

ulation 1 is uniform, then P (A ∩ B|A) = c/s1. Similarly, P (A ∩ B|B) = c/s2

under the uniform distribution assumption for population 2. Then it is straight-

forward to show that θn = θJ , and thus the Jaccard index can be treated as a

special case of θn if sampling of species is uniform within each population. How-

ever, as pointed out by Smith et al., the Jaccard index is likely to underestimate

the true percentage of overlap since the species proportions are not included in

the overlap measure. In order to reduce the underbias of the Jaccard index,

in this study, we assume that the probability of observing a certain species in

a population is equal to its species proportion. Then a is the sum of species

proportions for all shared species in population 1, and b is the sum of species

proportions for all shared species in population 2.

To gain some intuition for our model, note that, based on our definition,

the probability that a randomly sampled species is from population 1 is given

by P (A)/P (A ∪ B) = b/(a + b − ab) if a, b 6= 0. Then, for example, suppose

that a = 1, i.e. all species in population 1 are shared species, and so population

1 can be treated as a sub-population of population 2. Then P (A)/P (A ∪ B) =

P (A ∩ B)/P (B) = b and P (B)/P (A ∪ B) = 1. These results make intuitive

sense under the assumption a = 1. Likewise, if a = 0, i.e. there are no shared

species and b = 0 as well, then A ∩ B = ∅ and P (A ∩ B)/P (A ∪ B) = 0.

We can use Maximum Likelihood to find estimates of a and b, and then

find the MLE of θn, i.e. θ̂n = âb̂/(â + b̂ − âb̂) where â and b̂ are the MLE’s
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of a and b, respectively. For example, suppose that 6 of the observed species,

which account for 20 of 100 individuals in the sample of population 1, are also

observed in the sample of population 2. Then â equals 20/100 = 0.20. The

standard errors of â, b̂, and θ̂n can be obtained from a bootstrap simulation.

The computation of the NPMLE will be discussed in detail in Section 4. First,

we show some theoretical results in the following section.

3. Theoretical Results

Let pi be the proportion of species i (i = 1, . . . , s1) in population 1, and qj the

proportion of species j (j = 1, . . . , s2) in population 2. We assume that the pi’s

and qj’s are fixed. Let ξX and ξY be the observed species counts for populations

1 and 2, respectively. Finally, let n1 and n2 be the numbers of observations from

population 1 and 2, and let xi and yi be the numbers of occurrences of the ith

species in populations 1 and 2, respectively.

We now proceed to introduce an NPMLE of a. Note that a can be expressed

as a =
∑

i piI{i ∈ C} where C is the index set of the shared species. A natural

choice of the estimate for pi is p̂i = xi/n1, and a natural estimate of I{i ∈ C}

is I{xi > 0}I{yi > 0}, i.e. the ith species is in both populations if we observe

it from the sample at least once in each population. Then the NPMLE of a can

be expressed as

â =
∑

i

xi/n1 I{xi > 0} I{yi > 0} =
∑

i

xi/n1 · I{yi > 0}.

The last equality holds because xi = 0 implies p̂i = 0. Finally, without loss of

generality we assume that species 1 to c are species common to both populations.

Then a =
∑c

i=1
pi, â =

∑c
i=1

xi/n1 · I{yi > 0}, b =
∑c

i=1
qi, and b̂ =

∑c
i=1

yi/n2 ·

I{xi > 0}.
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Intuitively, â is close to a when the number of observations taken from

population 2 is sufficiently large. In fact,

E(â) = E[E(
c

∑

i=1

xi

n1

· I{yi > 0}|ξX)|ξY ] =
∑

1≤i≤c

pi(1 − (1 − qi)
n2)

→
∑

1≤i≤c

pi = a, as n2 → ∞.

We can show a similar property for b̂ =
∑c

i=1
yi/n2 · I{xi > 0}.

It is straightforward to show that the variances of â and b̂ are

V ar(â) =
c

∑

i=1

p2

i [1 − (1 − qi)
n2 ](1 − qi)

n2 +
c

∑

i=1

pi(1 − pi)

n1

[1 − (1 − qi)
n2 ]

+2
∑

1≤i<j≤c

pipj[(1 − qi − qj)
n2 − (1 − qi)

n2(1 − qj)
n2]

−2
∑

1≤i<j≤c

pipj

n1

[1 − (1 − qi)
n2 − (1 − qj)

n2 + (1 − qi − qj)
n2] (4)

and

V ar(b̂) =
c

∑

i=1

q2

i [1 − (1 − pi)
n1](1 − pi)

n1 +
c

∑

i=1

qi(1 − qi)

n2

[1 − (1 − pi)
n1]

+2
∑

1≤i<j≤c

qiqj[(1 − pi − pj)
n1 − (1 − pi)

n1(1 − pj)
n1 ]

−2
∑

1≤i<j≤c

qiqj

n2

[1 − (1 − pi)
n1 − (1 − pj)

n1 + (1 − pi − pj)
n1 ] (5)

respectively, which can be computed via

V ar(X) = V ar[E(X | Y )] + E[V ar(X | Y )].

Therefore, V ar(â) → a(1 − a)/n1 as n2 → ∞ and V ar(b̂) → b(1 − b)/n2 as

n1 → ∞.

Similarly, the covariance of â and b̂ is given by

Cov(â, b̂) =
c

∑

i=1

piqi[(1 − qi)
n2 + (1 − pi)

n1 − (1 − pi)
n1(1 − qi)

n2 ]

+
∑

1≤i6=j≤c

piqj[pj(1 − pj)
n1−1 + qi(1 − qi)

n2−1

− (1 − pj)
n1−1(1 − qi)

n2−1(pj + qi − pjqi)] (6)
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and Cov(â, b̂) → 0 as min{n1, n2} → ∞.

From direct calculation, we can show that the moment generating function

of n1â =
∑c

i=1
xiI{yi > 0} satisfies

E[e
∑

c

i=1
xitI{y1 > 0, . . . , yc > 0}] ≤ E[e

∑

c

i=1
xiI{yi>0}t] ≤ E[e

∑

c

i=1
xit].

Note that the left term in the preceding inequality

E[e
∑

c

i=1
xitI{y1 > 0, . . . , yc > 0}] ≥ [(1 − a) + aet]n1[1 −

c
∑

i=1

(1 − qi)
n2]

→
[

(1 − a) + aet
]n1

as n2 → ∞, and the right term also converges to the same limit. In other words,

n1â converges to a binomial random variable if n2 is sufficiently large. Thus,

â converges to a in probability and â is asymptotically normally distributed if

min{n1, n2} → ∞. b̂ behaves similarly, as does the joint distribution of (â, b̂).

Since (â, b̂) are asymptotically jointly normally distributed, applying Cramer’s

delta theorem, θ̂n is also asymptotically normally distributed, and θ̂n converges

to θn in probability.

4. Examples

In this section, two examples are used to compare the performance of different

estimates of species overlap: one example was originally introduced in Abele

(1979), and the other is from Chao (1995). Let θ̂J be the estimate of the

Jaccard index, let θ̂b the estimate of θn proposed by Smith et al., and let θ̂n the

NPMLE of θn.

Example 1. Abele describes the species abundance distribution of decapod

crustacean (crab) communities at two locations in Panama (data shown in

Smith et al.). Table 1 shows the estimate of Jaccard’s index, the estimate
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of Smith et al., and the NPMLE. Note that the estimate of Jaccard’s index

is usually calculated by plugging in the numbers of observed species, yielding

θ̂J = 31/74 ≈ 0.419. The tabulated estimate of the species overlap proposed by

Smith et al. is from their paper in 1996. The standard errors of the estimate for

Jaccard’s index, the estimator of Smith et al., and the NPMLE are from 1,000

bootstrap simulations. (Note that Smith et al. calculate the standard error

of their estimator to be .100. This results from a different sampling model, as

discussed in Section 6.)

As mentioned previously, the estimate by Smith et al. is about 50% larger

than that of Jaccard’s index. The NPMLE is also about 50% larger, but is

slightly smaller than (and within 2 standard errors of) that of Smith et al.

Also, the standard error of the NPMLE is the smallest among these estimates,

and is about one-half of that for Jaccard’s index. The standard error of the

estimate of Smith et al. is the largest.

The variances of â and b̂ can be estimated from (4) and (5), yielding

2.3015 × 10−4 and 3.3892 × 10−5, respectively. Similarly, the covariance of â

and b̂ estimated from (6) equals 7.5614 × 10−6. Applying the delta method,

the standard error of θ̂n is approximately 0.01426, which is very close to the

standard error obtained via bootstrapping (0.0150).

Table 1 Species Overlap Estimates

Decapod crustaceans Wild birds

θ̂J θ̂b θ̂n θ̂J θ̂b θ̂n

Estimate 0.419 0.668 0.646 0.603 0.848 0.954

s.e. 0.028 0.046 0.015 0.016 0.024 0.008

Example 2. Chao (1995) and Chao et al. (2000) describe the species abun-
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dance of wild bird communities at two heavily polluted river estuaries (the Ke-

Yar River and the Chung-Kang River) of north-western Taiwan. Bird counts

were collected by the Wild Bird Society of Hsin-Chu on a weekly basis for one

year. Species overlap is of interest here because the two estuaries are envi-

ronmentally similar. Table 2 shows the numbers of individuals observed for

different species (with ranks representing different species) of birds in these two

estuaries. The standard errors of all three estimates are from 1,000 bootstrap

simulations. These and the estimates θ̂J , θ̂n, and θ̂b are listed in Table 1.

The NPMLE is 58% larger than that of Jaccard’s index, and the estimate by

Smith et al. is about 40% larger, about 12% smaller than the NPMLE. Similar

to the previous example, the standard error of the NPMLE is the smallest and

is one-half the size of the estimate of Jaccard’s index. The standard error of

the estimator of Smith et al. again is the largest, about three times that for the

NPMLE, similar to the result in the previous example. However, based on the

standard errors of θ̂n and θ̂b, and since θ̂n is asymptotically unbiased, θ̂b appears

to be significantly underbiased.

From (4), (5), and (6), we have V ar(â)
.
= 7.4943×10−5, V ar(b̂)

.
= 3.0090×

10−7, and Cov(â, b̂)
.
= 2.0103 × 10−7. The standard error of θ̂n via the delta

method thus equals 0.00855 and again is very close to that obtained via boot-

strapping (0.0083).

5. Simulation

In this section, we use simulation to compare the performance of an estimate of

Jaccard’s index, the estimate proposed by Smith et al., and the NPMLE. Two

types of species proportion distribution are considered: balanced and unbal-
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anced. In a balanced population, every species is equally likely to be observed,

while in an unbalanced population some species are dominant. In particular, we

assume that the species proportions follow a geometric distribution, i.e. pi ∝ αi

for 1 ≤ i ≤ s1, and similarly for qj. Computations and simulations in this report

were based on a Pentium II– IBM compatible PC. The simulations were based

on S-Plus statistical software, version 4.5.

We model three different types of species overlap between the two popula-

tions:

Type 1: The shared species are dominant in both populations;

Type 2: The shared species have low abundance in both populations;

Type 3: The shared species are dominant in one population, but have low

abundance in the other.

When every species has the same species proportion, i.e. the balanced

population case, these 3 types of overlap are the same. But in the unbalanced

population case, if all other conditions are the same θn has its maximum value

in the Type 1 case since common species are dominant in both populations.

Note that, because the true population structure and type of overlap is known

for these simulations, it is possible to calculate the true values of θJ and θn,

which we present in Table 3.

In addition to comparing the accuracy of the estimates to the real species

overlap, we also use SD (standard deviation) to measure the precision of the

estimates. We define

SD =

√

√

√

√

∑n
i=1

(θ̂i −
¯̂
θi)2

n − 1

where θ̂i is the estimate of species overlap in the ith simulation run, and
¯̂
θi is
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the average of the estimates in n simulations. The results shown in this section

are all based on 500 simulation runs.

Table 3(a) shows the simulation results for the balanced population cases

(thus θJ = θn), where both populations have 20 species, and 5 and 15 species

are in common, respectively. In both cases, θ̂J appears to have the fastest

convergence rate and is quite accurate even when the number of observations

is small. The NPMLE appears to have the slowest convergence rate but is

generally good compared to θ̂b since the overestimation by θ̂b is large when

n = 50. When the number of observations is large, all three estimates perform

well.

Tables 3(b) to 3(d) show the simulation results for unbalanced population

cases with s1 = s2 = 20, and when the species proportions in each population are

geometric with α = 0.8. Table 3(b) shows the results of the Type 1 case, where

the common species are dominant. The NPMLE and the estimate of Jaccard’s

index are both very accurate when the number of observations is large. The

SD’s of the NPMLE decrease in proportion to the inverse of the square root of

the sample size, while the SD’s of the estimate of Jaccard’s index decrease much

faster. The estimates of Smith et al. are significantly different from θ̂n and θ̂J

even when the number of observations is 1000, and θ̂b is actually closer to θJ ,

instead of θn. The SD’s of θ̂b decrease faster than the inverse of the square root

of the sample size when the number of common species is 5, but do not decrease

monotonically as the sample size increases when the number of species is 15.

Similar patterns appear in the Type 2 and Type 3 cases as well. The

NPMLE is the most accurate estimate of θn in both Type 2 (Table 3(c)) and

Type 3 (Table 3(d)) cases. But unlike the Type 1 case where the species overlap

is the largest, it takes more observations to have the NPMLE close to θn. The

12



SD’s of the NPMLE are also the smallest among these three estimates. The

estimate of Smith et al. is closer to θJ in the Type 2 case, but does not seem to

converge to θn or θJ in the Type 3 case. Note that the SD’s of θ̂b in the Type

3 cases do not decrease monotonically as the sample size increases, suggesting

that θb may be slow to converge, if it converges at all.

6. Conclusion

Our paper deals with the notion of species overlap as defined by Smith et al.

We find this definition appealing: it makes natural reference to a probabilistic

interpretation that is intuitive and straightforward. In this paper we have com-

pared a nonparametric maximum likelihood estimate of this quantity with the

estimator of Smith et al. It is important to delineate the context in which this

comparison has taken place.

We have focused on models for which the species proportions are fixed,

similar to the notion of “fixed” populations defined by Engen (1978). This is

different from the setting in Smith et al., which is based on a superpopulation

model. Superpopulation models may be viewed in some sense as similar to the

“random” populations of Engen, or, put more broadly, the comparison may

be viewed as analogous to the difference between fixed and random effects in

ANOVA. Although we have focused on fixed populations, we believe that fixed

and superpopulation models are equally valid, and their specific use depends

on the problem at hand. Engen notes a number of reasons for considering

populations as fixed, and numerous authors use such models in the ecological

setting. (See, for example, Engen, 1974, and the references cited therein.)

So, for example, consider an ecologist who wishes to study and compare two
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populations that are relatively fixed in their composition at the time of sampling.

The ecologist samples these by sampling individuals from them. The ecologist

has at hand two possible estimators: the NPMLE and the estimator of Smith et

al. How would the ecologist expect those two estimators to behave? Our paper

provides some insights into this question. It is important to emphasize that,

regardless of the genesis of the estimators, the comparison of the estimators

remains valid. (To make a broad analogy, it is appropriate to ask what the

frequentist properties are for a given Bayesian estimator, even if that estimator

was not conceived with frequentist issues in mind.)

In this context, then, our proposed NPMLE generally provides a good es-

timate to the new index if the sample size is not too small. Also, θ̂n has good

theoretical and empirical properties, and it is easy to compute, similar to the

estimate of Jaccard’s index. The variances of θ̂n derived from the delta method

and bootstrapping are very close in the two examples shown. The decreasing

rate of the SD’s in θ̂n is approximately proportional to 1/
√

(Sample Size) from

our simulation.

The parametric estimate by Smith et al. was designed to estimate their new

similarity index. However, their estimate seems to be strongly influenced (or

dictated) by its parametric (species structure) assumption. If the parametric

assumption can describe well the species structure, e.g., the balanced population

case, θ̂b performs well when the sample size is fairly large. In particular, in the

balanced population case and when the sample size is large, all species would

have about the same number of occurrences. As a result, d(j; ni, α, β, p, q) ap-

proximately equals p, q, and 1−p−q if species i appears only in population 1, 2,

and both populations, respectively. Applying maximum likelihood estimation,

we have, approximately, p̂ = q̂ = (s− c)/(2s− c) and θ̂b = c/(2s− c) = θJ = θn
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when s1 = s2 = s. This gives a heuristic sense of why θ̂b converges faster than

θ̂n in the balanced population case of our simulation.

When the underlying species structure is not equiprobable, θ̂b may not be

a good estimate of θn (or θJ). For example, in the Type 1 case, the number of

occurrences for the common species in our model follows a geometric pattern

and b(ni; j, α, β) would be small when ni is large. Since fewer observations have

a large weight, using the MLE would produce an inappropriate θ̂b. Also, when

the number of observations is very large, d(j; ni, α, β, p, q) would have a form

similar to that in the balanced population case. For example, suppose that

s1 = s2 = 2, c = 1, and α = 0.8 in the Type 1 unbalanced population case,

and suppose the sample size is large. Again, arguing heuristically, we would

expect that θ̂b = 1/3(= θJ), instead of θn = 5/13. This might explain why θ̂b is

actually closer to the Jaccard index instead of the index proposed by Smith et

al. Therefore, if the new index of overlap is to be used, we would recommend

the NPMLE as its estimate.

Although it is not a specific focus of our study, we note that the plug-in esti-

mate of Jaccard’s index also performs well when the sample size is not too small.

In particular, θ̂J appears to have the fastest convergence rate in the balanced

population case, and is also quite comparable in unbalanced population cases

when the sample size is big. Except in the Type 2 unbalanced population cases,

the decreasing rate of SD’s in θ̂J appears to be faster than 1/
√

(Sample Size).

Note that McCormick et al. (1992) proved the asymptotic normality of θ̂J in

the balanced population case, but they require that the sample size and the

number of species increase at the same rate.

In this paper, we modified the conditional probability definition of species

overlap proposed by Smith et al. and generalized the setting to include the

15



Jaccard index as a special case. All three estimates of species overlap measures

considered perform well in various situations, and we think that the NPMLE

has properties that make it appealing. In particular, the NPMLE has good

theoretical properties and is easy to compute. As a result, it provides a good

estimate to the similarity index proposed by Smith et al. under the setting

of fixed populations. However, although the overlap measure defined via the

conditional probability setting can reduce the underbias of the Jaccard index in

describing the species overlap, neither Smith et al. nor we provide a concrete

plan for sampling species from two populations. In the future, we will continue

working on searching a species overlap measure which not only reflect the true

species overlap and has a probability interpretation, but also comes with a firm

sampling plan.
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